city_retrofit/venv/lib/python3.7/site-packages/trimesh/curvature.py

185 lines
5.3 KiB
Python
Raw Normal View History

"""
curvature.py
---------------
Query mesh curvature.
"""
import numpy as np
from . import util
try:
from scipy.sparse.coo import coo_matrix
except ImportError:
pass
def face_angles_sparse(mesh):
"""
A sparse matrix representation of the face angles.
Returns
----------
sparse: scipy.sparse.coo_matrix with:
dtype: float
shape: (len(mesh.vertices), len(mesh.faces))
"""
matrix = coo_matrix((mesh.face_angles.flatten(),
(mesh.faces_sparse.row, mesh.faces_sparse.col)),
mesh.faces_sparse.shape)
return matrix
def vertex_defects(mesh):
"""
Return the vertex defects, or (2*pi) minus the sum of the angles
of every face that includes that vertex.
If a vertex is only included by coplanar triangles, this
will be zero. For convex regions this is positive, and
concave negative.
Returns
--------
vertex_defect : (len(self.vertices), ) float
Vertex defect at the every vertex
"""
angle_sum = np.asarray(mesh.face_angles_sparse.sum(axis=1)).flatten()
defect = (2 * np.pi) - angle_sum
return defect
def discrete_gaussian_curvature_measure(mesh, points, radius):
"""
Return the discrete gaussian curvature measure of a sphere centered
at a point as detailed in 'Restricted Delaunay triangulations and normal
cycle', Cohen-Steiner and Morvan.
Parameters
----------
points : (n,3) float, list of points in space
radius : float, the sphere radius
Returns
--------
gaussian_curvature: (n,) float, discrete gaussian curvature measure.
"""
points = np.asanyarray(points, dtype=np.float64)
if not util.is_shape(points, (-1, 3)):
raise ValueError('points must be (n,3)!')
nearest = mesh.kdtree.query_ball_point(points, radius)
gauss_curv = [mesh.vertex_defects[vertices].sum() for vertices in nearest]
return np.asarray(gauss_curv)
def discrete_mean_curvature_measure(mesh, points, radius):
"""
Return the discrete mean curvature measure of a sphere centered
at a point as detailed in 'Restricted Delaunay triangulations and normal
cycle', Cohen-Steiner and Morvan.
Parameters
----------
points : (n,3) float, list of points in space
radius : float, the sphere radius
Returns
--------
mean_curvature: (n,) float, discrete mean curvature measure.
"""
points = np.asanyarray(points, dtype=np.float64)
if not util.is_shape(points, (-1, 3)):
raise ValueError('points must be (n,3)!')
# axis aligned bounds
bounds = np.column_stack((points - radius,
points + radius))
# line segments that intersect axis aligned bounding box
candidates = [list(mesh.face_adjacency_tree.intersection(b))
for b in bounds]
mean_curv = np.empty(len(points))
for i, (x, x_candidates) in enumerate(zip(points, candidates)):
endpoints = mesh.vertices[mesh.face_adjacency_edges[x_candidates]]
lengths = line_ball_intersection(
endpoints[:, 0],
endpoints[:, 1],
center=x,
radius=radius)
angles = mesh.face_adjacency_angles[x_candidates]
signs = np.where(mesh.face_adjacency_convex[x_candidates], 1, -1)
mean_curv[i] = (lengths * angles * signs).sum() / 2
return mean_curv
def line_ball_intersection(start_points, end_points, center, radius):
"""
Compute the length of the intersection of a line segment with a ball.
Parameters
----------
start_points : (n,3) float, list of points in space
end_points : (n,3) float, list of points in space
center : (3,) float, the sphere center
radius : float, the sphere radius
Returns
--------
lengths: (n,) float, the lengths.
"""
# We solve for the intersection of |x-c|**2 = r**2 and
# x = o + dL. This yields
# d = (-l.(o-c) +- sqrt[ l.(o-c)**2 - l.l((o-c).(o-c) - r^**2) ]) / l.l
L = end_points - start_points
oc = start_points - center # o-c
r = radius
ldotl = np.einsum('ij, ij->i', L, L) # l.l
ldotoc = np.einsum('ij, ij->i', L, oc) # l.(o-c)
ocdotoc = np.einsum('ij, ij->i', oc, oc) # (o-c).(o-c)
discrims = ldotoc**2 - ldotl * (ocdotoc - r**2)
# If discriminant is non-positive, then we have zero length
lengths = np.zeros(len(start_points))
# Otherwise we solve for the solns with d2 > d1.
m = discrims > 0 # mask
d1 = (-ldotoc[m] - np.sqrt(discrims[m])) / ldotl[m]
d2 = (-ldotoc[m] + np.sqrt(discrims[m])) / ldotl[m]
# Line segment means we have 0 <= d <= 1
d1 = np.clip(d1, 0, 1)
d2 = np.clip(d2, 0, 1)
# Length is |o + d2 l - o + d1 l| = (d2 - d1) |l|
lengths[m] = (d2 - d1) * np.sqrt(ldotl[m])
return lengths
def sphere_ball_intersection(R, r):
"""
Compute the surface area of the intersection of sphere of radius R centered
at (0, 0, 0) with a ball of radius r centered at (R, 0, 0).
Parameters
----------
R : float, sphere radius
r : float, ball radius
Returns
--------
area: float, the surface are.
"""
x = (2 * R**2 - r**2) / (2 * R) # x coord of plane
if x >= -R:
return 2 * np.pi * R * (R - x)
if x < -R:
return 4 * np.pi * R**2