2021-11-11 17:25:53 -05:00
|
|
|
"""
|
|
|
|
ComnetUsageParameters model the usage properties
|
|
|
|
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
2022-04-08 09:35:33 -04:00
|
|
|
Copyright © 2022 Concordia CERC group
|
|
|
|
Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
2021-11-11 17:25:53 -05:00
|
|
|
"""
|
2022-05-18 14:52:41 -04:00
|
|
|
import copy
|
2021-11-11 17:25:53 -05:00
|
|
|
import sys
|
|
|
|
from typing import Dict
|
|
|
|
import pandas as pd
|
2022-05-18 14:52:41 -04:00
|
|
|
import numpy
|
2021-11-11 17:25:53 -05:00
|
|
|
|
|
|
|
import helpers.constants as cte
|
|
|
|
from helpers.configuration_helper import ConfigurationHelper as ch
|
|
|
|
from imports.geometry.helpers.geometry_helper import GeometryHelper
|
|
|
|
from imports.usage.helpers.usage_helper import UsageHelper
|
2022-03-17 18:49:44 -04:00
|
|
|
from imports.schedules.helpers.schedules_helper import SchedulesHelper
|
2021-11-11 17:25:53 -05:00
|
|
|
from city_model_structure.building_demand.usage_zone import UsageZone
|
2022-03-08 19:19:52 -05:00
|
|
|
from city_model_structure.building_demand.lighting import Lighting
|
|
|
|
from city_model_structure.building_demand.occupancy import Occupancy
|
|
|
|
from city_model_structure.building_demand.appliances import Appliances
|
2022-03-17 18:49:44 -04:00
|
|
|
from city_model_structure.building_demand.thermal_control import ThermalControl
|
|
|
|
from city_model_structure.attributes.schedule import Schedule
|
2022-05-18 14:52:41 -04:00
|
|
|
from city_model_structure.building_demand.internal_gain import InternalGain
|
2021-11-11 17:25:53 -05:00
|
|
|
|
|
|
|
|
|
|
|
class ComnetUsageParameters:
|
|
|
|
"""
|
|
|
|
ComnetUsageParameters class
|
|
|
|
"""
|
|
|
|
def __init__(self, city, base_path):
|
|
|
|
self._city = city
|
|
|
|
self._base_path = str(base_path / 'comnet_archetypes.xlsx')
|
2022-03-17 18:49:44 -04:00
|
|
|
self._data = self._read_file()
|
|
|
|
self._comnet_schedules_path = str(base_path / 'comnet_schedules_archetypes.xlsx')
|
|
|
|
self._xls = pd.ExcelFile(self._comnet_schedules_path)
|
2021-11-11 17:25:53 -05:00
|
|
|
|
|
|
|
def _read_file(self) -> Dict:
|
|
|
|
"""
|
2022-03-17 18:49:44 -04:00
|
|
|
reads xlsx files containing usage information into a dictionary
|
2021-11-11 17:25:53 -05:00
|
|
|
:return : Dict
|
|
|
|
"""
|
|
|
|
number_usage_types = 33
|
|
|
|
xl_file = pd.ExcelFile(self._base_path)
|
|
|
|
file_data = pd.read_excel(xl_file, sheet_name="Modeling Data", skiprows=[0, 1, 2],
|
2022-03-17 18:49:44 -04:00
|
|
|
nrows=number_usage_types, usecols="A:AB")
|
2021-11-11 17:25:53 -05:00
|
|
|
|
|
|
|
lighting_data = {}
|
|
|
|
plug_loads_data = {}
|
|
|
|
occupancy_data = {}
|
|
|
|
ventilation_rate = {}
|
|
|
|
water_heating = {}
|
|
|
|
process_data = {}
|
2022-03-17 18:49:44 -04:00
|
|
|
schedules_key = {}
|
2021-11-11 17:25:53 -05:00
|
|
|
|
|
|
|
for j in range(0, number_usage_types):
|
|
|
|
usage_parameters = file_data.iloc[j]
|
|
|
|
usage_type = usage_parameters[0]
|
|
|
|
lighting_data[usage_type] = usage_parameters[1:6].values.tolist()
|
|
|
|
plug_loads_data[usage_type] = usage_parameters[8:13].values.tolist()
|
|
|
|
occupancy_data[usage_type] = usage_parameters[17:20].values.tolist()
|
|
|
|
ventilation_rate[usage_type] = usage_parameters[20:21].values.tolist()
|
|
|
|
water_heating[usage_type] = usage_parameters[23:24].values.tolist()
|
|
|
|
process_data[usage_type] = usage_parameters[24:26].values.tolist()
|
2022-03-17 18:49:44 -04:00
|
|
|
schedules_key[usage_type] = usage_parameters[27:28].values.tolist()
|
2021-11-11 17:25:53 -05:00
|
|
|
|
|
|
|
return {'lighting': lighting_data,
|
|
|
|
'plug loads': plug_loads_data,
|
|
|
|
'occupancy': occupancy_data,
|
|
|
|
'ventilation rate': ventilation_rate,
|
|
|
|
'water heating': water_heating,
|
2022-03-17 18:49:44 -04:00
|
|
|
'process': process_data,
|
|
|
|
'schedules_key': schedules_key}
|
2021-11-11 17:25:53 -05:00
|
|
|
|
|
|
|
@staticmethod
|
2022-03-17 18:49:44 -04:00
|
|
|
def _parse_usage_type(comnet_usage, data, schedules_data):
|
2022-03-08 19:19:52 -05:00
|
|
|
_usage_zone = UsageZone()
|
|
|
|
|
2021-11-11 17:25:53 -05:00
|
|
|
# lighting
|
2022-03-08 19:19:52 -05:00
|
|
|
_lighting = Lighting()
|
|
|
|
_lighting.latent_fraction = ch().comnet_lighting_latent
|
|
|
|
_lighting.convective_fraction = ch().comnet_lighting_convective
|
|
|
|
_lighting.radiative_fraction = ch().comnet_lighting_radiant
|
2022-04-06 16:06:55 -04:00
|
|
|
_lighting.density = data['lighting'][comnet_usage][4]
|
2022-03-08 19:19:52 -05:00
|
|
|
|
2021-11-11 17:25:53 -05:00
|
|
|
# plug loads
|
2022-03-08 19:19:52 -05:00
|
|
|
_appliances = None
|
2022-03-17 18:49:44 -04:00
|
|
|
if data['plug loads'][comnet_usage][0] != 'n.a.':
|
2022-03-08 19:19:52 -05:00
|
|
|
_appliances = Appliances()
|
|
|
|
_appliances.latent_fraction = ch().comnet_plugs_latent
|
|
|
|
_appliances.convective_fraction = ch().comnet_plugs_convective
|
|
|
|
_appliances.radiative_fraction = ch().comnet_plugs_radiant
|
2022-04-06 16:06:55 -04:00
|
|
|
_appliances.density = data['plug loads'][comnet_usage][0]
|
2022-03-08 19:19:52 -05:00
|
|
|
|
|
|
|
# occupancy
|
|
|
|
_occupancy = Occupancy()
|
2022-04-06 16:06:55 -04:00
|
|
|
value = data['occupancy'][comnet_usage][0]
|
2022-05-18 14:52:41 -04:00
|
|
|
_occupancy.occupancy_density = 0
|
2022-04-06 16:06:55 -04:00
|
|
|
if value != 0:
|
2022-05-18 14:52:41 -04:00
|
|
|
_occupancy.occupancy_density = 1 / value
|
|
|
|
|
2022-03-17 18:49:44 -04:00
|
|
|
_occupancy.sensible_convective_internal_gain = data['occupancy'][comnet_usage][1] \
|
2022-03-08 19:19:52 -05:00
|
|
|
* ch().comnet_occupancy_sensible_convective
|
2022-03-17 18:49:44 -04:00
|
|
|
_occupancy.sensible_radiative_internal_gain = data['occupancy'][comnet_usage][1] \
|
|
|
|
* ch().comnet_occupancy_sensible_radiant
|
|
|
|
_occupancy.latent_internal_gain = data['occupancy'][comnet_usage][2]
|
2022-03-08 19:19:52 -05:00
|
|
|
|
2022-04-06 16:06:55 -04:00
|
|
|
_usage_zone.mechanical_air_change = data['ventilation rate'][comnet_usage][0]
|
2022-03-17 18:49:44 -04:00
|
|
|
|
|
|
|
schedules_usage = UsageHelper.schedules_key(data['schedules_key'][comnet_usage][0])
|
|
|
|
|
|
|
|
_extracted_data = pd.read_excel(schedules_data, sheet_name=schedules_usage,
|
|
|
|
skiprows=[0, 1, 2, 3], nrows=39, usecols="A:AA")
|
|
|
|
schedules = []
|
|
|
|
number_of_schedule_types = 13
|
|
|
|
schedules_per_schedule_type = 3
|
|
|
|
day_types = dict({'week_day': 0, 'saturday': 1, 'sunday': 2})
|
|
|
|
for schedule_types in range(0, number_of_schedule_types):
|
|
|
|
name = ''
|
|
|
|
data_type = ''
|
|
|
|
for schedule_day in range(0, schedules_per_schedule_type):
|
|
|
|
_schedule = Schedule()
|
|
|
|
_schedule.time_step = cte.HOUR
|
|
|
|
_schedule.time_range = cte.DAY
|
|
|
|
row_cells = _extracted_data.iloc[schedules_per_schedule_type * schedule_types + schedule_day]
|
|
|
|
if schedule_day == day_types['week_day']:
|
|
|
|
name = row_cells[0]
|
|
|
|
data_type = row_cells[1]
|
|
|
|
_schedule.day_types = [cte.MONDAY, cte.TUESDAY, cte.WEDNESDAY, cte.THURSDAY, cte.FRIDAY]
|
|
|
|
elif schedule_day == day_types['saturday']:
|
|
|
|
_schedule.day_types = [cte.SATURDAY]
|
|
|
|
else:
|
2022-04-26 18:39:42 -04:00
|
|
|
_schedule.day_types = [cte.SUNDAY, cte.HOLIDAY]
|
2022-03-17 18:49:44 -04:00
|
|
|
_schedule.type = name
|
|
|
|
_schedule.data_type = SchedulesHelper.data_type_from_comnet(data_type)
|
2022-06-01 23:17:04 -04:00
|
|
|
if _schedule.data_type == cte.ANY_NUMBER:
|
2022-03-17 18:49:44 -04:00
|
|
|
values = []
|
|
|
|
for cell in row_cells[schedules_per_schedule_type:].to_numpy():
|
|
|
|
values.append((float(cell) - 32.) * 5 / 9)
|
|
|
|
_schedule.values = values
|
|
|
|
else:
|
|
|
|
_schedule.values = row_cells[schedules_per_schedule_type:].to_numpy()
|
|
|
|
schedules.append(_schedule)
|
|
|
|
|
|
|
|
schedules_types = dict({'Occupancy': 0, 'Lights': 3, 'Receptacle': 6, 'Infiltration': 9, 'HVAC Avail': 12,
|
|
|
|
'ClgSetPt': 15, 'HtgSetPt': 18})
|
|
|
|
|
|
|
|
_schedules = []
|
|
|
|
for pointer in range(0, 3):
|
|
|
|
_schedules.append(schedules[schedules_types['Occupancy']+pointer])
|
|
|
|
_occupancy.occupancy_schedules = _schedules
|
|
|
|
_schedules = []
|
|
|
|
for pointer in range(0, 3):
|
|
|
|
_schedules.append(schedules[schedules_types['Lights']+pointer])
|
|
|
|
_lighting.schedules = _schedules
|
|
|
|
_schedules = []
|
|
|
|
for pointer in range(0, 3):
|
|
|
|
_schedules.append(schedules[schedules_types['Receptacle']+pointer])
|
|
|
|
_appliances.schedules = _schedules
|
2022-03-08 19:19:52 -05:00
|
|
|
|
|
|
|
_usage_zone.occupancy = _occupancy
|
|
|
|
_usage_zone.lighting = _lighting
|
|
|
|
_usage_zone.appliances = _appliances
|
2022-03-17 18:49:44 -04:00
|
|
|
|
|
|
|
_control = ThermalControl()
|
|
|
|
_schedules = []
|
|
|
|
for pointer in range(0, 3):
|
|
|
|
_schedules.append(schedules[schedules_types['HtgSetPt']+pointer])
|
|
|
|
_control.heating_set_point_schedules = _schedules
|
|
|
|
_schedules = []
|
|
|
|
for pointer in range(0, 3):
|
|
|
|
_schedules.append(schedules[schedules_types['ClgSetPt']+pointer])
|
|
|
|
_control.cooling_set_point_schedules = _schedules
|
|
|
|
_schedules = []
|
|
|
|
for pointer in range(0, 3):
|
|
|
|
_schedules.append(schedules[schedules_types['HVAC Avail']+pointer])
|
|
|
|
_control.hvac_availability_schedules = _schedules
|
|
|
|
_usage_zone.thermal_control = _control
|
|
|
|
|
2022-03-08 19:19:52 -05:00
|
|
|
return _usage_zone
|
2021-11-11 17:25:53 -05:00
|
|
|
|
2022-03-24 16:51:01 -04:00
|
|
|
def _search_archetypes(self, libs_usage):
|
2022-03-17 18:49:44 -04:00
|
|
|
for item in self._data['lighting']:
|
2022-03-24 16:51:01 -04:00
|
|
|
comnet_usage = UsageHelper.comnet_from_libs_usage(libs_usage)
|
2022-03-17 18:49:44 -04:00
|
|
|
if comnet_usage == item:
|
|
|
|
usage_archetype = self._parse_usage_type(comnet_usage, self._data, self._xls)
|
|
|
|
return usage_archetype
|
2022-03-24 16:51:01 -04:00
|
|
|
return None
|
2022-03-17 18:49:44 -04:00
|
|
|
|
2021-11-11 17:25:53 -05:00
|
|
|
def enrich_buildings(self):
|
|
|
|
"""
|
|
|
|
Returns the city with the usage parameters assigned to the buildings
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
city = self._city
|
|
|
|
for building in city.buildings:
|
2022-03-24 16:51:01 -04:00
|
|
|
usage = GeometryHelper.libs_usage_from_libs_function(building.function)
|
2022-03-17 18:49:44 -04:00
|
|
|
try:
|
|
|
|
archetype_usage = self._search_archetypes(usage)
|
|
|
|
except KeyError:
|
2021-11-11 17:25:53 -05:00
|
|
|
sys.stderr.write(f'Building {building.name} has unknown archetype for building function:'
|
|
|
|
f' {building.function}, that assigns building usage as '
|
2022-03-24 16:51:01 -04:00
|
|
|
f'{GeometryHelper.libs_usage_from_libs_function(building.function)}\n')
|
2022-03-17 18:49:44 -04:00
|
|
|
return
|
2021-11-11 17:25:53 -05:00
|
|
|
|
2022-03-08 20:08:03 -05:00
|
|
|
for internal_zone in building.internal_zones:
|
2022-03-17 18:49:44 -04:00
|
|
|
if internal_zone.area is None:
|
|
|
|
raise Exception('Internal zone area not defined, ACH cannot be calculated')
|
|
|
|
if internal_zone.volume is None:
|
|
|
|
raise Exception('Internal zone volume not defined, ACH cannot be calculated')
|
|
|
|
if internal_zone.area <= 0:
|
|
|
|
raise Exception('Internal zone area is zero, ACH cannot be calculated')
|
|
|
|
if internal_zone.volume <= 0:
|
|
|
|
raise Exception('Internal zone volume is zero, ACH cannot be calculated')
|
|
|
|
volume_per_area = internal_zone.volume / internal_zone.area
|
2021-11-11 17:25:53 -05:00
|
|
|
usage_zone = UsageZone()
|
|
|
|
usage_zone.usage = usage
|
2022-03-17 18:49:44 -04:00
|
|
|
self._assign_values_usage_zone(usage_zone, archetype_usage, volume_per_area)
|
2022-03-08 20:08:03 -05:00
|
|
|
usage_zone.percentage = 1
|
2022-03-17 18:49:44 -04:00
|
|
|
self._calculate_reduced_values_from_extended_library(usage_zone, archetype_usage)
|
2021-11-11 17:25:53 -05:00
|
|
|
|
2022-03-17 18:49:44 -04:00
|
|
|
internal_zone.usage_zones = [usage_zone]
|
2021-11-11 17:25:53 -05:00
|
|
|
|
|
|
|
@staticmethod
|
2022-03-17 18:49:44 -04:00
|
|
|
def _assign_values_usage_zone(usage_zone, archetype, volume_per_area):
|
2021-11-11 17:25:53 -05:00
|
|
|
# Due to the fact that python is not a typed language, the wrong object type is assigned to
|
2022-03-17 18:49:44 -04:00
|
|
|
# usage_zone.occupancy when writing usage_zone.occupancy = archetype.occupancy.
|
|
|
|
# Same happens for lighting and appliances. Therefore, this walk around has been done.
|
|
|
|
usage_zone.mechanical_air_change = archetype.mechanical_air_change * cte.METERS_TO_FEET ** 2 \
|
|
|
|
* cte.HOUR_TO_MINUTES / cte.METERS_TO_FEET ** 3 / volume_per_area
|
|
|
|
_occupancy = Occupancy()
|
2022-06-01 23:17:04 -04:00
|
|
|
_occupancy.occupancy_density = archetype.occupancy.occupancy_density * cte.METERS_TO_FEET**2
|
2022-04-06 16:06:55 -04:00
|
|
|
_occupancy.sensible_radiative_internal_gain = archetype.occupancy.sensible_radiative_internal_gain \
|
2022-06-01 23:17:04 -04:00
|
|
|
* archetype.occupancy.occupancy_density \
|
2022-04-06 16:06:55 -04:00
|
|
|
* cte.BTU_H_TO_WATTS
|
|
|
|
_occupancy.latent_internal_gain = archetype.occupancy.latent_internal_gain \
|
2022-06-01 23:17:04 -04:00
|
|
|
* archetype.occupancy.occupancy_density \
|
2022-04-06 16:06:55 -04:00
|
|
|
* cte.BTU_H_TO_WATTS
|
|
|
|
_occupancy.sensible_convective_internal_gain = archetype.occupancy.sensible_convective_internal_gain \
|
2022-06-01 23:17:04 -04:00
|
|
|
* archetype.occupancy.occupancy_density \
|
2022-04-06 16:06:55 -04:00
|
|
|
* cte.BTU_H_TO_WATTS
|
2022-03-17 18:49:44 -04:00
|
|
|
_occupancy.occupancy_schedules = archetype.occupancy.occupancy_schedules
|
|
|
|
usage_zone.occupancy = _occupancy
|
|
|
|
_lighting = Lighting()
|
2022-04-06 16:06:55 -04:00
|
|
|
_lighting.density = archetype.lighting.density / cte.METERS_TO_FEET ** 2
|
2022-03-17 18:49:44 -04:00
|
|
|
_lighting.convective_fraction = archetype.lighting.convective_fraction
|
|
|
|
_lighting.radiative_fraction = archetype.lighting.radiative_fraction
|
|
|
|
_lighting.latent_fraction = archetype.lighting.latent_fraction
|
|
|
|
_lighting.schedules = archetype.lighting.schedules
|
|
|
|
usage_zone.lighting = _lighting
|
|
|
|
_appliances = Appliances()
|
2022-04-06 16:06:55 -04:00
|
|
|
_appliances.density = archetype.appliances.density / cte.METERS_TO_FEET ** 2
|
2022-03-17 18:49:44 -04:00
|
|
|
_appliances.convective_fraction = archetype.appliances.convective_fraction
|
|
|
|
_appliances.radiative_fraction = archetype.appliances.radiative_fraction
|
|
|
|
_appliances.latent_fraction = archetype.appliances.latent_fraction
|
|
|
|
_appliances.schedules = archetype.appliances.schedules
|
|
|
|
usage_zone.appliances = _appliances
|
|
|
|
_control = ThermalControl()
|
|
|
|
_control.cooling_set_point_schedules = archetype.thermal_control.cooling_set_point_schedules
|
|
|
|
_control.heating_set_point_schedules = archetype.thermal_control.heating_set_point_schedules
|
|
|
|
_control.hvac_availability_schedules = archetype.thermal_control.hvac_availability_schedules
|
|
|
|
usage_zone.thermal_control = _control
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _calculate_reduced_values_from_extended_library(usage_zone, archetype):
|
|
|
|
number_of_days_per_type = {'WD': 251, 'Sat': 52, 'Sun': 62}
|
|
|
|
total = 0
|
|
|
|
for schedule in archetype.thermal_control.hvac_availability_schedules:
|
|
|
|
if schedule.day_types[0] == cte.SATURDAY:
|
|
|
|
for value in schedule.values:
|
|
|
|
total += value * number_of_days_per_type['Sat']
|
|
|
|
elif schedule.day_types[0] == cte.SUNDAY:
|
|
|
|
for value in schedule.values:
|
|
|
|
total += value * number_of_days_per_type['Sun']
|
|
|
|
else:
|
|
|
|
for value in schedule.values:
|
|
|
|
total += value * number_of_days_per_type['WD']
|
|
|
|
|
|
|
|
usage_zone.hours_day = total / 365
|
|
|
|
usage_zone.days_year = 365
|
2022-05-18 14:52:41 -04:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _calculate_internal_gains(archetype):
|
|
|
|
|
|
|
|
_DAYS = [cte.MONDAY, cte.TUESDAY, cte.WEDNESDAY, cte.THURSDAY, cte.FRIDAY, cte.SATURDAY, cte.SUNDAY, cte.HOLIDAY]
|
|
|
|
_number_of_days_per_type = [51, 50, 50, 50, 50, 52, 52, 10]
|
|
|
|
|
|
|
|
_mean_internal_gain = InternalGain()
|
|
|
|
_mean_internal_gain.type = 'mean_value_of_internal_gains'
|
|
|
|
_base_schedule = Schedule()
|
|
|
|
_base_schedule.type = cte.INTERNAL_GAINS
|
|
|
|
_base_schedule.time_range = cte.DAY
|
|
|
|
_base_schedule.time_step = cte.HOUR
|
|
|
|
_base_schedule.data_type = cte.FRACTION
|
|
|
|
|
|
|
|
_latent_heat_gain = archetype.occupancy.latent_internal_gain
|
|
|
|
_convective_heat_gain = archetype.occupancy.sensible_convective_internal_gain
|
|
|
|
_radiative_heat_gain = archetype.occupancy.sensible_radiative_internal_gain
|
|
|
|
_total_heat_gain = (_latent_heat_gain + _convective_heat_gain + _radiative_heat_gain)
|
|
|
|
|
|
|
|
_schedule_values = numpy.zeros(24, 7)
|
|
|
|
_sum = 0
|
|
|
|
for day, _schedule in enumerate(archetype.occupancy.schedules):
|
|
|
|
for v, value in enumerate(_schedule.values):
|
|
|
|
_schedule_values[v, day] = value * _total_heat_gain
|
|
|
|
_sum += value * _total_heat_gain * _number_of_days_per_type[day]
|
|
|
|
|
|
|
|
_total_heat_gain += archetype.lighting.density + archetype.appliances.density
|
|
|
|
_latent_heat_gain += archetype.lighting.latent_fraction * archetype.lighting.density\
|
|
|
|
+ archetype.appliances.latent_fraction * archetype.appliances.density
|
|
|
|
_radiative_heat_gain = archetype.lighting.radiative_fraction * archetype.lighting.density \
|
|
|
|
+ archetype.appliances.radiative_fraction * archetype.appliances.density
|
|
|
|
_convective_heat_gain = archetype.lighting.convective_fraction * archetype.lighting.density \
|
|
|
|
+ archetype.appliances.convective_fraction * archetype.appliances.density
|
|
|
|
|
|
|
|
for day, _schedule in enumerate(archetype.lighting.schedules):
|
|
|
|
for v, value in enumerate(_schedule.values):
|
|
|
|
_schedule_values[v, day] += value * archetype.lighting.density
|
|
|
|
_sum += value * archetype.lighting.density * _number_of_days_per_type[day]
|
|
|
|
|
|
|
|
for day, _schedule in enumerate(archetype.appliances.schedules):
|
|
|
|
for v, value in enumerate(_schedule.values):
|
|
|
|
_schedule_values[v, day] += value * archetype.appliances.density
|
|
|
|
_sum += value * archetype.appliances.density * _number_of_days_per_type[day]
|
|
|
|
|
|
|
|
_latent_fraction = _latent_heat_gain / _total_heat_gain
|
|
|
|
_radiative_fraction = _radiative_heat_gain / _total_heat_gain
|
|
|
|
_convective_fraction = _convective_heat_gain / _total_heat_gain
|
|
|
|
_average_internal_gain = _sum / _total_heat_gain
|
|
|
|
|
|
|
|
_schedules = []
|
|
|
|
for day in range(0, len(_DAYS)):
|
|
|
|
_schedule = copy.deepcopy(_base_schedule)
|
|
|
|
_schedule.day_types = [_DAYS[day]]
|
|
|
|
_schedule.values = _schedule_values[:day]
|
|
|
|
_schedules.append(_schedule)
|
|
|
|
|
|
|
|
_mean_internal_gain.average_internal_gain = _average_internal_gain
|
|
|
|
_mean_internal_gain.latent_fraction = _latent_fraction
|
|
|
|
_mean_internal_gain.convective_fraction = _convective_fraction
|
|
|
|
_mean_internal_gain.radiative_fraction = _radiative_fraction
|
|
|
|
_mean_internal_gain.schedules = _schedules
|
|
|
|
|
|
|
|
return [_mean_internal_gain]
|