city_retrofit/hub/helpers/monthly_values.py

58 lines
1.6 KiB
Python
Raw Normal View History

"""
2023-05-31 13:51:35 -04:00
Monthly values module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2020 Project Author Pilar Monsalvete pilar_monsalvete@yahoo.es
"""
2023-05-31 13:51:35 -04:00
import calendar as cal
import pandas as pd
import numpy as np
class MonthlyValues:
2023-05-31 13:51:35 -04:00
"""
Monthly values class
"""
def __init__(self):
self._month_hour = None
def get_mean_values(self, values):
2023-05-31 13:51:35 -04:00
"""
Calculates the mean values for each month
:return: DataFrame(float)
"""
out = None
if values is not None:
if 'month' not in values.columns:
values = pd.concat([self.month_hour, pd.DataFrame(values)], axis=1)
out = values.groupby('month', as_index=False).mean()
del out['month']
return out
def get_total_month(self, values):
2023-05-31 13:51:35 -04:00
"""
Calculates the total value for each month
:return: DataFrame(int)
"""
out = None
if values is not None:
if 'month' not in values.columns:
values = pd.concat([self.month_hour, pd.DataFrame(values)], axis=1)
out = pd.DataFrame(values).groupby('month', as_index=False).sum()
del out['month']
return out
@property
def month_hour(self):
"""
returns a DataFrame that has x values of the month number (January = 1, February = 2...),
being x the number of hours of the corresponding month
:return: DataFrame(int)
"""
array = []
for i in range(0, 12):
days_of_month = cal.monthrange(2015, i+1)[1]
total_hours = days_of_month * 24
array = np.concatenate((array, np.full(total_hours, i + 1)))
self._month_hour = pd.DataFrame(array, columns=['month'])
return self._month_hour