city_retrofit/city_model_structure/attributes/polyhedron.py

393 lines
13 KiB
Python
Raw Normal View History

2020-10-28 13:42:58 -04:00
"""
Polyhedron module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2020 Project Author Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
import numpy as np
from trimesh import Trimesh
from helpers.geometry_helper import GeometryHelper
from helpers.configuration_helper import ConfigurationHelper
from city_model_structure.attributes.surface import Surface
2020-10-28 13:42:58 -04:00
class Polyhedron:
"""
Polyhedron class
"""
2020-10-28 13:42:58 -04:00
def __init__(self, surfaces):
self._surfaces = list(surfaces)
self._polygons = [s.polygon for s in surfaces]
self._polyhedron = None
self._volume = None
self._faces = None
self._vertices = None
self._mesh = None
self._centroid = None
self._max_z = None
2020-12-01 07:33:23 -05:00
self._max_y = None
self._max_x = None
self._min_z = None
self._min_y = None
self._min_x = None
self._geometry = GeometryHelper()
2020-10-28 13:42:58 -04:00
def _position_of(self, point, face):
2020-10-28 13:42:58 -04:00
vertices = self.vertices
for i in range(len(vertices)):
# ensure not duplicated vertex
if i not in face and GeometryHelper.distance_between_points(vertices[i], point) == 0:
2020-10-28 13:42:58 -04:00
return i
return -1
@property
def vertices(self) -> np.ndarray:
"""
Polyhedron vertices
:return: np.ndarray(int)
"""
if self._vertices is None:
vertices, self._vertices = [], []
_ = [vertices.extend(s.points) for s in self._surfaces]
for vertex_1 in vertices:
found = False
for vertex_2 in self._vertices:
found = False
if GeometryHelper.distance_between_points(vertex_1, vertex_2) == 0:
2020-10-28 13:42:58 -04:00
found = True
break
if not found:
self._vertices.append(vertex_1)
self._vertices = np.asarray(self._vertices)
return self._vertices
@staticmethod
def _point(coordinates):
return coordinates[0], coordinates[1], coordinates[2]
def _triangulate(self, surface):
points_list = surface.points_list
normal = surface.normal
concave_points = []
convex_points = []
# lists of concave and convex points
# case 1: first point
point = points_list[0:3]
previous_point = points_list[len(points_list) - 3:]
next_point = points_list[3:6]
index = 0
total_points_list = [index]
if self._point_is_concave(normal, point, previous_point, next_point):
concave_points.append(index)
else:
convex_points.append(index)
# case 2: all points except first and last
for i in range(0, int((len(points_list)-6)/3)):
point = points_list[(i+1)*3:(i+2)*3]
previous_point = points_list[i*3:(i+1)*3]
next_point = points_list[(i+2)*3:(i+3)*3]
index = i+1
total_points_list.append(index)
if self._point_is_concave(normal, point, previous_point, next_point):
concave_points.append(index)
else:
convex_points.append(index)
# case 3: last point
point = points_list[len(points_list) - 3:]
previous_point = points_list[len(points_list) - 6:len(points_list) - 3]
next_point = points_list[0:3]
index = int(len(points_list)/3) - 1
total_points_list.append(index)
if self._point_is_concave(normal, point, previous_point, next_point):
concave_points.append(index)
else:
convex_points.append(index)
# list of ears
ears = []
# todo remove counter
counter = 0
while len(concave_points) > 3 or len(convex_points) != 0 and counter < 40:
counter += 1
for i in range(0, len(concave_points)):
ear = self._triangle(points_list, total_points_list, concave_points[i])
rest_points = []
for p in total_points_list:
rest_points.append(list(surface.points[p]))
if self._is_ear(ear, rest_points):
ears.append(ear)
point_to_remove = concave_points[i]
index = total_points_list.index(point_to_remove)
if index == 0:
previous_point_in_list = total_points_list[len(total_points_list) - 1]
next_point_in_list = total_points_list[1]
elif index == len(total_points_list) - 1:
previous_point_in_list = total_points_list[len(total_points_list) - 2]
next_point_in_list = total_points_list[0]
else:
previous_point_in_list = total_points_list[index - 1]
next_point_in_list = total_points_list[index + 1]
total_points_list.remove(point_to_remove)
concave_points.remove(point_to_remove)
# Was any of the adjacent points convex? -> check if changed status to concave
# todo CHECK PREVIOUS AND NEXT POINTS IF OUT OF RANGE
for j in range(0, len(convex_points)):
if convex_points[j] == previous_point_in_list:
point = points_list[previous_point_in_list*3:(previous_point_in_list + 1)*3]
pointer = total_points_list.index(previous_point_in_list) - 1
if pointer < 0:
pointer = len(total_points_list) - 1
previous_point = points_list[total_points_list[pointer]*3:total_points_list[pointer] * 3 + 3]
pointer = total_points_list.index(previous_point_in_list) + 1
if pointer >= len(total_points_list):
pointer = 0
next_point = points_list[total_points_list[pointer] * 3:total_points_list[pointer] * 3 + 3]
if self._point_is_concave(normal, point, previous_point, next_point):
if concave_points[0] > convex_points[j]:
concave_points.insert(0, convex_points[j])
elif concave_points[len(concave_points)-1] < convex_points[j]:
concave_points.append(convex_points[j])
else:
for p in range(0, len(concave_points)-1):
if concave_points[p] < convex_points[j] < concave_points[p+1]:
concave_points.insert(p, convex_points[j])
convex_points.remove(convex_points[j])
break
continue
if convex_points[j] == next_point_in_list:
point = points_list[next_point_in_list*3:(next_point_in_list + 1)*3]
pointer = total_points_list.index(next_point_in_list) - 1
if pointer < 0:
pointer = len(total_points_list) - 1
previous_point = points_list[total_points_list[pointer]*3:total_points_list[pointer] * 3 + 3]
pointer = total_points_list.index(next_point_in_list) + 1
if pointer >= len(total_points_list):
pointer = 0
next_point = points_list[total_points_list[pointer]*3:total_points_list[pointer] * 3 + 3]
if self._point_is_concave(normal, point, previous_point, next_point):
concave_points.insert(0, convex_points[j])
convex_points.remove(convex_points[j])
break
continue
break
last_ear = self._triangle(points_list, total_points_list, concave_points[1])
ears.append(last_ear)
return ears
@staticmethod
def _point_is_concave(normal, point, previous_point, next_point) -> bool:
is_concave = False
accepted_error = 0.1
points = ' '.join(str(e) for e in [*previous_point[:], *point[:], *next_point[:]])
triangle = Surface(points, remove_last=False)
error_sum = 0
for i in range(0, len(normal)):
error_sum += triangle.normal[i] - normal[i]
if np.abs(error_sum) < accepted_error:
is_concave = True
return is_concave
@staticmethod
def _triangle(points_list, total_points_list, point_position):
index = point_position * 3
previous_point_index = None
next_point_index = None
if point_position == total_points_list[0]:
previous_point_index = total_points_list[len(total_points_list) - 1] * 3
next_point_index = total_points_list[1] * 3
if point_position == total_points_list[len(total_points_list) - 1]:
previous_point_index = total_points_list[len(total_points_list) - 2] * 3
next_point_index = total_points_list[0] * 3
for i in range(1, len(total_points_list)-1):
if point_position == total_points_list[i]:
previous_point_index = total_points_list[i - 1] * 3
next_point_index = total_points_list[i + 1] * 3
points = ' '.join(str(e) for e in [*points_list[previous_point_index:previous_point_index + 3],
*points_list[index:index + 3],
*points_list[next_point_index:next_point_index + 3]])
triangle = Surface(points, remove_last=False)
return triangle
@staticmethod
def _is_ear(ear, points) -> bool:
area_ear = ear.area
for point in points:
area_points = 0
point_is_not_vertex = True
for i in range(0, 3):
if abs(np.linalg.norm(point) - np.linalg.norm(ear.points[i])) < 0.0001:
point_is_not_vertex = False
break
if point_is_not_vertex:
for i in range(0, 3):
if i != 2:
new_points = ' '.join(str(e) for e in [*ear.points[i][:], *ear.points[i + 1][:], *point[:]])
else:
new_points = ' '.join(str(e) for e in [*ear.points[i][:], *point[:], *ear.points[0][:]])
new_triangle = Surface(new_points, remove_last=False)
area_points += new_triangle.area
if abs(area_points - area_ear) < 1e-6:
# point_inside_ear = True
return False
return True
2020-10-28 13:42:58 -04:00
@property
def faces(self) -> [[int]]:
2020-10-28 13:42:58 -04:00
"""
Polyhedron faces
:return: [[int]]
2020-10-28 13:42:58 -04:00
"""
2020-10-28 13:42:58 -04:00
if self._faces is None:
self._faces = []
2020-10-28 13:42:58 -04:00
for surface in self._surfaces:
2020-10-28 13:42:58 -04:00
face = []
points = surface.points
2020-12-01 07:33:23 -05:00
if len(points) != 3:
sub_surfaces = self._triangulate(surface)
for sub_surface in sub_surfaces:
face = []
points = sub_surface.points
for point in points:
face.append(self._position_of(point, face))
self._faces.append(face)
else:
for point in points:
face.append(self._position_of(point, face))
self._faces.append(face)
2020-10-28 13:42:58 -04:00
return self._faces
@property
def _polyhedron_mesh(self):
if self._mesh is None:
2020-12-01 07:33:23 -05:00
self._mesh = Trimesh(vertices=self.vertices, faces=self.faces)
2020-10-28 13:42:58 -04:00
return self._mesh
@property
def volume(self):
"""
Polyhedron volume in cubic meters
:return: float
"""
if self._volume is None:
if not self._polyhedron_mesh.is_volume:
self._volume = np.inf
else:
self._volume = self._polyhedron_mesh.volume
return self._volume
@property
def max_z(self):
"""
Polyhedron maximal z value
:return: float
"""
2020-12-01 07:33:23 -05:00
if self._max_z is None:
self._max_z = ConfigurationHelper().min_coordinate
for surface in self._surfaces:
for point in surface.points:
if self._max_z < point[2]:
self._max_z = point[2]
return self._max_z
@property
def max_y(self):
"""
Polyhedron maximal y value
:return: float
"""
if self._max_y is None:
self._max_y = ConfigurationHelper().min_coordinate
for surface in self._surfaces:
for point in surface.points:
if self._max_y < point[1]:
self._max_y = point[1]
return self._max_y
@property
def max_x(self):
"""
Polyhedron maximal x value
:return: float
"""
if self._max_x is None:
self._max_x = ConfigurationHelper().min_coordinate
for surface in self._surfaces:
for point in surface.points:
self._max_x = max(self._max_x, point[0])
return self._max_x
@property
def min_z(self):
"""
Polyhedron minimal z value
:return: float
"""
if self._min_z is None:
self._min_z = self.max_z
for surface in self._surfaces:
for point in surface.points:
if self._min_z > point[2]:
self._min_z = point[2]
return self._min_z
@property
def min_y(self):
"""
Polyhedron minimal y value
:return: float
"""
if self._min_y is None:
self._min_y = self.max_y
for surface in self._surfaces:
for point in surface.points:
if self._min_y > point[1]:
self._min_y = point[1]
return self._min_y
@property
def min_x(self):
"""
Polyhedron minimal x value
:return: float
"""
if self._min_x is None:
self._min_x = self.max_x
for surface in self._surfaces:
for point in surface.points:
if self._min_x > point[0]:
self._min_x = point[0]
return self._min_x
2020-10-28 13:42:58 -04:00
@property
def center(self):
2020-10-28 13:42:58 -04:00
"""
Polyhedron centroid
:return: [x,y,z]
"""
x = (self.max_x + self.min_x) / 2
y = (self.max_y + self.min_y) / 2
z = (self.max_z + self.min_z) / 2
return [x, y, z]
2020-12-01 07:33:23 -05:00
2020-11-18 08:58:37 -05:00
def stl_export(self, full_path):
2020-10-28 13:42:58 -04:00
"""
Export the polyhedron to stl given file
:param full_path: str
:return: None
"""
2020-11-18 08:58:37 -05:00
self._polyhedron_mesh.export(full_path, 'stl_ascii')
def obj_export(self, full_path):
"""
Export the polyhedron to obj given file
:param full_path: str
:return: None
"""
self._polyhedron_mesh.export(full_path, 'obj')
def show(self):
2020-11-18 08:58:37 -05:00
self._polyhedron_mesh.show()