city_retrofit/base_case_modelling.py

68 lines
4.2 KiB
Python
Raw Normal View History

2024-10-28 08:11:09 -04:00
from hub.imports.energy_systems_factory import EnergySystemsFactory
from hub.imports.results_factory import ResultFactory
from pathlib import Path
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
import json
import hub.helpers.constants as cte
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
# Specify the GeoJSON file path
input_files_path = (Path(__file__).parent / 'input_files')
geojson_file_path = input_files_path / 'omhm_selected_buildings.geojson'
output_path = (Path(__file__).parent / 'out_files').resolve()
output_path.mkdir(parents=True, exist_ok=True)
ep_output_path = output_path / 'ep_outputs'
ep_output_path.mkdir(parents=True, exist_ok=True)
# Create city object from GeoJSON file
city = GeometryFactory('geojson',
path=geojson_file_path,
height_field='Hieght_LiD',
year_of_construction_field='ANNEE_CONS',
function_field='CODE_UTILI',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
# Enrich city data
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
ResultFactory('energy_plus_multiple_buildings', city, ep_output_path).enrich()
for building in city.buildings:
building.energy_systems_archetype_name = 'system 1 gas'
EnergySystemsFactory('montreal_custom', city).enrich()
# for building in city.buildings:
# building.energy_systems_archetype_name = 'PV+4Pipe+DHW'
# EnergySystemsFactory('montreal_future', city).enrich()
# for building in city.buildings:
# EnergySystemsSimulationFactory('archetype13', building=building, output_path=output_path).enrich()
month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
building_data = {}
for building in city.buildings:
building_data[f'building_{building.name}'] = {'id': building.name,
'total_floor_area':
building.thermal_zones_from_internal_zones[0].total_floor_area,
'yearly_heating_consumption_kWh':
building.heating_consumption[cte.YEAR][0] / 3.6e6,
'yearly_cooling_consumption_kWh':
building.cooling_consumption[cte.YEAR][0] / 3.6e6,
'yearly_dhw_consumption_kWh':
building.domestic_hot_water_consumption[cte.YEAR][0] / 3.6e6,
'heating_peak_load_kW': max(
building.heating_consumption[cte.HOUR]) / 3.6e6,
'cooling_peak_load_kW': max(
building.cooling_consumption[cte.HOUR]) / 3.6e6,
'monthly_heating_consumption_kWh':
{month_name: building.heating_consumption[cte.MONTH][i] / 3.6e6
for (i, month_name) in enumerate(month_names)},
'monthly_cooling_consumption_kWh':
{month_name: building.cooling_consumption[cte.MONTH][i] / 3.6e6
for (i, month_name) in enumerate(month_names)},
'monthly_dhw_consumption_kWh':
{month_name: building.domestic_hot_water_consumption[cte.MONTH][i] /
3.6e6 for (i, month_name) in enumerate(month_names)}}
with open(output_path / "base_case_buildings_data.json", "w") as json_file:
json.dump(building_data, json_file, indent=4)