diff --git a/base_case_modelling.py b/base_case_modelling.py
new file mode 100644
index 00000000..056e843a
--- /dev/null
+++ b/base_case_modelling.py
@@ -0,0 +1,80 @@
+from hub.imports.energy_systems_factory import EnergySystemsFactory
+from hub.imports.results_factory import ResultFactory
+from pathlib import Path
+from hub.imports.geometry_factory import GeometryFactory
+from hub.helpers.dictionaries import Dictionaries
+from hub.imports.construction_factory import ConstructionFactory
+from hub.imports.usage_factory import UsageFactory
+from hub.imports.weather_factory import WeatherFactory
+import json
+import hub.helpers.constants as cte
+from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
+
+# Specify the GeoJSON file path
+input_files_path = (Path(__file__).parent / 'input_files')
+geojson_file_path = input_files_path / 'omhm_selected_buildings.geojson'
+output_path = (Path(__file__).parent / 'out_files').resolve()
+output_path.mkdir(parents=True, exist_ok=True)
+ep_output_path = output_path / 'ep_outputs'
+ep_output_path.mkdir(parents=True, exist_ok=True)
+# Create city object from GeoJSON file
+city = GeometryFactory('geojson',
+ path=geojson_file_path,
+ height_field='Hieght_LiD',
+ year_of_construction_field='ANNEE_CONS',
+ function_field='CODE_UTILI',
+ function_to_hub=Dictionaries().montreal_function_to_hub_function).city
+# Enrich city data
+ConstructionFactory('nrcan', city).enrich()
+UsageFactory('nrcan', city).enrich()
+WeatherFactory('epw', city).enrich()
+ResultFactory('energy_plus_multiple_buildings', city, ep_output_path).enrich()
+# for building in city.buildings:
+# building.energy_systems_archetype_name = 'system 7 electricity pv'
+# EnergySystemsFactory('montreal_custom', city).enrich()
+for building in city.buildings:
+ building.energy_systems_archetype_name = 'PV+4Pipe+DHW'
+EnergySystemsFactory('montreal_future', city).enrich()
+for building in city.buildings:
+ EnergySystemsSimulationFactory('archetype13', building=building, output_path=output_path).enrich()
+month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
+building_data = {}
+for building in city.buildings:
+ building_data[f'building_{building.name}'] = {'id': building.name,
+ 'total_floor_area':
+ building.thermal_zones_from_internal_zones[0].total_floor_area,
+ 'yearly_heating_consumption_kWh':
+ building.heating_consumption[cte.YEAR][0] / 3.6e6,
+ 'yearly_cooling_consumption_kWh':
+ building.cooling_consumption[cte.YEAR][0] / 3.6e6,
+ 'yearly_dhw_consumption_kWh':
+ building.domestic_hot_water_consumption[cte.YEAR][0] / 3.6e6,
+ 'yearly_appliance_electricity_consumption_kWh':
+ building.appliances_electrical_demand[cte.YEAR][0] / 3.6e6,
+ 'yearly_lighting_electricity_consumption_kWh':
+ building.lighting_electrical_demand[cte.YEAR][0] / 3.6e6,
+ 'heating_peak_load_kW': max(
+ building.heating_consumption[cte.HOUR]) / 3.6e6,
+ 'cooling_peak_load_kW': max(
+ building.cooling_consumption[cte.HOUR]) / 3.6e6,
+ 'monthly_heating_demand':
+ {month_name: building.heating_demand[cte.MONTH][i] / 3.6e6
+ for (i, month_name) in enumerate(month_names)},
+ 'monthly_heating_consumption_kWh':
+ {month_name: building.heating_consumption[cte.MONTH][i] / 3.6e6
+ for (i, month_name) in enumerate(month_names)},
+ 'monthly_cooling_demand_kWh':
+ {month_name: building.cooling_demand[cte.MONTH][i] / 3.6e6
+ for (i, month_name) in enumerate(month_names)},
+ 'monthly_cooling_consumption_kWh':
+ {month_name: building.cooling_consumption[cte.MONTH][i] / 3.6e6
+ for (i, month_name) in enumerate(month_names)},
+ 'monthly_dhw_demand_kWh':
+ {month_name: building.domestic_hot_water_heat_demand[cte.MONTH][i] / 3.6e6
+ for (i, month_name) in enumerate(month_names)},
+ 'monthly_dhw_consumption_kWh':
+ {month_name: building.domestic_hot_water_consumption[cte.MONTH][i] /
+ 3.6e6 for (i, month_name) in enumerate(month_names)}}
+
+with open(output_path / "air_to_water_hp_buildings_data.json", "w") as json_file:
+ json.dump(building_data, json_file, indent=4)
diff --git a/building_modelling/ep_workflow.py b/building_modelling/ep_workflow.py
new file mode 100644
index 00000000..455cce98
--- /dev/null
+++ b/building_modelling/ep_workflow.py
@@ -0,0 +1,45 @@
+import glob
+import os
+import sys
+from pathlib import Path
+import csv
+from hub.exports.energy_building_exports_factory import EnergyBuildingsExportsFactory
+from hub.imports.results_factory import ResultFactory
+
+sys.path.append('../energy_system_modelling_package/')
+
+
+def energy_plus_workflow(city, output_path):
+ try:
+ # city = city
+ out_path = output_path
+ files = glob.glob(f'{out_path}/*')
+
+ # for file in files:
+ # if file != '.gitignore':
+ # os.remove(file)
+ area = 0
+ volume = 0
+ for building in city.buildings:
+ volume = building.volume
+ for ground in building.grounds:
+ area += ground.perimeter_polygon.area
+
+ print('exporting:')
+ _idf = EnergyBuildingsExportsFactory('idf', city, out_path).export()
+ print(' idf exported...')
+ _idf.run()
+
+ csv_file = str((out_path / f'{city.name}_out.csv').resolve())
+ eso_file = str((out_path / f'{city.name}_out.eso').resolve())
+ idf_file = str((out_path / f'{city.name}.idf').resolve())
+ obj_file = str((out_path / f'{city.name}.obj').resolve())
+ ResultFactory('energy_plus_multiple_buildings', city, out_path).enrich()
+
+
+
+ except Exception as ex:
+ print(ex)
+ print('error: ', ex)
+ print('[simulation abort]')
+ sys.stdout.flush()
diff --git a/building_modelling/geojson_creator.py b/building_modelling/geojson_creator.py
new file mode 100644
index 00000000..c96c340d
--- /dev/null
+++ b/building_modelling/geojson_creator.py
@@ -0,0 +1,37 @@
+import json
+from shapely import Polygon
+from shapely import Point
+from pathlib import Path
+
+
+def process_geojson(x, y, diff, expansion=False):
+ selection_box = Polygon([[x + diff, y - diff],
+ [x - diff, y - diff],
+ [x - diff, y + diff],
+ [x + diff, y + diff]])
+ geojson_file = Path('./data/collinear_clean 2.geojson').resolve()
+ if not expansion:
+ output_file = Path('./input_files/output_buildings.geojson').resolve()
+ else:
+ output_file = Path('./input_files/output_buildings_expanded.geojson').resolve()
+ buildings_in_region = []
+
+ with open(geojson_file, 'r') as file:
+ city = json.load(file)
+ buildings = city['features']
+
+ for building in buildings:
+ coordinates = building['geometry']['coordinates'][0]
+ building_polygon = Polygon(coordinates)
+ centroid = Point(building_polygon.centroid)
+
+ if centroid.within(selection_box):
+ buildings_in_region.append(building)
+
+ output_region = {"type": "FeatureCollection",
+ "features": buildings_in_region}
+
+ with open(output_file, 'w') as file:
+ file.write(json.dumps(output_region, indent=2))
+
+ return output_file
diff --git a/costing_package/capital_costs.py b/costing_package/capital_costs.py
new file mode 100644
index 00000000..951e92c1
--- /dev/null
+++ b/costing_package/capital_costs.py
@@ -0,0 +1,417 @@
+"""
+Capital costs module
+SPDX - License - Identifier: LGPL - 3.0 - or -later
+Copyright © 2023 Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
+Code contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
+Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
+"""
+import math
+
+import pandas as pd
+import numpy_financial as npf
+from hub.city_model_structure.building import Building
+import hub.helpers.constants as cte
+from costing_package.configuration import Configuration
+from costing_package.constants import (SKIN_RETROFIT, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV,
+ SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS, PV, SYSTEM_RETROFIT)
+from costing_package.cost_base import CostBase
+
+
+class CapitalCosts(CostBase):
+ """
+ Capital costs class
+ """
+
+ def __init__(self, building: Building, configuration: Configuration):
+ super().__init__(building, configuration)
+ self._yearly_capital_costs = pd.DataFrame(
+ index=self._rng,
+ columns=[
+ 'B2010_opaque_walls',
+ 'B2020_transparent',
+ 'B3010_opaque_roof',
+ 'B1010_superstructure',
+ 'D2010_photovoltaic_system',
+ 'D3020_simultaneous_heat_and_cooling_generating_systems',
+ 'D3030_heating_systems',
+ 'D3040_cooling_systems',
+ 'D3050_distribution_systems',
+ 'D3060_other_hvac_ahu',
+ 'D3070_storage_systems',
+ 'D40_dhw',
+ ],
+ dtype='float'
+ )
+ self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = 0
+ self._yearly_capital_costs.loc[0, 'B2020_transparent'] = 0
+ self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = 0
+ self._yearly_capital_costs.loc[0, 'B1010_superstructure'] = 0
+ self._yearly_capital_costs.loc[0, 'D2010_photovoltaic_system'] = 0
+ self._yearly_capital_costs.loc[0, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = 0
+ self._yearly_capital_costs.loc[0, 'D3030_heating_systems'] = 0
+ self._yearly_capital_costs.loc[0, 'D3040_cooling_systems'] = 0
+ self._yearly_capital_costs.loc[0, 'D3050_distribution_systems'] = 0
+ self._yearly_capital_costs.loc[0, 'D3060_other_hvac_ahu'] = 0
+ self._yearly_capital_costs.loc[0, 'D3070_storage_systems'] = 0
+ self._yearly_capital_costs.loc[0, 'D40_dhw'] = 0
+
+ self._yearly_capital_incomes = pd.DataFrame(
+ index=self._rng,
+ columns=[
+ 'Subsidies construction',
+ 'Subsidies HVAC',
+ 'Subsidies PV'
+ ],
+ dtype='float'
+ )
+ self._yearly_capital_incomes.loc[0, 'Subsidies construction'] = 0
+ self._yearly_capital_incomes.loc[0, 'Subsidies HVAC'] = 0
+ self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = 0
+ self._yearly_capital_costs.fillna(0, inplace=True)
+ self._own_capital = 1 - self._configuration.percentage_credit
+ self._surface_pv = 0
+ for roof in self._building.roofs:
+ self._surface_pv += roof.solid_polygon.area * roof.solar_collectors_area_reduction_factor
+
+ for roof in self._building.roofs:
+ if roof.installed_solar_collector_area is not None:
+ self._surface_pv += roof.installed_solar_collector_area
+ else:
+ self._surface_pv += roof.solid_polygon.area * roof.solar_collectors_area_reduction_factor
+ def calculate(self) -> tuple[pd.DataFrame, pd.DataFrame]:
+ self.skin_capital_cost()
+ self.energy_system_capital_cost()
+ self.skin_yearly_capital_costs()
+ self.yearly_energy_system_costs()
+ self.yearly_incomes()
+ return self._yearly_capital_costs, self._yearly_capital_incomes
+
+ def skin_capital_cost(self):
+ """
+ calculating skin costs
+ :return:
+ """
+ surface_opaque = 0
+ surface_transparent = 0
+ surface_roof = 0
+ surface_ground = 0
+
+ for thermal_zone in self._building.thermal_zones_from_internal_zones:
+ for thermal_boundary in thermal_zone.thermal_boundaries:
+ if thermal_boundary.type == 'Ground':
+ surface_ground += thermal_boundary.opaque_area
+ elif thermal_boundary.type == 'Roof':
+ surface_roof += thermal_boundary.opaque_area
+ elif thermal_boundary.type == 'Wall':
+ surface_opaque += thermal_boundary.opaque_area * (1 - thermal_boundary.window_ratio)
+ surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio
+
+ chapter = self._capital_costs_chapter.chapter('B_shell')
+ capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0]
+ capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0]
+ capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0]
+ capital_cost_ground = surface_ground * chapter.item('B1010_superstructure').refurbishment[0]
+ if self._configuration.retrofit_scenario not in (SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS, PV, SYSTEM_RETROFIT):
+ self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = capital_cost_opaque * self._own_capital
+ self._yearly_capital_costs.loc[0, 'B2020_transparent'] = capital_cost_transparent * self._own_capital
+ self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = capital_cost_roof * self._own_capital
+ self._yearly_capital_costs.loc[0, 'B1010_superstructure'] = capital_cost_ground * self._own_capital
+ capital_cost_skin = capital_cost_opaque + capital_cost_ground + capital_cost_transparent + capital_cost_roof
+ return capital_cost_opaque, capital_cost_transparent, capital_cost_roof, capital_cost_ground, capital_cost_skin
+
+ def skin_yearly_capital_costs(self):
+ skin_capital_cost = self.skin_capital_cost()
+ for year in range(1, self._configuration.number_of_years):
+ self._yearly_capital_costs.loc[year, 'B2010_opaque_walls'] = (
+ -npf.pmt(
+ self._configuration.interest_rate,
+ self._configuration.credit_years,
+ skin_capital_cost[0] * self._configuration.percentage_credit
+ )
+ )
+ self._yearly_capital_costs.loc[year, 'B2020_transparent'] = (
+ -npf.pmt(
+ self._configuration.interest_rate,
+ self._configuration.credit_years,
+ skin_capital_cost[1] * self._configuration.percentage_credit
+ )
+ )
+ self._yearly_capital_costs.loc[year, 'B3010_opaque_roof'] = (
+ -npf.pmt(
+ self._configuration.interest_rate,
+ self._configuration.credit_years,
+ skin_capital_cost[2] * self._configuration.percentage_credit
+ )
+ )
+ self._yearly_capital_costs.loc[year, 'B1010_superstructure'] = (
+ -npf.pmt(
+ self._configuration.interest_rate,
+ self._configuration.credit_years,
+ skin_capital_cost[3] * self._configuration.percentage_credit
+ )
+ )
+
+ def energy_system_capital_cost(self):
+ chapter = self._capital_costs_chapter.chapter('D_services')
+ system_components, component_categories, component_sizes = self.system_components()
+ capital_cost_heating_and_cooling_equipment = 0
+ capital_cost_heating_equipment = 0
+ capital_cost_cooling_equipment = 0
+ capital_cost_domestic_hot_water_equipment = 0
+ capital_cost_energy_storage_equipment = 0
+ capital_cost_distribution_equipment = 0
+ capital_cost_lighting = 0
+ capital_cost_pv = self._surface_pv * chapter.item('D2010_photovoltaic_system').initial_investment[0]
+ for (i, component) in enumerate(system_components):
+ if component_categories[i] == 'multi_generation':
+ capital_cost_heating_and_cooling_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
+ elif component_categories[i] == 'heating':
+ capital_cost_heating_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
+ elif component_categories[i] == 'cooling':
+ capital_cost_cooling_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
+ elif component_categories[i] == 'dhw':
+ capital_cost_domestic_hot_water_equipment += chapter.item(component).initial_investment[0] * \
+ component_sizes[i]
+ elif component_categories[i] == 'distribution':
+ capital_cost_distribution_equipment += chapter.item(component).initial_investment[0] * \
+ component_sizes[i]
+ else:
+ capital_cost_energy_storage_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
+
+ if self._configuration.retrofit_scenario in (SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, PV):
+ self._yearly_capital_costs.loc[0, 'D2010_photovoltaic_system'] = capital_cost_pv
+ if (self._configuration.retrofit_scenario in
+ (SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT)):
+ self._yearly_capital_costs.loc[0, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = (
+ capital_cost_heating_and_cooling_equipment * self._own_capital)
+ self._yearly_capital_costs.loc[0, 'D3030_heating_systems'] = (
+ capital_cost_heating_equipment * self._own_capital)
+ self._yearly_capital_costs.loc[0, 'D3040_cooling_systems'] = (
+ capital_cost_cooling_equipment * self._own_capital)
+ self._yearly_capital_costs.loc[0, 'D3050_distribution_systems'] = (
+ capital_cost_distribution_equipment * self._own_capital)
+ self._yearly_capital_costs.loc[0, 'D3070_storage_systems'] = (
+ capital_cost_energy_storage_equipment * self._own_capital)
+ self._yearly_capital_costs.loc[0, 'D40_dhw'] = (
+ capital_cost_domestic_hot_water_equipment * self._own_capital)
+ capital_cost_hvac = (capital_cost_heating_and_cooling_equipment + capital_cost_distribution_equipment +
+ capital_cost_energy_storage_equipment + capital_cost_domestic_hot_water_equipment)
+ return (capital_cost_pv, capital_cost_heating_and_cooling_equipment, capital_cost_heating_equipment,
+ capital_cost_distribution_equipment, capital_cost_cooling_equipment, capital_cost_energy_storage_equipment,
+ capital_cost_domestic_hot_water_equipment, capital_cost_lighting, capital_cost_hvac)
+
+ def yearly_energy_system_costs(self):
+ chapter = self._capital_costs_chapter.chapter('D_services')
+ system_investment_costs = self.energy_system_capital_cost()
+ system_components, component_categories, component_sizes = self.system_components()
+ pv = False
+ for energy_system in self._building.energy_systems:
+ for generation_system in energy_system.generation_systems:
+ if generation_system.system_type == cte.PHOTOVOLTAIC:
+ pv = True
+ for year in range(1, self._configuration.number_of_years):
+ costs_increase = math.pow(1 + self._configuration.consumer_price_index, year)
+ self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] = (
+ -npf.pmt(
+ self._configuration.interest_rate,
+ self._configuration.credit_years,
+ system_investment_costs[0] * self._configuration.percentage_credit
+ )
+ )
+ self._yearly_capital_costs.loc[year, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = (
+ -npf.pmt(
+ self._configuration.interest_rate,
+ self._configuration.credit_years,
+ system_investment_costs[1] * self._configuration.percentage_credit
+ )
+ )
+ self._yearly_capital_costs.loc[year, 'D3030_heating_systems'] = (
+ -npf.pmt(
+ self._configuration.interest_rate,
+ self._configuration.credit_years,
+ system_investment_costs[2] * self._configuration.percentage_credit
+ )
+ )
+ self._yearly_capital_costs.loc[year, 'D3040_cooling_systems'] = (
+ -npf.pmt(
+ self._configuration.interest_rate,
+ self._configuration.credit_years,
+ system_investment_costs[3] * self._configuration.percentage_credit
+ )
+ )
+ self._yearly_capital_costs.loc[year, 'D3050_distribution_systems'] = (
+ -npf.pmt(
+ self._configuration.interest_rate,
+ self._configuration.credit_years,
+ system_investment_costs[4] * self._configuration.percentage_credit
+ )
+ )
+ self._yearly_capital_costs.loc[year, 'D3070_storage_systems'] = (
+ -npf.pmt(
+ self._configuration.interest_rate,
+ self._configuration.credit_years,
+ system_investment_costs[5] * self._configuration.percentage_credit
+ )
+ )
+ self._yearly_capital_costs.loc[year, 'D40_dhw'] = (
+ -npf.pmt(
+ self._configuration.interest_rate,
+ self._configuration.credit_years,
+ system_investment_costs[6] * self._configuration.percentage_credit
+ )
+ )
+ if self._configuration.retrofit_scenario not in (SKIN_RETROFIT, PV):
+ for (i, component) in enumerate(system_components):
+ if (year % chapter.item(component).lifetime) == 0 and year != (self._configuration.number_of_years - 1):
+ if component_categories[i] == 'multi_generation':
+ reposition_cost_heating_and_cooling_equipment = (chapter.item(component).reposition[0] *
+ component_sizes[i] * costs_increase)
+ self._yearly_capital_costs.loc[year, 'D3020_simultaneous_heat_and_cooling_generating_systems'] += (
+ reposition_cost_heating_and_cooling_equipment)
+ elif component_categories[i] == 'heating':
+ reposition_cost_heating_equipment = (chapter.item(component).reposition[0] *
+ component_sizes[i] * costs_increase)
+ self._yearly_capital_costs.loc[year, 'D3030_heating_systems'] += (
+ reposition_cost_heating_equipment)
+ elif component_categories[i] == 'cooling':
+ reposition_cost_cooling_equipment = (chapter.item(component).reposition[0] *
+ component_sizes[i] * costs_increase)
+ self._yearly_capital_costs.loc[year, 'D3040_cooling_systems'] += (
+ reposition_cost_cooling_equipment)
+ elif component_categories[i] == 'dhw':
+ reposition_cost_domestic_hot_water_equipment = (
+ chapter.item(component).reposition[0] * component_sizes[i] * costs_increase)
+ self._yearly_capital_costs.loc[year, 'D40_dhw'] += reposition_cost_domestic_hot_water_equipment
+ elif component_categories[i] == 'distribution':
+ reposition_cost_distribution_equipment = (
+ chapter.item(component).reposition[0] * component_sizes[i] * costs_increase)
+ self._yearly_capital_costs.loc[year, 'D3050_distribution_systems'] += (
+ reposition_cost_distribution_equipment)
+ else:
+ reposition_cost_energy_storage_equipment = (
+ chapter.item(component).initial_investment[0] * component_sizes[i] * costs_increase)
+ self._yearly_capital_costs.loc[year, 'D3070_storage_systems'] += reposition_cost_energy_storage_equipment
+ if self._configuration.retrofit_scenario == CURRENT_STATUS and pv:
+ if (year % chapter.item('D2010_photovoltaic_system').lifetime) == 0:
+ self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] += (
+ self._surface_pv * chapter.item('D2010_photovoltaic_system').reposition[0] * costs_increase
+ )
+ elif self._configuration.retrofit_scenario in (PV, SYSTEM_RETROFIT_AND_PV,
+ SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
+ if (year % chapter.item('D2010_photovoltaic_system').lifetime) == 0:
+ self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] += (
+ self._surface_pv * chapter.item('D2010_photovoltaic_system').reposition[0] * costs_increase
+ )
+
+ def system_components(self):
+ system_components = []
+ component_categories = []
+ sizes = []
+ energy_systems = self._building.energy_systems
+ for energy_system in energy_systems:
+ demand_types = energy_system.demand_types
+ generation_systems = energy_system.generation_systems
+ distribution_systems = energy_system.distribution_systems
+ for generation_system in generation_systems:
+ if generation_system.system_type != cte.PHOTOVOLTAIC:
+ heating_capacity = generation_system.nominal_heat_output or 0
+ cooling_capacity = generation_system.nominal_cooling_output or 0
+ installed_capacity = max(heating_capacity, cooling_capacity) / 1000
+ if cte.DOMESTIC_HOT_WATER in demand_types and cte.HEATING not in demand_types:
+ component_categories.append('dhw')
+ sizes.append(installed_capacity)
+ if generation_system.system_type == cte.HEAT_PUMP:
+ system_components.append(self.heat_pump_type(generation_system, domestic_how_water=True))
+ elif generation_system.system_type == cte.BOILER and generation_system.fuel_type == cte.ELECTRICITY:
+ system_components.append(self.boiler_type(generation_system))
+ else:
+ system_components.append('D302010_template_heat')
+ elif cte.HEATING in demand_types:
+ if cte.COOLING in demand_types and generation_system.fuel_type == cte.ELECTRICITY:
+ component_categories.append('multi_generation')
+ else:
+ component_categories.append('heating')
+ sizes.append(installed_capacity)
+ if generation_system.system_type == cte.HEAT_PUMP:
+ item_type = self.heat_pump_type(generation_system)
+ system_components.append(item_type)
+ elif generation_system.system_type == cte.BOILER:
+ item_type = self.boiler_type(generation_system)
+ system_components.append(item_type)
+ else:
+ if cooling_capacity > heating_capacity:
+ system_components.append('D302090_template_cooling')
+ else:
+ system_components.append('D302010_template_heat')
+ elif cte.COOLING in demand_types:
+ component_categories.append('cooling')
+ sizes.append(installed_capacity)
+ if generation_system.system_type == cte.HEAT_PUMP:
+ item_type = self.heat_pump_type(generation_system)
+ system_components.append(item_type)
+ else:
+ system_components.append('D302090_template_cooling')
+ if generation_system.energy_storage_systems is not None:
+ energy_storage_systems = generation_system.energy_storage_systems
+ for storage_system in energy_storage_systems:
+ if storage_system.type_energy_stored == 'thermal':
+ component_categories.append('thermal storage')
+ sizes.append(storage_system.volume or 0)
+ system_components.append('D306010_storage_tank')
+ if distribution_systems is not None:
+ for distribution_system in distribution_systems:
+ component_categories.append('distribution')
+ sizes.append(self._building.cooling_peak_load[cte.YEAR][0] / 1000)
+ system_components.append('D3040_distribution_systems')
+ return system_components, component_categories, sizes
+
+ def yearly_incomes(self):
+ capital_cost_skin = self.skin_capital_cost()[-1]
+ system_investment_cost = self.energy_system_capital_cost()
+ capital_cost_hvac = system_investment_cost[-1]
+ capital_cost_pv = system_investment_cost[0]
+
+ self._yearly_capital_incomes.loc[0, 'Subsidies construction'] = (
+ capital_cost_skin * self._archetype.income.construction_subsidy/100
+ )
+ self._yearly_capital_incomes.loc[0, 'Subsidies HVAC'] = capital_cost_hvac * self._archetype.income.hvac_subsidy/100
+ self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = capital_cost_pv * self._archetype.income.photovoltaic_subsidy/100
+ self._yearly_capital_incomes.fillna(0, inplace=True)
+
+ @staticmethod
+ def heat_pump_type(generation_system, domestic_how_water=False):
+ source_medium = generation_system.source_medium
+ supply_medium = generation_system.supply_medium
+ if domestic_how_water:
+ heat_pump_item = 'D4010_hot_water_heat_pump'
+ else:
+ if source_medium == cte.AIR and supply_medium == cte.WATER:
+ heat_pump_item = 'D302020_air_to_water_heat_pump'
+ elif source_medium == cte.AIR and supply_medium == cte.AIR:
+ heat_pump_item = 'D302050_air_to_air_heat_pump'
+ elif source_medium == cte.GROUND and supply_medium == cte.WATER:
+ heat_pump_item = 'D302030_ground_to_water_heat_pump'
+ elif source_medium == cte.GROUND and supply_medium == cte.AIR:
+ heat_pump_item = 'D302100_ground_to_air_heat_pump'
+ elif source_medium == cte.WATER and supply_medium == cte.WATER:
+ heat_pump_item = 'D302040_water_to_water_heat_pump'
+ elif source_medium == cte.WATER and supply_medium == cte.AIR:
+ heat_pump_item = 'D302110_water_to_air_heat_pump'
+ else:
+ heat_pump_item = 'D302010_template_heat'
+ return heat_pump_item
+
+ @staticmethod
+ def boiler_type(generation_system):
+ fuel = generation_system.fuel_type
+ if fuel == cte.ELECTRICITY:
+ boiler_item = 'D302080_electrical_boiler'
+ elif fuel == cte.GAS:
+ boiler_item = 'D302070_natural_gas_boiler'
+ else:
+ boiler_item = 'D302010_template_heat'
+ return boiler_item
+
+
+
+
diff --git a/costing_package/configuration.py b/costing_package/configuration.py
new file mode 100644
index 00000000..3d5b9485
--- /dev/null
+++ b/costing_package/configuration.py
@@ -0,0 +1,238 @@
+"""
+Configuration module
+SPDX - License - Identifier: LGPL - 3.0 - or -later
+Copyright © 2023 Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
+Code contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
+Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
+"""
+from hub.catalog_factories.costs_catalog_factory import CostsCatalogFactory
+from hub.catalog_factories.catalog import Catalog
+
+
+class Configuration:
+ """
+ Configuration class
+ """
+
+ def __init__(self,
+ number_of_years,
+ percentage_credit,
+ interest_rate,
+ credit_years,
+ consumer_price_index,
+ electricity_peak_index,
+ electricity_price_index,
+ gas_price_index,
+ discount_rate,
+ retrofitting_year_construction,
+ factories_handler,
+ retrofit_scenario,
+ fuel_type,
+ dictionary,
+ fuel_tariffs
+ ):
+ self._number_of_years = number_of_years
+ self._percentage_credit = percentage_credit
+ self._interest_rate = interest_rate
+ self._credit_years = credit_years
+ self._consumer_price_index = consumer_price_index
+ self._electricity_peak_index = electricity_peak_index
+ self._electricity_price_index = electricity_price_index
+ self._gas_price_index = gas_price_index
+ self._discount_rate = discount_rate
+ self._retrofitting_year_construction = retrofitting_year_construction
+ self._factories_handler = factories_handler
+ self._costs_catalog = CostsCatalogFactory(factories_handler).catalog
+ self._retrofit_scenario = retrofit_scenario
+ self._fuel_type = fuel_type
+ self._dictionary = dictionary
+ self._fuel_tariffs = fuel_tariffs
+
+ @property
+ def number_of_years(self):
+ """
+ Get number of years
+ """
+ return self._number_of_years
+
+ @number_of_years.setter
+ def number_of_years(self, value):
+ """
+ Set number of years
+ """
+ self._number_of_years = value
+
+ @property
+ def percentage_credit(self):
+ """
+ Get percentage credit
+ """
+ return self._percentage_credit
+
+ @percentage_credit.setter
+ def percentage_credit(self, value):
+ """
+ Set percentage credit
+ """
+ self._percentage_credit = value
+
+ @property
+ def interest_rate(self):
+ """
+ Get interest rate
+ """
+ return self._interest_rate
+
+ @interest_rate.setter
+ def interest_rate(self, value):
+ """
+ Set interest rate
+ """
+ self._interest_rate = value
+
+ @property
+ def credit_years(self):
+ """
+ Get credit years
+ """
+ return self._credit_years
+
+ @credit_years.setter
+ def credit_years(self, value):
+ """
+ Set credit years
+ """
+ self._credit_years = value
+
+ @property
+ def consumer_price_index(self):
+ """
+ Get consumer price index
+ """
+ return self._consumer_price_index
+
+ @consumer_price_index.setter
+ def consumer_price_index(self, value):
+ """
+ Set consumer price index
+ """
+ self._consumer_price_index = value
+
+ @property
+ def electricity_peak_index(self):
+ """
+ Get electricity peak index
+ """
+ return self._electricity_peak_index
+
+ @electricity_peak_index.setter
+ def electricity_peak_index(self, value):
+ """
+ Set electricity peak index
+ """
+ self._electricity_peak_index = value
+
+ @property
+ def electricity_price_index(self):
+ """
+ Get electricity price index
+ """
+ return self._electricity_price_index
+
+ @electricity_price_index.setter
+ def electricity_price_index(self, value):
+ """
+ Set electricity price index
+ """
+ self._electricity_price_index = value
+
+ @property
+ def gas_price_index(self):
+ """
+ Get gas price index
+ """
+ return self._gas_price_index
+
+ @gas_price_index.setter
+ def gas_price_index(self, value):
+ """
+ Set gas price index
+ """
+ self._gas_price_index = value
+
+ @property
+ def discount_rate(self):
+ """
+ Get discount rate
+ """
+ return self._discount_rate
+
+ @discount_rate.setter
+ def discount_rate(self, value):
+ """
+ Set discount rate
+ """
+ self._discount_rate = value
+
+ @property
+ def retrofitting_year_construction(self):
+ """
+ Get retrofitting year construction
+ """
+ return self._retrofitting_year_construction
+
+ @retrofitting_year_construction.setter
+ def retrofitting_year_construction(self, value):
+ """
+ Set retrofitting year construction
+ """
+ self._retrofitting_year_construction = value
+
+ @property
+ def factories_handler(self):
+ """
+ Get factories handler
+ """
+ return self._factories_handler
+
+ @factories_handler.setter
+ def factories_handler(self, value):
+ """
+ Set factories handler
+ """
+ self._factories_handler = value
+
+ @property
+ def costs_catalog(self) -> Catalog:
+ """
+ Get costs catalog
+ """
+ return self._costs_catalog
+
+ @property
+ def retrofit_scenario(self):
+ """
+ Get retrofit scenario
+ """
+ return self._retrofit_scenario
+
+ @property
+ def fuel_type(self):
+ """
+ Get fuel type (0: Electricity, 1: Gas)
+ """
+ return self._fuel_type
+
+ @property
+ def dictionary(self):
+ """
+ Get hub function to cost function dictionary
+ """
+ return self._dictionary
+
+ @property
+ def fuel_tariffs(self):
+ """
+ Get fuel tariffs
+ """
+ return self._fuel_tariffs
diff --git a/costing_package/constants.py b/costing_package/constants.py
new file mode 100644
index 00000000..87372d3d
--- /dev/null
+++ b/costing_package/constants.py
@@ -0,0 +1,23 @@
+"""
+Constants module
+SPDX - License - Identifier: LGPL - 3.0 - or -later
+Copyright © 2023 Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
+Code contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
+Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
+"""
+
+# constants
+CURRENT_STATUS = 0
+SKIN_RETROFIT = 1
+SYSTEM_RETROFIT_AND_PV = 2
+SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV = 3
+PV = 4
+SYSTEM_RETROFIT = 5
+RETROFITTING_SCENARIOS = [
+ CURRENT_STATUS,
+ SKIN_RETROFIT,
+ SYSTEM_RETROFIT_AND_PV,
+ SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV,
+ PV,
+ SYSTEM_RETROFIT
+]
diff --git a/costing_package/cost.py b/costing_package/cost.py
new file mode 100644
index 00000000..2b2bdcd7
--- /dev/null
+++ b/costing_package/cost.py
@@ -0,0 +1,170 @@
+"""
+Cost module
+SPDX - License - Identifier: LGPL - 3.0 - or -later
+Copyright © 2023 Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
+Code contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
+Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
+"""
+
+import pandas as pd
+import numpy_financial as npf
+from hub.city_model_structure.building import Building
+from hub.helpers.dictionaries import Dictionaries
+from costing_package.configuration import Configuration
+from costing_package.capital_costs import CapitalCosts
+from costing_package.end_of_life_costs import EndOfLifeCosts
+from costing_package.total_maintenance_costs import TotalMaintenanceCosts
+from costing_package.total_operational_costs import TotalOperationalCosts
+from costing_package.total_operational_incomes import TotalOperationalIncomes
+from costing_package.constants import CURRENT_STATUS
+import hub.helpers.constants as cte
+
+
+class Cost:
+ """
+ Cost class
+ """
+
+ def __init__(self,
+ building: Building,
+ number_of_years=31,
+ percentage_credit=0,
+ interest_rate=0.04,
+ credit_years=15,
+ consumer_price_index=0.04,
+ electricity_peak_index=0.05,
+ electricity_price_index=0.05,
+ fuel_price_index=0.05,
+ discount_rate=0.03,
+ retrofitting_year_construction=2020,
+ factories_handler='montreal_new',
+ retrofit_scenario=CURRENT_STATUS,
+ dictionary=None,
+ fuel_tariffs=None):
+ if fuel_tariffs is None:
+ fuel_tariffs = ['Electricity-D', 'Gas-Energir']
+ if dictionary is None:
+ dictionary = Dictionaries().hub_function_to_montreal_custom_costs_function
+ self._building = building
+ fuel_type = self._building.energy_consumption_breakdown.keys()
+ self._configuration = Configuration(number_of_years,
+ percentage_credit,
+ interest_rate, credit_years,
+ consumer_price_index,
+ electricity_peak_index,
+ electricity_price_index,
+ fuel_price_index,
+ discount_rate,
+ retrofitting_year_construction,
+ factories_handler,
+ retrofit_scenario,
+ fuel_type,
+ dictionary,
+ fuel_tariffs)
+
+ @property
+ def building(self) -> Building:
+ """
+ Get current building.
+ """
+ return self._building
+
+ def _npv_from_list(self, list_cashflow):
+ return npf.npv(self._configuration.discount_rate, list_cashflow)
+
+ @property
+ def life_cycle(self) -> pd.DataFrame:
+ """
+ Get complete life cycle costs
+ :return: DataFrame
+ """
+ results = pd.DataFrame()
+ global_capital_costs, global_capital_incomes = CapitalCosts(self._building, self._configuration).calculate()
+ global_end_of_life_costs = EndOfLifeCosts(self._building, self._configuration).calculate()
+ global_operational_costs = TotalOperationalCosts(self._building, self._configuration).calculate()
+ global_maintenance_costs = TotalMaintenanceCosts(self._building, self._configuration).calculate()
+ global_operational_incomes = TotalOperationalIncomes(self._building, self._configuration).calculate()
+
+ df_capital_costs_skin = (
+ global_capital_costs['B2010_opaque_walls'] +
+ global_capital_costs['B2020_transparent'] +
+ global_capital_costs['B3010_opaque_roof'] +
+ global_capital_costs['B1010_superstructure']
+ )
+ df_capital_costs_systems = (
+ global_capital_costs['D3020_simultaneous_heat_and_cooling_generating_systems'] +
+ global_capital_costs['D3030_heating_systems'] +
+ global_capital_costs['D3040_cooling_systems'] +
+ global_capital_costs['D3050_distribution_systems'] +
+ global_capital_costs['D3060_other_hvac_ahu'] +
+ global_capital_costs['D3070_storage_systems'] +
+ global_capital_costs['D40_dhw'] +
+ global_capital_costs['D2010_photovoltaic_system']
+ )
+
+ df_end_of_life_costs = global_end_of_life_costs['End_of_life_costs']
+ operational_costs_list = [
+ global_operational_costs['Fixed Costs Electricity Peak'],
+ global_operational_costs['Fixed Costs Electricity Monthly'],
+ global_operational_costs['Variable Costs Electricity']
+ ]
+ additional_costs = [
+ global_operational_costs[f'Fixed Costs {fuel}'] for fuel in
+ self._building.energy_consumption_breakdown.keys() if fuel != cte.ELECTRICITY
+ ] + [
+ global_operational_costs[f'Variable Costs {fuel}'] for fuel in
+ self._building.energy_consumption_breakdown.keys() if fuel != cte.ELECTRICITY
+ ]
+ df_operational_costs = sum(operational_costs_list + additional_costs)
+ df_maintenance_costs = (
+ global_maintenance_costs['Heating_maintenance'] +
+ global_maintenance_costs['Cooling_maintenance'] +
+ global_maintenance_costs['PV_maintenance']
+ )
+ df_operational_incomes = global_operational_incomes['Incomes electricity']
+ df_capital_incomes = (
+ global_capital_incomes['Subsidies construction'] +
+ global_capital_incomes['Subsidies HVAC'] +
+ global_capital_incomes['Subsidies PV']
+ )
+
+ life_cycle_costs_capital_skin = self._npv_from_list(df_capital_costs_skin.values.tolist())
+ life_cycle_costs_capital_systems = self._npv_from_list(df_capital_costs_systems.values.tolist())
+ life_cycle_costs_end_of_life_costs = self._npv_from_list(df_end_of_life_costs.values.tolist())
+ life_cycle_operational_costs = self._npv_from_list(df_operational_costs)
+ life_cycle_maintenance_costs = self._npv_from_list(df_maintenance_costs.values.tolist())
+ life_cycle_operational_incomes = self._npv_from_list(df_operational_incomes.values.tolist())
+ life_cycle_capital_incomes = self._npv_from_list(df_capital_incomes.values.tolist())
+
+ results[f'Scenario {self._configuration.retrofit_scenario}'] = [
+ life_cycle_costs_capital_skin,
+ life_cycle_costs_capital_systems,
+ life_cycle_costs_end_of_life_costs,
+ life_cycle_operational_costs,
+ life_cycle_maintenance_costs,
+ life_cycle_operational_incomes,
+ life_cycle_capital_incomes,
+ global_capital_costs,
+ global_capital_incomes,
+ global_end_of_life_costs,
+ global_operational_costs,
+ global_maintenance_costs,
+ global_operational_incomes
+ ]
+
+ results.index = [
+ 'total_capital_costs_skin',
+ 'total_capital_costs_systems',
+ 'end_of_life_costs',
+ 'total_operational_costs',
+ 'total_maintenance_costs',
+ 'operational_incomes',
+ 'capital_incomes',
+ 'global_capital_costs',
+ 'global_capital_incomes',
+ 'global_end_of_life_costs',
+ 'global_operational_costs',
+ 'global_maintenance_costs',
+ 'global_operational_incomes'
+ ]
+ return results
diff --git a/costing_package/cost_base.py b/costing_package/cost_base.py
new file mode 100644
index 00000000..ad5a5aee
--- /dev/null
+++ b/costing_package/cost_base.py
@@ -0,0 +1,40 @@
+"""
+Cost base module
+SPDX - License - Identifier: LGPL - 3.0 - or -later
+Copyright © 2023 Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
+Code contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
+Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
+"""
+
+from hub.city_model_structure.building import Building
+
+from costing_package.configuration import Configuration
+
+
+class CostBase:
+ """
+ Abstract base class for the costs
+ """
+ def __init__(self, building: Building, configuration: Configuration):
+ self._building = building
+ self._configuration = configuration
+ self._total_floor_area = 0
+ for thermal_zone in building.thermal_zones_from_internal_zones:
+ self._total_floor_area += thermal_zone.total_floor_area
+ self._archetype = None
+ self._capital_costs_chapter = None
+ for archetype in self._configuration.costs_catalog.entries().archetypes:
+ if configuration.dictionary[str(building.function)] == str(archetype.function):
+ self._archetype = archetype
+ self._capital_costs_chapter = self._archetype.capital_cost
+ break
+ if not self._archetype:
+ raise KeyError(f'archetype not found for function {building.function}')
+
+ self._rng = range(configuration.number_of_years)
+
+ def calculate(self):
+ """
+ Raises not implemented exception
+ """
+ raise NotImplementedError()
diff --git a/costing_package/end_of_life_costs.py b/costing_package/end_of_life_costs.py
new file mode 100644
index 00000000..f04386ef
--- /dev/null
+++ b/costing_package/end_of_life_costs.py
@@ -0,0 +1,38 @@
+"""
+End of life costs module
+SPDX - License - Identifier: LGPL - 3.0 - or -later
+Copyright © 2023 Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
+Code contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
+Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
+"""
+import math
+import pandas as pd
+from hub.city_model_structure.building import Building
+
+from costing_package.configuration import Configuration
+from costing_package.cost_base import CostBase
+
+
+class EndOfLifeCosts(CostBase):
+ """
+ End of life costs class
+ """
+ def __init__(self, building: Building, configuration: Configuration):
+ super().__init__(building, configuration)
+ self._yearly_end_of_life_costs = pd.DataFrame(index=self._rng, columns=['End_of_life_costs'], dtype='float')
+
+ def calculate(self):
+ """
+ Calculate end of life costs
+ :return: pd.DataFrame
+ """
+ archetype = self._archetype
+ total_floor_area = self._total_floor_area
+ for year in range(1, self._configuration.number_of_years + 1):
+ price_increase = math.pow(1 + self._configuration.consumer_price_index, year)
+ if year == self._configuration.number_of_years:
+ self._yearly_end_of_life_costs.at[year, 'End_of_life_costs'] = (
+ total_floor_area * archetype.end_of_life_cost * price_increase
+ )
+ self._yearly_end_of_life_costs.fillna(0, inplace=True)
+ return self._yearly_end_of_life_costs
diff --git a/costing_package/peak_load.py b/costing_package/peak_load.py
new file mode 100644
index 00000000..422f563b
--- /dev/null
+++ b/costing_package/peak_load.py
@@ -0,0 +1,56 @@
+"""
+Peak load module
+SPDX - License - Identifier: LGPL - 3.0 - or -later
+Copyright © 2023 Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
+Code contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
+Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
+"""
+
+import pandas as pd
+
+import hub.helpers.constants as cte
+
+
+class PeakLoad:
+ """
+ Peak load class
+ """
+
+ def __init__(self, building):
+ self._building = building
+
+ @property
+ def electricity_peak_load(self):
+ """
+ Get the electricity peak load in W
+ """
+ array = [None] * 12
+ heating = 0
+ cooling = 0
+ for system in self._building.energy_systems:
+ if cte.HEATING in system.demand_types:
+ heating = 1
+ if cte.COOLING in system.demand_types:
+ cooling = 1
+ if cte.MONTH in self._building.heating_peak_load.keys() and cte.MONTH in self._building.cooling_peak_load.keys():
+ peak_lighting = self._building.lighting_peak_load[cte.YEAR][0]
+ peak_appliances = self._building.appliances_peak_load[cte.YEAR][0]
+ monthly_electricity_peak = [0.9 * peak_lighting + 0.7 * peak_appliances] * 12
+ conditioning_peak = max(self._building.heating_peak_load[cte.MONTH], self._building.cooling_peak_load[cte.MONTH])
+ for i in range(len(conditioning_peak)):
+ if cooling == 1 and heating == 1:
+ conditioning_peak[i] = conditioning_peak[i]
+ continue
+ elif cooling == 0:
+ conditioning_peak[i] = self._building.heating_peak_load[cte.MONTH][i] * heating
+ else:
+ conditioning_peak[i] = self._building.cooling_peak_load[cte.MONTH][i] * cooling
+ monthly_electricity_peak[i] += 0.8 * conditioning_peak[i]
+
+ electricity_peak_load_results = pd.DataFrame(
+ monthly_electricity_peak,
+ columns=[f'electricity peak load W']
+ )
+ else:
+ electricity_peak_load_results = pd.DataFrame(array, columns=[f'electricity peak load W'])
+ return electricity_peak_load_results
diff --git a/costing_package/total_maintenance_costs.py b/costing_package/total_maintenance_costs.py
new file mode 100644
index 00000000..c4e89f20
--- /dev/null
+++ b/costing_package/total_maintenance_costs.py
@@ -0,0 +1,138 @@
+"""
+Total maintenance costs module
+SPDX - License - Identifier: LGPL - 3.0 - or -later
+Copyright © 2023 Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
+Code contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
+Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
+"""
+import math
+import pandas as pd
+from hub.city_model_structure.building import Building
+import hub.helpers.constants as cte
+
+from costing_package.configuration import Configuration
+from costing_package.cost_base import CostBase
+
+
+class TotalMaintenanceCosts(CostBase):
+ """
+ Total maintenance costs class
+ """
+ def __init__(self, building: Building, configuration: Configuration):
+ super().__init__(building, configuration)
+ self._yearly_maintenance_costs = pd.DataFrame(
+ index=self._rng,
+ columns=[
+ 'Heating_maintenance',
+ 'Cooling_maintenance',
+ 'DHW_maintenance',
+ 'PV_maintenance'
+ ],
+ dtype='float'
+ )
+
+ def calculate(self) -> pd.DataFrame:
+ """
+ Calculate total maintenance costs
+ :return: pd.DataFrame
+ """
+ building = self._building
+ archetype = self._archetype
+ # todo: change area pv when the variable exists
+ roof_area = 0
+ surface_pv = 0
+ for roof in self._building.roofs:
+ if roof.installed_solar_collector_area is not None:
+ surface_pv += roof.installed_solar_collector_area
+ else:
+ surface_pv = roof_area * 0.5
+
+ energy_systems = building.energy_systems
+ maintenance_heating_0 = 0
+ maintenance_cooling_0 = 0
+ maintenance_dhw_0 = 0
+ heating_equipments = {}
+ cooling_equipments = {}
+ dhw_equipments = {}
+ for energy_system in energy_systems:
+ if cte.COOLING in energy_system.demand_types:
+ for generation_system in energy_system.generation_systems:
+ if generation_system.fuel_type == cte.ELECTRICITY:
+ if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR:
+ cooling_equipments['air_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
+ elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.GROUND:
+ cooling_equipments['ground_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
+ elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.WATER:
+ cooling_equipments['water_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
+ else:
+ cooling_equipments['general_cooling_equipment'] = generation_system.nominal_cooling_output / 1000
+ if cte.HEATING in energy_system.demand_types:
+ for generation_system in energy_system.generation_systems:
+ if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR:
+ heating_equipments['air_source_heat_pump'] = generation_system.nominal_heat_output / 1000
+ elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.GROUND:
+ heating_equipments['ground_source_heat_pump'] = generation_system.nominal_heat_output / 1000
+ elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.WATER:
+ heating_equipments['water_source_heat_pump'] = generation_system.nominal_heat_output / 1000
+ elif generation_system.system_type == cte.BOILER and generation_system.fuel_type == cte.GAS:
+ heating_equipments['gas_boiler'] = generation_system.nominal_heat_output / 1000
+ elif generation_system.system_type == cte.BOILER and generation_system.fuel_type == cte.ELECTRICITY:
+ heating_equipments['electric_boiler'] = generation_system.nominal_heat_output / 1000
+ else:
+ heating_equipments['general_heating_equipment'] = generation_system.nominal_heat_output / 1000
+ if cte.DOMESTIC_HOT_WATER in energy_system.demand_types and cte.HEATING not in energy_system.demand_types:
+ for generation_system in energy_system.generation_systems:
+ if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR:
+ dhw_equipments['air_source_heat_pump'] = generation_system.nominal_heat_output / 1000
+ elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.GROUND:
+ dhw_equipments['ground_source_heat_pump'] = generation_system.nominal_heat_output / 1000
+ elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.WATER:
+ dhw_equipments['water_source_heat_pump'] = generation_system.nominal_heat_output / 1000
+ elif generation_system.system_type == cte.BOILER and generation_system.fuel_type == cte.GAS:
+ dhw_equipments['gas_boiler'] = generation_system.nominal_heat_output / 1000
+ elif generation_system.system_type == cte.BOILER and generation_system.fuel_type == cte.ELECTRICITY:
+ dhw_equipments['electric_boiler'] = generation_system.nominal_heat_output / 1000
+ else:
+ dhw_equipments['general_heating_equipment'] = generation_system.nominal_heat_output / 1000
+
+
+ for heating_equipment in heating_equipments:
+ component = self.search_hvac_equipment(heating_equipment)
+ maintenance_cost = component.maintenance[0]
+ maintenance_heating_0 += (heating_equipments[heating_equipment] * maintenance_cost)
+
+ for cooling_equipment in cooling_equipments:
+ component = self.search_hvac_equipment(cooling_equipment)
+ maintenance_cost = component.maintenance[0]
+ maintenance_cooling_0 += (cooling_equipments[cooling_equipment] * maintenance_cost)
+
+ for dhw_equipment in dhw_equipments:
+ component = self.search_hvac_equipment(dhw_equipment)
+ maintenance_cost = component.maintenance[0]
+ maintenance_dhw_0 += (dhw_equipments[dhw_equipment] * maintenance_cost)
+
+ maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
+
+ for year in range(1, self._configuration.number_of_years + 1):
+ costs_increase = math.pow(1 + self._configuration.consumer_price_index, year)
+ self._yearly_maintenance_costs.loc[year, 'Heating_maintenance'] = (
+ maintenance_heating_0 * costs_increase
+ )
+ self._yearly_maintenance_costs.loc[year, 'Cooling_maintenance'] = (
+ maintenance_cooling_0 * costs_increase
+ )
+ self._yearly_maintenance_costs.loc[year, 'DHW_maintenance'] = (
+ maintenance_dhw_0 * costs_increase
+ )
+ self._yearly_maintenance_costs.loc[year, 'PV_maintenance'] = (
+ maintenance_pv_0 * costs_increase
+ )
+ self._yearly_maintenance_costs.fillna(0, inplace=True)
+ return self._yearly_maintenance_costs
+
+ def search_hvac_equipment(self, equipment_type):
+ for component in self._archetype.operational_cost.maintenance_hvac:
+ if component.type == equipment_type:
+ return component
+
+
diff --git a/costing_package/total_operational_costs.py b/costing_package/total_operational_costs.py
new file mode 100644
index 00000000..cc8c56d6
--- /dev/null
+++ b/costing_package/total_operational_costs.py
@@ -0,0 +1,237 @@
+"""
+Total operational costs module
+SPDX - License - Identifier: LGPL - 3.0 - or -later
+Copyright © 2024 Project Coder Saeed Ranjbar saeed.ranjbar@mail.concordia.ca
+Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
+"""
+import math
+import pandas as pd
+
+from hub.city_model_structure.building import Building
+import hub.helpers.constants as cte
+
+from costing_package.configuration import Configuration
+from costing_package.cost_base import CostBase
+from costing_package.peak_load import PeakLoad
+
+
+class TotalOperationalCosts(CostBase):
+ """
+ Total Operational costs class
+ """
+
+ def __init__(self, building: Building, configuration: Configuration):
+ super().__init__(building, configuration)
+ columns_list = self.columns()
+ self._yearly_operational_costs = pd.DataFrame(
+ index=self._rng,
+ columns=columns_list,
+ dtype='float'
+ )
+
+ def calculate(self) -> pd.DataFrame:
+ """
+ Calculate total operational costs
+ :return: pd.DataFrame
+ """
+ building = self._building
+ fuel_consumption_breakdown = building.energy_consumption_breakdown
+ archetype = self._archetype
+ total_floor_area = self._total_floor_area
+ if archetype.function == 'residential':
+ factor = total_floor_area / 80
+ else:
+ factor = 1
+ total_electricity_consumption = sum(self._building.energy_consumption_breakdown[cte.ELECTRICITY].values()) / 3600
+ peak_electricity_load = PeakLoad(self._building).electricity_peak_load
+ peak_load_value = peak_electricity_load.max(axis=1)
+ peak_electricity_demand = peak_load_value[1] / 1000 # self._peak_electricity_demand adapted to kW
+ for system_fuel in self._configuration.fuel_type:
+ fuel = None
+ for fuel_tariff in self._configuration.fuel_tariffs:
+ if system_fuel in fuel_tariff:
+ fuel = self.search_fuel(system_fuel, fuel_tariff)
+ if fuel.type == cte.ELECTRICITY:
+ if fuel.variable.rate_type == 'fixed':
+ variable_electricity_cost_year_0 = (
+ total_electricity_consumption * float(fuel.variable.values[0]) / 1000
+ )
+ else:
+ hourly_electricity_consumption = self.hourly_fuel_consumption_profile(fuel.type)
+ hourly_electricity_price_profile = fuel.variable.values * len(hourly_electricity_consumption)
+ hourly_electricity_price = [hourly_electricity_consumption[i] / 1000 * hourly_electricity_price_profile[i]
+ for i in range(len(hourly_electricity_consumption))]
+ variable_electricity_cost_year_0 = sum(hourly_electricity_price)
+ peak_electricity_cost_year_0 = peak_electricity_demand * fuel.fixed_power * 12
+ monthly_electricity_cost_year_0 = fuel.fixed_monthly * 12 * factor
+ for year in range(1, self._configuration.number_of_years + 1):
+ price_increase_electricity = math.pow(1 + self._configuration.electricity_price_index, year)
+ price_increase_peak_electricity = math.pow(1 + self._configuration.electricity_peak_index, year)
+ self._yearly_operational_costs.at[year, 'Fixed Costs Electricity Peak'] = (
+ peak_electricity_cost_year_0 * price_increase_peak_electricity
+ )
+ self._yearly_operational_costs.at[year, 'Fixed Costs Electricity Monthly'] = (
+ monthly_electricity_cost_year_0 * price_increase_peak_electricity
+ )
+ if not isinstance(variable_electricity_cost_year_0, pd.DataFrame):
+ variable_costs_electricity = variable_electricity_cost_year_0 * price_increase_electricity
+ else:
+ variable_costs_electricity = float(variable_electricity_cost_year_0.iloc[0] * price_increase_electricity)
+ self._yearly_operational_costs.at[year, 'Variable Costs Electricity'] = (
+ variable_costs_electricity
+ )
+ else:
+ fuel_fixed_cost = fuel.fixed_monthly * 12 * factor
+ if fuel.type == cte.BIOMASS:
+ conversion_factor = 1
+ else:
+ conversion_factor = fuel.density[0]
+ if fuel.variable.rate_type == 'fixed':
+ variable_cost_fuel = (
+ (sum(fuel_consumption_breakdown[fuel.type].values()) / (
+ 1e6 * fuel.lower_heating_value[0] * conversion_factor)) * fuel.variable.values[0])
+
+ else:
+ hourly_fuel_consumption = self.hourly_fuel_consumption_profile(fuel.type)
+ hourly_fuel_price_profile = fuel.variable.values * len(hourly_fuel_consumption)
+ hourly_fuel_price = [hourly_fuel_consumption[i] / (
+ 1e6 * fuel.lower_heating_value[0] * conversion_factor) * hourly_fuel_price_profile[i]
+ for i in range(len(hourly_fuel_consumption))]
+ variable_cost_fuel = sum(hourly_fuel_price)
+
+ for year in range(1, self._configuration.number_of_years + 1):
+ price_increase_gas = math.pow(1 + self._configuration.gas_price_index, year)
+ self._yearly_operational_costs.at[year, f'Fixed Costs {fuel.type}'] = fuel_fixed_cost * price_increase_gas
+ self._yearly_operational_costs.at[year, f'Variable Costs {fuel.type}'] = (
+ variable_cost_fuel * price_increase_gas)
+ self._yearly_operational_costs.fillna(0, inplace=True)
+
+ return self._yearly_operational_costs
+
+ def columns(self):
+ columns_list = []
+ fuels = [key for key in self._building.energy_consumption_breakdown.keys()]
+ for fuel in fuels:
+ if fuel == cte.ELECTRICITY:
+ columns_list.append('Fixed Costs Electricity Peak')
+ columns_list.append('Fixed Costs Electricity Monthly')
+ columns_list.append('Variable Costs Electricity')
+ else:
+ columns_list.append(f'Fixed Costs {fuel}')
+ columns_list.append(f'Variable Costs {fuel}')
+
+ return columns_list
+
+ def search_fuel(self, system_fuel, tariff):
+ fuels = self._archetype.operational_cost.fuels
+ for fuel in fuels:
+ if system_fuel == fuel.type and tariff == fuel.variable.name:
+ return fuel
+ raise KeyError(f'fuel {system_fuel} with {tariff} tariff not found')
+
+
+ def hourly_fuel_consumption_profile(self, fuel_type):
+ hourly_fuel_consumption = []
+ energy_systems = self._building.energy_systems
+ if fuel_type == cte.ELECTRICITY:
+ appliance = self._building.appliances_electrical_demand[cte.HOUR]
+ lighting = self._building.lighting_electrical_demand[cte.HOUR]
+ elec_heating = 0
+ elec_cooling = 0
+ elec_dhw = 0
+ if cte.HEATING in self._building.energy_consumption_breakdown[cte.ELECTRICITY]:
+ elec_heating = 1
+ if cte.COOLING in self._building.energy_consumption_breakdown[cte.ELECTRICITY]:
+ elec_cooling = 1
+ if cte.DOMESTIC_HOT_WATER in self._building.energy_consumption_breakdown[cte.ELECTRICITY]:
+ elec_dhw = 1
+ heating = None
+ cooling = None
+ dhw = None
+
+ if elec_heating == 1:
+ for energy_system in energy_systems:
+ if cte.HEATING in energy_system.demand_types:
+ for generation_system in energy_system.generation_systems:
+ if generation_system.fuel_type == cte.ELECTRICITY:
+ if cte.HEATING in generation_system.energy_consumption:
+ heating = generation_system.energy_consumption[cte.HEATING][cte.HOUR]
+ else:
+ if len(energy_system.generation_systems) > 1:
+ heating = [x / 2 for x in self._building.heating_consumption[cte.HOUR]]
+ else:
+ heating = self._building.heating_consumption[cte.HOUR]
+
+ if elec_dhw == 1:
+ for energy_system in energy_systems:
+ if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
+ for generation_system in energy_system.generation_systems:
+ if generation_system.fuel_type == cte.ELECTRICITY:
+ if cte.DOMESTIC_HOT_WATER in generation_system.energy_consumption:
+ dhw = generation_system.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR]
+ else:
+ if len(energy_system.generation_systems) > 1:
+ dhw = [x / 2 for x in self._building.domestic_hot_water_consumption[cte.HOUR]]
+ else:
+ dhw = self._building.domestic_hot_water_consumption[cte.HOUR]
+
+ if elec_cooling == 1:
+ for energy_system in energy_systems:
+ if cte.COOLING in energy_system.demand_types:
+ for generation_system in energy_system.generation_systems:
+ if cte.COOLING in generation_system.energy_consumption:
+ cooling = generation_system.energy_consumption[cte.COOLING][cte.HOUR]
+ else:
+ if len(energy_system.generation_systems) > 1:
+ cooling = [x / 2 for x in self._building.cooling_consumption[cte.HOUR]]
+ else:
+ cooling = self._building.cooling_consumption[cte.HOUR]
+
+ for i in range(len(self._building.heating_demand[cte.HOUR])):
+ hourly = 0
+ hourly += appliance[i] / 3600
+ hourly += lighting[i] / 3600
+ if heating is not None:
+ hourly += heating[i] / 3600
+ if cooling is not None:
+ hourly += cooling[i] / 3600
+ if dhw is not None:
+ hourly += dhw[i] / 3600
+ hourly_fuel_consumption.append(hourly)
+ else:
+ heating = None
+ dhw = None
+ if cte.HEATING in self._building.energy_consumption_breakdown[fuel_type]:
+ for energy_system in energy_systems:
+ if cte.HEATING in energy_system.demand_types:
+ for generation_system in energy_system.generation_systems:
+ if cte.HEATING in generation_system.energy_consumption:
+ heating = generation_system.energy_consumption[cte.HEATING][cte.HOUR]
+ else:
+ if len(energy_system.generation_systems) > 1:
+ heating = [x / 2 for x in self._building.heating_consumption[cte.HOUR]]
+ else:
+ heating = self._building.heating_consumption[cte.HOUR]
+ if cte.DOMESTIC_HOT_WATER in self._building.energy_consumption_breakdown[fuel_type]:
+ for energy_system in energy_systems:
+ if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
+ for generation_system in energy_system.generation_systems:
+ if cte.DOMESTIC_HOT_WATER in generation_system.energy_consumption:
+ dhw = generation_system.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR]
+ else:
+ if len(energy_system.generation_systems) > 1:
+ dhw = [x / 2 for x in self._building.domestic_hot_water_consumption[cte.HOUR]]
+ else:
+ dhw = self._building.domestic_hot_water_consumption[cte.HOUR]
+
+ for i in range(len(self._building.heating_demand[cte.HOUR])):
+ hourly = 0
+ if heating is not None:
+ hourly += heating[i] / 3600
+ if dhw is not None:
+ hourly += dhw[i] / 3600
+ hourly_fuel_consumption.append(hourly)
+ return hourly_fuel_consumption
+
+
+
diff --git a/costing_package/total_operational_incomes.py b/costing_package/total_operational_incomes.py
new file mode 100644
index 00000000..bb190999
--- /dev/null
+++ b/costing_package/total_operational_incomes.py
@@ -0,0 +1,44 @@
+"""
+Total operational incomes module
+SPDX - License - Identifier: LGPL - 3.0 - or -later
+Copyright © 2023 Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
+Code contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
+Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
+"""
+import math
+import pandas as pd
+from hub.city_model_structure.building import Building
+import hub.helpers.constants as cte
+
+from costing_package.configuration import Configuration
+from costing_package.cost_base import CostBase
+
+
+class TotalOperationalIncomes(CostBase):
+ """
+ Total operational incomes class
+ """
+ def __init__(self, building: Building, configuration: Configuration):
+ super().__init__(building, configuration)
+ self._yearly_operational_incomes = pd.DataFrame(index=self._rng, columns=['Incomes electricity'], dtype='float')
+
+ def calculate(self) -> pd.DataFrame:
+ """
+ Calculate total operational incomes
+ :return: pd.DataFrame
+ """
+ building = self._building
+ archetype = self._archetype
+ if cte.YEAR not in building.onsite_electrical_production:
+ onsite_electricity_production = 0
+ else:
+ onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]
+ for year in range(1, self._configuration.number_of_years + 1):
+ price_increase_electricity = math.pow(1 + self._configuration.electricity_price_index, year)
+ price_export = archetype.income.electricity_export # to account for unit change
+ self._yearly_operational_incomes.loc[year, 'Incomes electricity'] = (
+ (onsite_electricity_production / 3.6e6) * price_export * price_increase_electricity
+ )
+
+ self._yearly_operational_incomes.fillna(0, inplace=True)
+ return self._yearly_operational_incomes
\ No newline at end of file
diff --git a/costing_package/version.py b/costing_package/version.py
new file mode 100644
index 00000000..0f4beb14
--- /dev/null
+++ b/costing_package/version.py
@@ -0,0 +1,8 @@
+"""
+Cost version number
+SPDX - License - Identifier: LGPL - 3.0 - or -later
+Copyright © 2023 Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
+Code contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
+Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
+"""
+__version__ = '0.1.0.5'
diff --git a/data/OMHM_buildings_unique.geojson b/data/OMHM_buildings_unique.geojson
new file mode 100644
index 00000000..c0e3442e
--- /dev/null
+++ b/data/OMHM_buildings_unique.geojson
@@ -0,0 +1,2855 @@
+{
+ "type": "FeatureCollection",
+ "features": [
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 161053,
+ "ID_UEV": "01029234",
+ "CIVIQUE_DE": 6109,
+ "CIVIQUE_FI": 6119,
+ "NOM_RUE": "rue Jeanne-Mance (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 9,
+ "AREA_NEW": 118,
+ "MBG_Width": 8,
+ "MBG_Length": 16,
+ "MBG_Orientation": 32,
+ "Shape_Length": 48,
+ "Shape_Area": 125,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 1062,
+ "AspectRatio": 2.152,
+ "SurfacetoVolumeRatio": 0.111,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 354,
+ "ANNEE_CONS": 1910,
+ "address": "6109 à 6119"
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.60889457783199,
+ 45.52627967341867
+ ],
+ [
+ -73.60878459611386,
+ 45.52640189543207
+ ],
+ [
+ -73.60880878559433,
+ 45.526414045422094
+ ],
+ [
+ -73.60881138576005,
+ 45.526411446008474
+ ],
+ [
+ -73.60882178517528,
+ 45.526397746843365
+ ],
+ [
+ -73.60884748548206,
+ 45.526407346140566
+ ],
+ [
+ -73.60883288525416,
+ 45.52642674619433
+ ],
+ [
+ -73.60886468497895,
+ 45.526438645964845
+ ],
+ [
+ -73.60886488468759,
+ 45.52643864577451
+ ],
+ [
+ -73.60887972027291,
+ 45.526424456462976
+ ],
+ [
+ -73.60897708070512,
+ 45.52631626050087
+ ],
+ [
+ -73.60889457783199,
+ 45.52627967341867
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 162168,
+ "ID_UEV": "01001944",
+ "CIVIQUE_DE": 4820,
+ "CIVIQUE_FI": 4850,
+ "NOM_RUE": "rue de Grand-Pré (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 11,
+ "AREA_NEW": 504,
+ "MBG_Width": 16,
+ "MBG_Length": 42,
+ "MBG_Orientation": 123,
+ "Shape_Length": 116,
+ "Shape_Area": 669,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 5544,
+ "AspectRatio": 2.648,
+ "SurfacetoVolumeRatio": 0.091,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 1512,
+ "ANNEE_CONS": 1980,
+ "address": "4820 à 4850"
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.58667395105716,
+ 45.52483824715297
+ ],
+ [
+ -73.58656830557055,
+ 45.52495268609808
+ ],
+ [
+ -73.58662307714782,
+ 45.52497954708488
+ ],
+ [
+ -73.58673187732023,
+ 45.525032846618785
+ ],
+ [
+ -73.58681547812479,
+ 45.52507384729731
+ ],
+ [
+ -73.58682087703855,
+ 45.525068346972965
+ ],
+ [
+ -73.58687407774353,
+ 45.525094146322125
+ ],
+ [
+ -73.58689537859419,
+ 45.525104346900406
+ ],
+ [
+ -73.58694327730556,
+ 45.52512704670317
+ ],
+ [
+ -73.58701697601475,
+ 45.52516199344971
+ ],
+ [
+ -73.58712501598687,
+ 45.525044959829344
+ ],
+ [
+ -73.5871212778519,
+ 45.52504324668608
+ ],
+ [
+ -73.58709277727542,
+ 45.52507444696593
+ ],
+ [
+ -73.58703227729441,
+ 45.525047146948445
+ ],
+ [
+ -73.58703967802359,
+ 45.52503894736905
+ ],
+ [
+ -73.58703377762288,
+ 45.52503634682888
+ ],
+ [
+ -73.58692947789729,
+ 45.52499034635711
+ ],
+ [
+ -73.58664877714105,
+ 45.524866746179505
+ ],
+ [
+ -73.58667417779681,
+ 45.52483834686315
+ ],
+ [
+ -73.58667395105716,
+ 45.52483824715297
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 135557,
+ "ID_UEV": "01016997",
+ "CIVIQUE_DE": 4110,
+ "CIVIQUE_FI": 4118,
+ "NOM_RUE": "rue de Mentana (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 35,
+ "AREA_NEW": 368,
+ "MBG_Width": 9,
+ "MBG_Length": 40,
+ "MBG_Orientation": 123,
+ "Shape_Length": 99,
+ "Shape_Area": 373,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 12880,
+ "AspectRatio": 4.269,
+ "SurfacetoVolumeRatio": 0.029,
+ "FloorNu_RawTax": 9,
+ "FloorNu_RawTax.1": 9,
+ "Floor_frmHieght": 9,
+ "TotalFloorArea": 2772,
+ "ANNEE_CONS": 1974,
+ "address": "4110 à 4118"
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.57441887367695,
+ 45.5242318471938
+ ],
+ [
+ -73.57441497351891,
+ 45.52423604658769
+ ],
+ [
+ -73.57435327421018,
+ 45.52430264701829
+ ],
+ [
+ -73.57467247380185,
+ 45.524454446940965
+ ],
+ [
+ -73.57467717355085,
+ 45.5244566475763
+ ],
+ [
+ -73.57469780139083,
+ 45.52446508628423
+ ],
+ [
+ -73.57476405331622,
+ 45.524393192531484
+ ],
+ [
+ -73.5747470732633,
+ 45.52438524726022
+ ],
+ [
+ -73.57441887367695,
+ 45.5242318471938
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 139141,
+ "ID_UEV": "01093226",
+ "CIVIQUE_DE": 5170,
+ "CIVIQUE_FI": 5174,
+ "NOM_RUE": "rue Drolet (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 13,
+ "AREA_NEW": 257,
+ "MBG_Width": 13,
+ "MBG_Length": 22,
+ "MBG_Orientation": 122,
+ "Shape_Length": 69,
+ "Shape_Area": 280,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 3341,
+ "AspectRatio": 1.702,
+ "SurfacetoVolumeRatio": 0.077,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 4,
+ "TotalFloorArea": 1028,
+ "ANNEE_CONS": 1979,
+ "address": "5170 à 5174"
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.59116747903097,
+ 45.52655654642387
+ ],
+ [
+ -73.59116467930713,
+ 45.52655974668784
+ ],
+ [
+ -73.5910896795654,
+ 45.526649446727895
+ ],
+ [
+ -73.5912955793883,
+ 45.52674224656648
+ ],
+ [
+ -73.5912957792612,
+ 45.52674234718875
+ ],
+ [
+ -73.5913146794984,
+ 45.52672144770766
+ ],
+ [
+ -73.59133757960647,
+ 45.52673174695828
+ ],
+ [
+ -73.59131607871272,
+ 45.526755447022836
+ ],
+ [
+ -73.59131618000944,
+ 45.52675554682402
+ ],
+ [
+ -73.59132031049202,
+ 45.526757487175246
+ ],
+ [
+ -73.59140078295663,
+ 45.5266568000659
+ ],
+ [
+ -73.59137787974812,
+ 45.52664694625084
+ ],
+ [
+ -73.59116747903097,
+ 45.52655654642387
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 159710,
+ "ID_UEV": "01031526",
+ "CIVIQUE_DE": 5301,
+ "CIVIQUE_FI": 5321,
+ "NOM_RUE": "rue Saint-Dominique (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 10,
+ "AREA_NEW": 426,
+ "MBG_Width": 15,
+ "MBG_Length": 29,
+ "MBG_Orientation": 123,
+ "Shape_Length": 88,
+ "Shape_Area": 429,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 4260,
+ "AspectRatio": 1.958,
+ "SurfacetoVolumeRatio": 0.1,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 1278,
+ "ANNEE_CONS": 1983,
+ "address": "5301 à 5321"
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.59528017977978,
+ 45.52530604654458
+ ],
+ [
+ -73.59527857988931,
+ 45.52530774677637
+ ],
+ [
+ -73.59517668098674,
+ 45.525416646636465
+ ],
+ [
+ -73.59518088056568,
+ 45.525418547198015
+ ],
+ [
+ -73.59547958119505,
+ 45.52555564674248
+ ],
+ [
+ -73.59548398066913,
+ 45.52555764700795
+ ],
+ [
+ -73.59549828097119,
+ 45.52554074686311
+ ],
+ [
+ -73.59550289919896,
+ 45.52554265606116
+ ],
+ [
+ -73.59558361927719,
+ 45.52545527440496
+ ],
+ [
+ -73.59558008104706,
+ 45.52545384662053
+ ],
+ [
+ -73.59558698038187,
+ 45.52544584667189
+ ],
+ [
+ -73.5955861808828,
+ 45.52544544691224
+ ],
+ [
+ -73.59554998064966,
+ 45.525428947143965
+ ],
+ [
+ -73.59546158122959,
+ 45.5253886461476
+ ],
+ [
+ -73.59533388036398,
+ 45.5253305466666
+ ],
+ [
+ -73.59528017977978,
+ 45.52530604654458
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 160314,
+ "ID_UEV": "01027192",
+ "CIVIQUE_DE": 3876,
+ "CIVIQUE_FI": 3880,
+ "NOM_RUE": "rue de Mentana (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 12,
+ "AREA_NEW": 366,
+ "MBG_Width": 16,
+ "MBG_Length": 32,
+ "MBG_Orientation": 110,
+ "Shape_Length": 96,
+ "Shape_Area": 507,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 4392,
+ "AspectRatio": 2.009,
+ "SurfacetoVolumeRatio": 0.083,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 1098,
+ "ANNEE_CONS": 1980,
+ "address": "3876 à 3880"
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.57080007166596,
+ 45.522686946460304
+ ],
+ [
+ -73.57093107256577,
+ 45.52272604782575
+ ],
+ [
+ -73.5710282718666,
+ 45.52261304669843
+ ],
+ [
+ -73.57095527236102,
+ 45.522582046683695
+ ],
+ [
+ -73.57092677184869,
+ 45.522615346769584
+ ],
+ [
+ -73.57083647166334,
+ 45.52257704711896
+ ],
+ [
+ -73.57068192396436,
+ 45.522511513915816
+ ],
+ [
+ -73.5705991607844,
+ 45.52260174167426
+ ],
+ [
+ -73.57068447255547,
+ 45.5226310461983
+ ],
+ [
+ -73.57068387203597,
+ 45.52263194640998
+ ],
+ [
+ -73.5706905727058,
+ 45.52264164703885
+ ],
+ [
+ -73.57069597126467,
+ 45.522651146909
+ ],
+ [
+ -73.57072017202435,
+ 45.52264334651211
+ ],
+ [
+ -73.57074107228954,
+ 45.52267404691253
+ ],
+ [
+ -73.57076887312483,
+ 45.52266454717734
+ ],
+ [
+ -73.57078667249642,
+ 45.522690747590424
+ ],
+ [
+ -73.57080077281205,
+ 45.52268564755646
+ ],
+ [
+ -73.57080007166596,
+ 45.522686946460304
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 133286,
+ "ID_UEV": "01042232",
+ "CIVIQUE_DE": 3620,
+ "CIVIQUE_FI": 3622,
+ "NOM_RUE": "rue De Bullion (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 12,
+ "AREA_NEW": 109,
+ "MBG_Width": 11,
+ "MBG_Length": 21,
+ "MBG_Orientation": 33,
+ "Shape_Length": 63,
+ "Shape_Area": 227,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 1308,
+ "AspectRatio": 1.922,
+ "SurfacetoVolumeRatio": 0.083,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 4,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 327,
+ "ANNEE_CONS": 1973,
+ "address": "3620 à 3622"
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.5721643414897,
+ 45.515081822522674
+ ],
+ [
+ -73.57209427271673,
+ 45.51515771168995
+ ],
+ [
+ -73.5722098721648,
+ 45.515210745503666
+ ],
+ [
+ -73.57213467217159,
+ 45.51529174543661
+ ],
+ [
+ -73.57213523057614,
+ 45.51529202223508
+ ],
+ [
+ -73.57228111445389,
+ 45.51513478623582
+ ],
+ [
+ -73.57220477188011,
+ 45.51510084571349
+ ],
+ [
+ -73.57217897185836,
+ 45.5150894457327
+ ],
+ [
+ -73.57218047193467,
+ 45.51508944568466
+ ],
+ [
+ -73.5721643414897,
+ 45.515081822522674
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 137144,
+ "ID_UEV": "01026386",
+ "CIVIQUE_DE": 3880,
+ "CIVIQUE_FI": 3884,
+ "NOM_RUE": "rue Rivard (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 11,
+ "AREA_NEW": 279,
+ "MBG_Width": 12,
+ "MBG_Length": 24,
+ "MBG_Orientation": 123,
+ "Shape_Length": 73,
+ "Shape_Area": 293,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 3069,
+ "AspectRatio": 2.03,
+ "SurfacetoVolumeRatio": 0.091,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 837,
+ "ANNEE_CONS": 1973,
+ "address": "3880 à 3884"
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.5733537088625,
+ 45.520196602777794
+ ],
+ [
+ -73.57327657712864,
+ 45.52028034554588
+ ],
+ [
+ -73.57332987218481,
+ 45.5203042462016
+ ],
+ [
+ -73.57333967282041,
+ 45.52030864642829
+ ],
+ [
+ -73.57334087335602,
+ 45.520307546952274
+ ],
+ [
+ -73.57338117308188,
+ 45.52032724647325
+ ],
+ [
+ -73.57342517297674,
+ 45.52034854711724
+ ],
+ [
+ -73.57353603634354,
+ 45.52040236004708
+ ],
+ [
+ -73.57361960889615,
+ 45.520311623893825
+ ],
+ [
+ -73.5733537088625,
+ 45.520196602777794
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 163186,
+ "ID_UEV": "01119792",
+ "CIVIQUE_DE": 4061,
+ "CIVIQUE_FI": 4077,
+ "NOM_RUE": "rue Saint-Dominique (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 7,
+ "AREA_NEW": 221,
+ "MBG_Width": 18,
+ "MBG_Length": 22,
+ "MBG_Orientation": 33,
+ "Shape_Length": 80,
+ "Shape_Area": 396,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 1547,
+ "AspectRatio": 1.168,
+ "SurfacetoVolumeRatio": 0.143,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 2,
+ "TotalFloorArea": 442,
+ "ANNEE_CONS": 1991,
+ "address": "4061 à 4077"
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.57922247392104,
+ 45.517682445429905
+ ],
+ [
+ -73.57921957540006,
+ 45.51768564547461
+ ],
+ [
+ -73.57914017476726,
+ 45.51777754547107
+ ],
+ [
+ -73.5791762741523,
+ 45.5177929455269
+ ],
+ [
+ -73.579181774936,
+ 45.51779524620637
+ ],
+ [
+ -73.57933357470293,
+ 45.51785854546608
+ ],
+ [
+ -73.57928457389015,
+ 45.51791674609973
+ ],
+ [
+ -73.57928627226089,
+ 45.51791752958212
+ ],
+ [
+ -73.57943617814182,
+ 45.517755275011176
+ ],
+ [
+ -73.57943507532656,
+ 45.51775474577183
+ ],
+ [
+ -73.57943487422794,
+ 45.51775464602933
+ ],
+ [
+ -73.57941757418094,
+ 45.51777304630667
+ ],
+ [
+ -73.5792655750006,
+ 45.517702545869504
+ ],
+ [
+ -73.57922247392104,
+ 45.517682445429905
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 154720,
+ "ID_UEV": "05064145",
+ "CIVIQUE_DE": 4420,
+ "CIVIQUE_FI": 4430,
+ "NOM_RUE": "avenue Laval (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 17,
+ "AREA_NEW": 436,
+ "MBG_Width": 18,
+ "MBG_Length": 33,
+ "MBG_Orientation": 123,
+ "Shape_Length": 103,
+ "Shape_Area": 603,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 7412,
+ "AspectRatio": 1.857,
+ "SurfacetoVolumeRatio": 0.059,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 5,
+ "TotalFloorArea": 2180,
+ "ANNEE_CONS": 1976,
+ "address": "4420 à 4430"
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.58341837636826,
+ 45.521926846073086
+ ],
+ [
+ -73.58341087121374,
+ 45.52193462617308
+ ],
+ [
+ -73.58341528535665,
+ 45.52193663859182
+ ],
+ [
+ -73.58354076395466,
+ 45.52180061432945
+ ],
+ [
+ -73.58353427610166,
+ 45.521797746784124
+ ],
+ [
+ -73.58349797659882,
+ 45.52183824723736
+ ],
+ [
+ -73.58345067612385,
+ 45.52181734702001
+ ],
+ [
+ -73.58345967552047,
+ 45.52180724603739
+ ],
+ [
+ -73.58343007604864,
+ 45.521794147089594
+ ],
+ [
+ -73.58344297589473,
+ 45.52177974652228
+ ],
+ [
+ -73.58341867552964,
+ 45.52176894639158
+ ],
+ [
+ -73.58341827614375,
+ 45.52176894578341
+ ],
+ [
+ -73.58340087622037,
+ 45.521782946505205
+ ],
+ [
+ -73.58338027647409,
+ 45.521770345783594
+ ],
+ [
+ -73.58336707687859,
+ 45.52178114630181
+ ],
+ [
+ -73.5832795764312,
+ 45.521727846002946
+ ],
+ [
+ -73.58323067556272,
+ 45.52169794665872
+ ],
+ [
+ -73.58323047616392,
+ 45.5216981456687
+ ],
+ [
+ -73.5831892756937,
+ 45.52168694657471
+ ],
+ [
+ -73.58314611449745,
+ 45.52167510730695
+ ],
+ [
+ -73.58306105589082,
+ 45.521769066618106
+ ],
+ [
+ -73.58310477661708,
+ 45.52178704692033
+ ],
+ [
+ -73.58310327630407,
+ 45.52178874601035
+ ],
+ [
+ -73.58310817585152,
+ 45.521790946154496
+ ],
+ [
+ -73.58314307565726,
+ 45.52180724655878
+ ],
+ [
+ -73.58331147623066,
+ 45.52188584638376
+ ],
+ [
+ -73.58331817609282,
+ 45.521878847039105
+ ],
+ [
+ -73.5833641764975,
+ 45.52190094684705
+ ],
+ [
+ -73.58341837636826,
+ 45.521926846073086
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 160236,
+ "ID_UEV": "01014249",
+ "CIVIQUE_DE": 4400,
+ "CIVIQUE_FI": 4420,
+ "NOM_RUE": "avenue Coloniale (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 10,
+ "AREA_NEW": 491,
+ "MBG_Width": 18,
+ "MBG_Length": 42,
+ "MBG_Orientation": 123,
+ "Shape_Length": 120,
+ "Shape_Area": 756,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 4910,
+ "AspectRatio": 2.332,
+ "SurfacetoVolumeRatio": 0.1,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 1473,
+ "ANNEE_CONS": 1977,
+ "address": "4400 à 4420"
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.58447697668468,
+ 45.52050394605542
+ ],
+ [
+ -73.5844770763791,
+ 45.520503846099416
+ ],
+ [
+ -73.58451867715243,
+ 45.520459645758464
+ ],
+ [
+ -73.58450917643076,
+ 45.52045524536925
+ ],
+ [
+ -73.58454227641637,
+ 45.52041964568424
+ ],
+ [
+ -73.58410347634215,
+ 45.52021834594994
+ ],
+ [
+ -73.58414177659611,
+ 45.520177145542746
+ ],
+ [
+ -73.58413976427444,
+ 45.520176224688534
+ ],
+ [
+ -73.58401865931442,
+ 45.52030952711309
+ ],
+ [
+ -73.58406117662338,
+ 45.52032794616129
+ ],
+ [
+ -73.5840575766858,
+ 45.52033194590176
+ ],
+ [
+ -73.5840633770002,
+ 45.5203339464779
+ ],
+ [
+ -73.58412297622951,
+ 45.52035384666597
+ ],
+ [
+ -73.58411857668492,
+ 45.52035984644271
+ ],
+ [
+ -73.58415367674115,
+ 45.52037434671398
+ ],
+ [
+ -73.58423867629307,
+ 45.52040984575685
+ ],
+ [
+ -73.58427697636428,
+ 45.520425946246036
+ ],
+ [
+ -73.58432737670769,
+ 45.520447146184345
+ ],
+ [
+ -73.58432847558765,
+ 45.5204475458021
+ ],
+ [
+ -73.58433617645098,
+ 45.52044074632136
+ ],
+ [
+ -73.58443967693627,
+ 45.520499446536846
+ ],
+ [
+ -73.58444017645455,
+ 45.520499645932155
+ ],
+ [
+ -73.58445177652922,
+ 45.520489545646065
+ ],
+ [
+ -73.58447697668468,
+ 45.52050394605542
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 156402,
+ "ID_UEV": "01017181",
+ "CIVIQUE_DE": 4111,
+ "CIVIQUE_FI": 4111,
+ "NOM_RUE": "rue de Mentana (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 14,
+ "AREA_NEW": 178,
+ "MBG_Width": 8,
+ "MBG_Length": 24,
+ "MBG_Orientation": 33,
+ "Shape_Length": 62,
+ "Shape_Area": 180,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 2492,
+ "AspectRatio": 3.1,
+ "SurfacetoVolumeRatio": 0.071,
+ "FloorNu_RawTax": 2,
+ "FloorNu_RawTax.1": 2,
+ "Floor_frmHieght": 4,
+ "TotalFloorArea": 712,
+ "ANNEE_CONS": 1885,
+ "address": 4111
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.57415074984766,
+ 45.52441259961631
+ ],
+ [
+ -73.57398666208603,
+ 45.52459078071192
+ ],
+ [
+ -73.57407170803525,
+ 45.524624598264325
+ ],
+ [
+ -73.57423282482344,
+ 45.52444964400426
+ ],
+ [
+ -73.57417797289133,
+ 45.524424946640266
+ ],
+ [
+ -73.57417157350089,
+ 45.524422047912516
+ ],
+ [
+ -73.57415074984766,
+ 45.52441259961631
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 156386,
+ "ID_UEV": "01017179",
+ "CIVIQUE_DE": 4115,
+ "CIVIQUE_FI": 4115,
+ "NOM_RUE": "rue de Mentana (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 13,
+ "AREA_NEW": 175,
+ "MBG_Width": 8,
+ "MBG_Length": 23,
+ "MBG_Orientation": 33,
+ "Shape_Length": 62,
+ "Shape_Area": 177,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 2275,
+ "AspectRatio": 3.045,
+ "SurfacetoVolumeRatio": 0.077,
+ "FloorNu_RawTax": 2,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 4,
+ "TotalFloorArea": 700,
+ "ANNEE_CONS": 1985,
+ "address": 4115
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.57423282482344,
+ 45.52444964400426
+ ],
+ [
+ -73.57407170803525,
+ 45.524624598264325
+ ],
+ [
+ -73.57414677269848,
+ 45.52465444764032
+ ],
+ [
+ -73.57415676047877,
+ 45.524658409450126
+ ],
+ [
+ -73.57431495870921,
+ 45.52448662440602
+ ],
+ [
+ -73.57423282482344,
+ 45.52444964400426
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 164746,
+ "ID_UEV": "01016729",
+ "CIVIQUE_DE": 4080,
+ "CIVIQUE_FI": 4080,
+ "NOM_RUE": "rue Saint-André (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 7,
+ "AREA_NEW": 62,
+ "MBG_Width": 7,
+ "MBG_Length": 9,
+ "MBG_Orientation": 33,
+ "Shape_Length": 32,
+ "Shape_Area": 62,
+ "BuildingCategory": "detached",
+ "BuildingVolume": 434,
+ "AspectRatio": 1.233,
+ "SurfacetoVolumeRatio": 0.143,
+ "FloorNu_RawTax": 2,
+ "FloorNu_RawTax.1": 2,
+ "Floor_frmHieght": 2,
+ "TotalFloorArea": 124,
+ "ANNEE_CONS": 1885,
+ "address": 4080
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.57432940325116,
+ 45.523187518837055
+ ],
+ [
+ -73.57426832646479,
+ 45.52325362031764
+ ],
+ [
+ -73.57434507353524,
+ 45.52328794698023
+ ],
+ [
+ -73.57440467947353,
+ 45.523221886909894
+ ],
+ [
+ -73.57432940325116,
+ 45.523187518837055
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 147446,
+ "ID_UEV": "01016731",
+ "CIVIQUE_DE": 4082,
+ "CIVIQUE_FI": 4082,
+ "NOM_RUE": "rue Saint-André (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 12,
+ "AREA_NEW": 48,
+ "MBG_Width": 5,
+ "MBG_Length": 14,
+ "MBG_Orientation": 33,
+ "Shape_Length": 38,
+ "Shape_Area": 69,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 576,
+ "AspectRatio": 2.958,
+ "SurfacetoVolumeRatio": 0.083,
+ "FloorNu_RawTax": 2,
+ "FloorNu_RawTax.1": 2,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 144,
+ "ANNEE_CONS": 1900,
+ "address": 4082
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.57430353463134,
+ 45.52332940534067
+ ],
+ [
+ -73.57427757285474,
+ 45.52335974683279
+ ],
+ [
+ -73.5742352732129,
+ 45.52334164705406
+ ],
+ [
+ -73.57422907262172,
+ 45.52333894706442
+ ],
+ [
+ -73.5741636323413,
+ 45.52341922560192
+ ],
+ [
+ -73.57418808958231,
+ 45.52343039203158
+ ],
+ [
+ -73.57420507371071,
+ 45.52343684724963
+ ],
+ [
+ -73.57420587303008,
+ 45.52343724715916
+ ],
+ [
+ -73.57421137394506,
+ 45.52342964713647
+ ],
+ [
+ -73.57421723454537,
+ 45.52343176245196
+ ],
+ [
+ -73.5743093575356,
+ 45.5233320632795
+ ],
+ [
+ -73.57430353463134,
+ 45.52332940534067
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 160240,
+ "ID_UEV": "01016734",
+ "CIVIQUE_DE": 4100,
+ "CIVIQUE_FI": 4100,
+ "NOM_RUE": "rue Saint-André (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 13,
+ "AREA_NEW": 168,
+ "MBG_Width": 12,
+ "MBG_Length": 14,
+ "MBG_Orientation": 122,
+ "Shape_Length": 53,
+ "Shape_Area": 176,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 2184,
+ "AspectRatio": 1.138,
+ "SurfacetoVolumeRatio": 0.077,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 4,
+ "TotalFloorArea": 672,
+ "ANNEE_CONS": 1980,
+ "address": 4100
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.57435627280609,
+ 45.52348194698923
+ ],
+ [
+ -73.574403173171,
+ 45.5234989468212
+ ],
+ [
+ -73.57439827310195,
+ 45.52350494654627
+ ],
+ [
+ -73.57439997402432,
+ 45.52350564731358
+ ],
+ [
+ -73.5744566728788,
+ 45.52352684659304
+ ],
+ [
+ -73.57445817323361,
+ 45.52352494695276
+ ],
+ [
+ -73.57453777393754,
+ 45.52343404629617
+ ],
+ [
+ -73.57449487351847,
+ 45.523415747241344
+ ],
+ [
+ -73.57442517407421,
+ 45.52338594768259
+ ],
+ [
+ -73.57438644546617,
+ 45.52336946894452
+ ],
+ [
+ -73.57430096202904,
+ 45.523461983137004
+ ],
+ [
+ -73.57435627280609,
+ 45.52348194698923
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 139578,
+ "ID_UEV": "01104023",
+ "CIVIQUE_DE": 5320,
+ "CIVIQUE_FI": 5320,
+ "NOM_RUE": "rue Saint-Dominique (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Condominium",
+ "Hieght_LiD": 14,
+ "AREA_NEW": 512,
+ "MBG_Width": 17,
+ "MBG_Length": 34,
+ "MBG_Orientation": 123,
+ "Shape_Length": 101,
+ "Shape_Area": 560,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 7168,
+ "AspectRatio": 2.031,
+ "SurfacetoVolumeRatio": 0.071,
+ "FloorNu_RawTax": 1,
+ "FloorNu_RawTax.1": 14,
+ "Floor_frmHieght": 4,
+ "TotalFloorArea": 2048,
+ "ANNEE_CONS": 1988,
+ "address": 5320
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.59584527043587,
+ 45.52512948956751
+ ],
+ [
+ -73.59572979391517,
+ 45.52525400993533
+ ],
+ [
+ -73.59573708111901,
+ 45.525257345832664
+ ],
+ [
+ -73.59593828114156,
+ 45.52534844686651
+ ],
+ [
+ -73.59609192406435,
+ 45.52541793021932
+ ],
+ [
+ -73.59620767273658,
+ 45.52529262459958
+ ],
+ [
+ -73.59613878016886,
+ 45.52527564683736
+ ],
+ [
+ -73.59604288148485,
+ 45.52525194654483
+ ],
+ [
+ -73.59605258023839,
+ 45.52523254684448
+ ],
+ [
+ -73.59605248038461,
+ 45.5252325460286
+ ],
+ [
+ -73.59597958048022,
+ 45.52520394651073
+ ],
+ [
+ -73.5959637801297,
+ 45.52519754662812
+ ],
+ [
+ -73.59586518074832,
+ 45.525156646219315
+ ],
+ [
+ -73.5958766816196,
+ 45.52514304718757
+ ],
+ [
+ -73.59584527043587,
+ 45.52512948956751
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 132548,
+ "ID_UEV": "01001550",
+ "CIVIQUE_DE": 4575,
+ "CIVIQUE_FI": 4575,
+ "NOM_RUE": "rue Saint-Dominique (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 11,
+ "AREA_NEW": 158,
+ "MBG_Width": 13,
+ "MBG_Length": 13,
+ "MBG_Orientation": 123,
+ "Shape_Length": 52,
+ "Shape_Area": 167,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 1738,
+ "AspectRatio": 1.006,
+ "SurfacetoVolumeRatio": 0.091,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 474,
+ "ANNEE_CONS": 1973,
+ "address": 4575
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.58695847537616,
+ 45.52116453112304
+ ],
+ [
+ -73.58688980086606,
+ 45.521239225136924
+ ],
+ [
+ -73.58691647787222,
+ 45.52125194658049
+ ],
+ [
+ -73.58689937652531,
+ 45.521269645953026
+ ],
+ [
+ -73.58689567734643,
+ 45.521273946404456
+ ],
+ [
+ -73.58700998285775,
+ 45.521323254327505
+ ],
+ [
+ -73.58709773159634,
+ 45.5212278124794
+ ],
+ [
+ -73.58708327718011,
+ 45.521221245667
+ ],
+ [
+ -73.5869608772182,
+ 45.52116564599642
+ ],
+ [
+ -73.58695847537616,
+ 45.52116453112304
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 163117,
+ "ID_UEV": "01096852",
+ "CIVIQUE_DE": 4580,
+ "CIVIQUE_FI": 4580,
+ "NOM_RUE": "rue Saint-Dominique (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 9,
+ "AREA_NEW": 175,
+ "MBG_Width": 11,
+ "MBG_Length": 16,
+ "MBG_Orientation": 33,
+ "Shape_Length": 56,
+ "Shape_Area": 187,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 1575,
+ "AspectRatio": 1.42,
+ "SurfacetoVolumeRatio": 0.111,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 525,
+ "ANNEE_CONS": 1988,
+ "address": 4580
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.58735362685337,
+ 45.521008262997164
+ ],
+ [
+ -73.58724605560164,
+ 45.52112510849238
+ ],
+ [
+ -73.58725137773222,
+ 45.521127345929564
+ ],
+ [
+ -73.58724587837686,
+ 45.521133846077404
+ ],
+ [
+ -73.58724717729102,
+ 45.52113444617864
+ ],
+ [
+ -73.58729517753068,
+ 45.52115204547708
+ ],
+ [
+ -73.58737055475392,
+ 45.52117967953436
+ ],
+ [
+ -73.5874702913191,
+ 45.52107157197342
+ ],
+ [
+ -73.58745787835551,
+ 45.521064846172926
+ ],
+ [
+ -73.58741377769643,
+ 45.521040945975884
+ ],
+ [
+ -73.58735362685337,
+ 45.521008262997164
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 131179,
+ "ID_UEV": "01001538",
+ "CIVIQUE_DE": 4588,
+ "CIVIQUE_FI": 4588,
+ "NOM_RUE": "rue Saint-Dominique (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 8,
+ "AREA_NEW": 165,
+ "MBG_Width": 12,
+ "MBG_Length": 14,
+ "MBG_Orientation": 33,
+ "Shape_Length": 53,
+ "Shape_Area": 176,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 1320,
+ "AspectRatio": 1.185,
+ "SurfacetoVolumeRatio": 0.125,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 2,
+ "TotalFloorArea": 330,
+ "ANNEE_CONS": 1987,
+ "address": 4588
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.5874702913191,
+ 45.52107157197342
+ ],
+ [
+ -73.58737055475392,
+ 45.52117967953436
+ ],
+ [
+ -73.58739937773738,
+ 45.5211902468058
+ ],
+ [
+ -73.5874671777897,
+ 45.52121504580049
+ ],
+ [
+ -73.58746167744097,
+ 45.52122254658181
+ ],
+ [
+ -73.58746267779172,
+ 45.52122294534497
+ ],
+ [
+ -73.5875010011558,
+ 45.52123991037948
+ ],
+ [
+ -73.58759421253683,
+ 45.52113887505566
+ ],
+ [
+ -73.58759017764646,
+ 45.52113714595701
+ ],
+ [
+ -73.5875905776866,
+ 45.52113674612117
+ ],
+ [
+ -73.5874702913191,
+ 45.52107157197342
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 131178,
+ "ID_UEV": "01001537",
+ "CIVIQUE_DE": 4600,
+ "CIVIQUE_FI": 4600,
+ "NOM_RUE": "rue Saint-Dominique (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 8,
+ "AREA_NEW": 164,
+ "MBG_Width": 12,
+ "MBG_Length": 14,
+ "MBG_Orientation": 33,
+ "Shape_Length": 52,
+ "Shape_Area": 167,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 1312,
+ "AspectRatio": 1.125,
+ "SurfacetoVolumeRatio": 0.125,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 2,
+ "TotalFloorArea": 328,
+ "ANNEE_CONS": 1965,
+ "address": 4600
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.58759421253683,
+ 45.52113887505566
+ ],
+ [
+ -73.5875010011558,
+ 45.52123991037948
+ ],
+ [
+ -73.58754467762567,
+ 45.52125924597719
+ ],
+ [
+ -73.58763312829778,
+ 45.52129831850879
+ ],
+ [
+ -73.58772745898655,
+ 45.5211960665343
+ ],
+ [
+ -73.58766857753656,
+ 45.52117074614084
+ ],
+ [
+ -73.58759421253683,
+ 45.52113887505566
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 153638,
+ "ID_UEV": "05036130",
+ "CIVIQUE_DE": 4605,
+ "CIVIQUE_FI": 4605,
+ "NOM_RUE": "rue Saint-Dominique (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Condominium",
+ "Hieght_LiD": 8,
+ "AREA_NEW": 72,
+ "MBG_Width": 6,
+ "MBG_Length": 13,
+ "MBG_Orientation": 33,
+ "Shape_Length": 40,
+ "Shape_Area": 87,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 576,
+ "AspectRatio": 2.064,
+ "SurfacetoVolumeRatio": 0.125,
+ "FloorNu_RawTax": 1,
+ "FloorNu_RawTax.1": 4,
+ "Floor_frmHieght": 2,
+ "TotalFloorArea": 144,
+ "ANNEE_CONS": 1885,
+ "address": 4605
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.587376211751,
+ 45.52135441339862
+ ],
+ [
+ -73.58728334264437,
+ 45.52145542308364
+ ],
+ [
+ -73.5872930782179,
+ 45.52144754564103
+ ],
+ [
+ -73.58730407808774,
+ 45.52143774607229
+ ],
+ [
+ -73.58736674981574,
+ 45.52147207745368
+ ],
+ [
+ -73.58744582751116,
+ 45.52138606779943
+ ],
+ [
+ -73.587376211751,
+ 45.52135441339862
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 131727,
+ "ID_UEV": "01001536",
+ "CIVIQUE_DE": 4610,
+ "CIVIQUE_FI": 4610,
+ "NOM_RUE": "rue Saint-Dominique (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 8,
+ "AREA_NEW": 157,
+ "MBG_Width": 12,
+ "MBG_Length": 14,
+ "MBG_Orientation": 32,
+ "Shape_Length": 50,
+ "Shape_Area": 158,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 1256,
+ "AspectRatio": 1.171,
+ "SurfacetoVolumeRatio": 0.125,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 2,
+ "TotalFloorArea": 314,
+ "ANNEE_CONS": 1965,
+ "address": 4610
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.58772745898655,
+ 45.5211960665343
+ ],
+ [
+ -73.58763312829778,
+ 45.52129831850879
+ ],
+ [
+ -73.58771717774853,
+ 45.52133544619716
+ ],
+ [
+ -73.58775917760998,
+ 45.52135404603081
+ ],
+ [
+ -73.58785207766479,
+ 45.52125054607517
+ ],
+ [
+ -73.58777667834441,
+ 45.52121714617615
+ ],
+ [
+ -73.5877764786541,
+ 45.52121714632959
+ ],
+ [
+ -73.58772745898655,
+ 45.5211960665343
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 157628,
+ "ID_UEV": "01001554",
+ "CIVIQUE_DE": 4611,
+ "CIVIQUE_FI": 4611,
+ "NOM_RUE": "rue Saint-Dominique (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 7,
+ "AREA_NEW": 75,
+ "MBG_Width": 6,
+ "MBG_Length": 12,
+ "MBG_Orientation": 33,
+ "Shape_Length": 37,
+ "Shape_Area": 77,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 525,
+ "AspectRatio": 1.845,
+ "SurfacetoVolumeRatio": 0.143,
+ "FloorNu_RawTax": 2,
+ "FloorNu_RawTax.1": 2,
+ "Floor_frmHieght": 2,
+ "TotalFloorArea": 150,
+ "ANNEE_CONS": 1957,
+ "address": 4611
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.58744582751116,
+ 45.52138606779943
+ ],
+ [
+ -73.58736674981574,
+ 45.52147207745368
+ ],
+ [
+ -73.58743240416018,
+ 45.52150804062752
+ ],
+ [
+ -73.58749775952731,
+ 45.521436957192954
+ ],
+ [
+ -73.58749487845772,
+ 45.521435546650515
+ ],
+ [
+ -73.5875133772338,
+ 45.52141684549636
+ ],
+ [
+ -73.58751307738757,
+ 45.52141664596154
+ ],
+ [
+ -73.58744582751116,
+ 45.52138606779943
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 139181,
+ "ID_UEV": "01093152",
+ "CIVIQUE_DE": 5155,
+ "CIVIQUE_FI": 5155,
+ "NOM_RUE": "avenue Henri-Julien (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 8,
+ "AREA_NEW": 64,
+ "MBG_Width": 6,
+ "MBG_Length": 11,
+ "MBG_Orientation": 31,
+ "Shape_Length": 35,
+ "Shape_Area": 69,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 512,
+ "AspectRatio": 1.857,
+ "SurfacetoVolumeRatio": 0.125,
+ "FloorNu_RawTax": 2,
+ "FloorNu_RawTax.1": 2,
+ "Floor_frmHieght": 2,
+ "TotalFloorArea": 128,
+ "ANNEE_CONS": 1900,
+ "address": 5155
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.59126346415185,
+ 45.52628763822661
+ ],
+ [
+ -73.59119570372313,
+ 45.52636584520534
+ ],
+ [
+ -73.59118857579593,
+ 45.52637464682695
+ ],
+ [
+ -73.59124987939587,
+ 45.52639644687538
+ ],
+ [
+ -73.59127027985483,
+ 45.52637234637264
+ ],
+ [
+ -73.59127770650177,
+ 45.52637569593996
+ ],
+ [
+ -73.59132815781368,
+ 45.52631826565003
+ ],
+ [
+ -73.59127107939297,
+ 45.526291246797555
+ ],
+ [
+ -73.59126346415185,
+ 45.52628763822661
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 166967,
+ "ID_UEV": "01093155",
+ "CIVIQUE_DE": 5159,
+ "CIVIQUE_FI": 5159,
+ "NOM_RUE": "avenue Henri-Julien (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 8,
+ "AREA_NEW": 51,
+ "MBG_Width": 7,
+ "MBG_Length": 7,
+ "MBG_Orientation": 34,
+ "Shape_Length": 29,
+ "Shape_Area": 52,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 408,
+ "AspectRatio": 1.071,
+ "SurfacetoVolumeRatio": 0.125,
+ "FloorNu_RawTax": 2,
+ "FloorNu_RawTax.1": 2,
+ "Floor_frmHieght": 2,
+ "TotalFloorArea": 102,
+ "ANNEE_CONS": 1900,
+ "address": 5159
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.59132527958762,
+ 45.52639714698301
+ ],
+ [
+ -73.59134947945634,
+ 45.52640854749608
+ ],
+ [
+ -73.59140247950297,
+ 45.52635344661957
+ ],
+ [
+ -73.59132815781368,
+ 45.52631826565003
+ ],
+ [
+ -73.59127770650177,
+ 45.52637569593996
+ ],
+ [
+ -73.59132527958762,
+ 45.52639714698301
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 139056,
+ "ID_UEV": "01093163",
+ "CIVIQUE_DE": 5179,
+ "CIVIQUE_FI": 5179,
+ "NOM_RUE": "avenue Henri-Julien (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 11,
+ "AREA_NEW": 114,
+ "MBG_Width": 9,
+ "MBG_Length": 14,
+ "MBG_Orientation": 33,
+ "Shape_Length": 45,
+ "Shape_Area": 119,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 1254,
+ "AspectRatio": 1.565,
+ "SurfacetoVolumeRatio": 0.091,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 342,
+ "ANNEE_CONS": 1959,
+ "address": 5179
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.5915142796455,
+ 45.52655184730195
+ ],
+ [
+ -73.59157837902634,
+ 45.52658124677747
+ ],
+ [
+ -73.591673979158,
+ 45.52647844711825
+ ],
+ [
+ -73.59158051856348,
+ 45.526435507058615
+ ],
+ [
+ -73.59149342764714,
+ 45.52654219433043
+ ],
+ [
+ -73.5915142796455,
+ 45.52655184730195
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 161696,
+ "ID_UEV": "01128422",
+ "CIVIQUE_DE": 220,
+ "CIVIQUE_FI": 220,
+ "NOM_RUE": "avenue Laurier Est (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 14,
+ "AREA_NEW": 98,
+ "MBG_Width": 7,
+ "MBG_Length": 14,
+ "MBG_Orientation": 123,
+ "Shape_Length": 42,
+ "Shape_Area": 101,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 1372,
+ "AspectRatio": 1.961,
+ "SurfacetoVolumeRatio": 0.071,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 4,
+ "TotalFloorArea": 392,
+ "ANNEE_CONS": 1995,
+ "address": 220
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.59055762474266,
+ 45.525262900234246
+ ],
+ [
+ -73.59050472066473,
+ 45.5253154559067
+ ],
+ [
+ -73.59065548171333,
+ 45.52538423528219
+ ],
+ [
+ -73.59070251298645,
+ 45.52532889740045
+ ],
+ [
+ -73.59055762474266,
+ 45.525262900234246
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 139317,
+ "ID_UEV": "01117392",
+ "CIVIQUE_DE": 3850,
+ "CIVIQUE_FI": 3850,
+ "NOM_RUE": "rue Rivard (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 11,
+ "AREA_NEW": 222,
+ "MBG_Width": 18,
+ "MBG_Length": 19,
+ "MBG_Orientation": 33,
+ "Shape_Length": 75,
+ "Shape_Area": 354,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 2442,
+ "AspectRatio": 1.059,
+ "SurfacetoVolumeRatio": 0.091,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 666,
+ "ANNEE_CONS": 1976,
+ "address": 3850
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.57295066832759,
+ 45.51992769609667
+ ],
+ [
+ -73.57281611225557,
+ 45.52007378287291
+ ],
+ [
+ -73.57293037356249,
+ 45.52012504677861
+ ],
+ [
+ -73.57301344918426,
+ 45.52016231549183
+ ],
+ [
+ -73.5730921418857,
+ 45.52007687930088
+ ],
+ [
+ -73.57301457262967,
+ 45.52004124663418
+ ],
+ [
+ -73.57303477290998,
+ 45.52001944588219
+ ],
+ [
+ -73.57302717262223,
+ 45.52001594586261
+ ],
+ [
+ -73.5730083735848,
+ 45.52000774593498
+ ],
+ [
+ -73.57298747288253,
+ 45.52003134591106
+ ],
+ [
+ -73.57290607263843,
+ 45.51999574621277
+ ],
+ [
+ -73.57296197234393,
+ 45.51993264609835
+ ],
+ [
+ -73.57295066832759,
+ 45.51992769609667
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 162708,
+ "ID_UEV": "01042262",
+ "CIVIQUE_DE": 3800,
+ "CIVIQUE_FI": 3800,
+ "NOM_RUE": "rue De Bullion (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 10,
+ "AREA_NEW": 127,
+ "MBG_Width": 10,
+ "MBG_Length": 18,
+ "MBG_Orientation": 34,
+ "Shape_Length": 57,
+ "Shape_Area": 191,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 1270,
+ "AspectRatio": 1.756,
+ "SurfacetoVolumeRatio": 0.1,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 381,
+ "ANNEE_CONS": 1980,
+ "address": 3800
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.57508577341095,
+ 45.51670754522258
+ ],
+ [
+ -73.57500597326535,
+ 45.51679564619446
+ ],
+ [
+ -73.57500607310273,
+ 45.516795646128905
+ ],
+ [
+ -73.57511235197389,
+ 45.51684902774917
+ ],
+ [
+ -73.57524184013074,
+ 45.5167117977588
+ ],
+ [
+ -73.57523387374518,
+ 45.51670804526983
+ ],
+ [
+ -73.57523087305128,
+ 45.51671154582807
+ ],
+ [
+ -73.57519167303518,
+ 45.516754945775844
+ ],
+ [
+ -73.57508577341095,
+ 45.51670754522258
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 162718,
+ "ID_UEV": "01042296",
+ "CIVIQUE_DE": 3995,
+ "CIVIQUE_FI": 3995,
+ "NOM_RUE": "rue De Bullion (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 17,
+ "AREA_NEW": 100,
+ "MBG_Width": 9,
+ "MBG_Length": 11,
+ "MBG_Orientation": 34,
+ "Shape_Length": 40,
+ "Shape_Area": 101,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 1700,
+ "AspectRatio": 1.197,
+ "SurfacetoVolumeRatio": 0.059,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 5,
+ "TotalFloorArea": 500,
+ "ANNEE_CONS": 1980,
+ "address": 3995
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.57736211303495,
+ 45.5180978947712
+ ],
+ [
+ -73.57728503141776,
+ 45.51818095636402
+ ],
+ [
+ -73.57738017381428,
+ 45.518225846199066
+ ],
+ [
+ -73.57738287333515,
+ 45.51822304586547
+ ],
+ [
+ -73.57745927404018,
+ 45.51814474572666
+ ],
+ [
+ -73.57736211303495,
+ 45.5180978947712
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 162726,
+ "ID_UEV": "01001802",
+ "CIVIQUE_DE": 4530,
+ "CIVIQUE_FI": 4530,
+ "NOM_RUE": "avenue Henri-Julien (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 9,
+ "AREA_NEW": 158,
+ "MBG_Width": 12,
+ "MBG_Length": 13,
+ "MBG_Orientation": 122,
+ "Shape_Length": 50,
+ "Shape_Area": 158,
+ "BuildingCategory": "detached",
+ "BuildingVolume": 1422,
+ "AspectRatio": 1.034,
+ "SurfacetoVolumeRatio": 0.111,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 474,
+ "ANNEE_CONS": 1980,
+ "address": 4530
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.58452997610767,
+ 45.52303594658955
+ ],
+ [
+ -73.58466847666706,
+ 45.523096845969846
+ ],
+ [
+ -73.58475237701808,
+ 45.5230026469856
+ ],
+ [
+ -73.58461387659825,
+ 45.52294174680608
+ ],
+ [
+ -73.58452997610767,
+ 45.52303594658955
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 162727,
+ "ID_UEV": "01001804",
+ "CIVIQUE_DE": 4535,
+ "CIVIQUE_FI": 4535,
+ "NOM_RUE": "avenue Henri-Julien (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 11,
+ "AREA_NEW": 161,
+ "MBG_Width": 12,
+ "MBG_Length": 14,
+ "MBG_Orientation": 118,
+ "Shape_Length": 52,
+ "Shape_Area": 169,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 1771,
+ "AspectRatio": 1.118,
+ "SurfacetoVolumeRatio": 0.091,
+ "FloorNu_RawTax": 2,
+ "FloorNu_RawTax.1": 2,
+ "Floor_frmHieght": 3,
+ "TotalFloorArea": 483,
+ "ANNEE_CONS": 1980,
+ "address": 4535
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.58450432810098,
+ 45.52331827507302
+ ],
+ [
+ -73.58447006311711,
+ 45.52335752894066
+ ],
+ [
+ -73.58443087735714,
+ 45.52340964694795
+ ],
+ [
+ -73.58442807687385,
+ 45.52341334646033
+ ],
+ [
+ -73.584574755506,
+ 45.52346817048485
+ ],
+ [
+ -73.58465645600157,
+ 45.52337479655955
+ ],
+ [
+ -73.5845745774021,
+ 45.5233467462103
+ ],
+ [
+ -73.584576876816,
+ 45.523343546476525
+ ],
+ [
+ -73.58450537707058,
+ 45.523318645930914
+ ],
+ [
+ -73.58450432810098,
+ 45.52331827507302
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 131611,
+ "ID_UEV": "01042169",
+ "CIVIQUE_DE": 3625,
+ "CIVIQUE_FI": 3625,
+ "NOM_RUE": "avenue Coloniale (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 13,
+ "AREA_NEW": 108,
+ "MBG_Width": 10,
+ "MBG_Length": 11,
+ "MBG_Orientation": 123,
+ "Shape_Length": 42,
+ "Shape_Area": 110,
+ "BuildingCategory": "semi-attached",
+ "BuildingVolume": 1404,
+ "AspectRatio": 1.049,
+ "SurfacetoVolumeRatio": 0.077,
+ "FloorNu_RawTax": 2,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 4,
+ "TotalFloorArea": 432,
+ "ANNEE_CONS": 1973,
+ "address": 3625
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.57205237165654,
+ 45.51502834545008
+ ],
+ [
+ -73.57204877235876,
+ 45.51503224583288
+ ],
+ [
+ -73.57197897192349,
+ 45.515104845840966
+ ],
+ [
+ -73.5719842726097,
+ 45.51510724597676
+ ],
+ [
+ -73.57209427271673,
+ 45.51515771168995
+ ],
+ [
+ -73.5721643414897,
+ 45.515081822522674
+ ],
+ [
+ -73.5721421725414,
+ 45.51507134617621
+ ],
+ [
+ -73.57205237165654,
+ 45.51502834545008
+ ]
+ ]
+ ]
+ }
+ },
+ {
+ "type": "Feature",
+ "properties": {
+ "OBJECTID": 134547,
+ "ID_UEV": "01042129",
+ "CIVIQUE_DE": 3875,
+ "CIVIQUE_FI": 3875,
+ "NOM_RUE": "avenue Coloniale (MTL)",
+ "MUNICIPALI": 50,
+ "CODE_UTILI": 1000,
+ "LIBELLE_UT": "Logement",
+ "CATEGORIE_": "Régulier",
+ "Hieght_LiD": 27,
+ "AREA_NEW": 112,
+ "MBG_Width": 11,
+ "MBG_Length": 14,
+ "MBG_Orientation": 33,
+ "Shape_Length": 50,
+ "Shape_Area": 155,
+ "BuildingCategory": "fully-attached",
+ "BuildingVolume": 3024,
+ "AspectRatio": 1.289,
+ "SurfacetoVolumeRatio": 0.037,
+ "FloorNu_RawTax": 3,
+ "FloorNu_RawTax.1": 3,
+ "Floor_frmHieght": 7,
+ "TotalFloorArea": 784,
+ "ANNEE_CONS": 1973,
+ "address": 3875
+ },
+ "geometry": {
+ "type": "Polygon",
+ "coordinates": [
+ [
+ [
+ -73.57600009852351,
+ 45.51682149480924
+ ],
+ [
+ -73.57590854825408,
+ 45.516921029508254
+ ],
+ [
+ -73.57593577350661,
+ 45.51689364634819
+ ],
+ [
+ -73.576049597105,
+ 45.51694951913854
+ ],
+ [
+ -73.57612428015403,
+ 45.516868322630735
+ ],
+ [
+ -73.57611917371327,
+ 45.51686594595422
+ ],
+ [
+ -73.57605227264045,
+ 45.51683484521904
+ ],
+ [
+ -73.5760449729797,
+ 45.51684244563685
+ ],
+ [
+ -73.57600009852351,
+ 45.51682149480924
+ ]
+ ]
+ ]
+ }
+ }
+ ]
+}
\ No newline at end of file
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/archetypes/montreal/archetype_cluster_1.py b/energy_system_modelling_package/energy_system_modelling_factories/archetypes/montreal/archetype_cluster_1.py
new file mode 100644
index 00000000..e66140d8
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/archetypes/montreal/archetype_cluster_1.py
@@ -0,0 +1,147 @@
+import csv
+
+from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.heat_pump_boiler_tes_heating import \
+ HeatPumpBoilerTesHeating
+from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.heat_pump_cooling import \
+ HeatPumpCooling
+from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.domestic_hot_water_heat_pump_with_tes import \
+ DomesticHotWaterHeatPumpTes
+from energy_system_modelling_package.energy_system_modelling_factories.pv_assessment.pv_model import PVModel
+from energy_system_modelling_package.energy_system_modelling_factories.pv_assessment.electricity_demand_calculator import HourlyElectricityDemand
+import hub.helpers.constants as cte
+from hub.helpers.monthly_values import MonthlyValues
+
+
+class ArchetypeCluster1:
+ def __init__(self, building, dt, output_path, csv_output=True):
+ self.building = building
+ self.dt = dt
+ self.output_path = output_path
+ self.csv_output = csv_output
+ self.heating_results, self.building_heating_hourly_consumption = self.heating_system_simulation()
+ self.cooling_results, self.total_cooling_consumption_hourly = self.cooling_system_simulation()
+ self.dhw_results, self.total_dhw_consumption_hourly = self.dhw_system_simulation()
+ if 'PV' in self.building.energy_systems_archetype_name:
+ self.pv_results = self.pv_system_simulation()
+ else:
+ self.pv_results = None
+
+ def heating_system_simulation(self):
+ building_heating_hourly_consumption = []
+ boiler = self.building.energy_systems[1].generation_systems[0]
+ hp = self.building.energy_systems[1].generation_systems[1]
+ tes = self.building.energy_systems[1].generation_systems[0].energy_storage_systems[0]
+ heating_demand_joules = self.building.heating_demand[cte.HOUR]
+ heating_peak_load_watts = self.building.heating_peak_load[cte.YEAR][0]
+ upper_limit_tes_heating = 55
+ outdoor_temperature = self.building.external_temperature[cte.HOUR]
+ results = HeatPumpBoilerTesHeating(hp=hp,
+ boiler=boiler,
+ tes=tes,
+ hourly_heating_demand_joules=heating_demand_joules,
+ heating_peak_load_watts=heating_peak_load_watts,
+ upper_limit_tes=upper_limit_tes_heating,
+ outdoor_temperature=outdoor_temperature,
+ dt=self.dt).simulation()
+ number_of_ts = int(cte.HOUR_TO_SECONDS/self.dt)
+ heating_consumption_joules = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in
+ results['Total Heating Power Consumption (W)']]
+ heating_consumption = 0
+ for i in range(1, len(heating_consumption_joules)):
+ heating_consumption += heating_consumption_joules[i]
+ if (i - 1) % number_of_ts == 0:
+ building_heating_hourly_consumption.append(heating_consumption)
+ heating_consumption = 0
+ return results, building_heating_hourly_consumption
+
+ def cooling_system_simulation(self):
+ hp = self.building.energy_systems[2].generation_systems[0]
+ cooling_demand_joules = self.building.cooling_demand[cte.HOUR]
+ cooling_peak_load = self.building.cooling_peak_load[cte.YEAR][0]
+ cutoff_temperature = 11
+ outdoor_temperature = self.building.external_temperature[cte.HOUR]
+ results = HeatPumpCooling(hp=hp,
+ hourly_cooling_demand_joules=cooling_demand_joules,
+ cooling_peak_load_watts=cooling_peak_load,
+ cutoff_temperature=cutoff_temperature,
+ outdoor_temperature=outdoor_temperature,
+ dt=self.dt).simulation()
+ building_cooling_hourly_consumption = hp.energy_consumption[cte.COOLING][cte.HOUR]
+ return results, building_cooling_hourly_consumption
+
+ def dhw_system_simulation(self):
+ building_dhw_hourly_consumption = []
+ hp = self.building.energy_systems[-1].generation_systems[0]
+ tes = self.building.energy_systems[-1].generation_systems[0].energy_storage_systems[0]
+ dhw_demand_joules = self.building.domestic_hot_water_heat_demand[cte.HOUR]
+ upper_limit_tes = 65
+ outdoor_temperature = self.building.external_temperature[cte.HOUR]
+ results = DomesticHotWaterHeatPumpTes(hp=hp,
+ tes=tes,
+ hourly_dhw_demand_joules=dhw_demand_joules,
+ upper_limit_tes=upper_limit_tes,
+ outdoor_temperature=outdoor_temperature,
+ dt=self.dt).simulation()
+ number_of_ts = int(cte.HOUR_TO_SECONDS/self.dt)
+ dhw_consumption_joules = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in
+ results['Total DHW Power Consumption (W)']]
+ dhw_consumption = 0
+ for i in range(1, len(dhw_consumption_joules)):
+ dhw_consumption += dhw_consumption_joules[i]
+ if (i - 1) % number_of_ts == 0:
+ building_dhw_hourly_consumption.append(dhw_consumption)
+ dhw_consumption = 0
+ return results, building_dhw_hourly_consumption
+
+ def pv_system_simulation(self):
+ results = None
+ pv = self.building.energy_systems[0].generation_systems[0]
+ hourly_electricity_demand = HourlyElectricityDemand(self.building).calculate()
+ model_type = 'fixed_efficiency'
+ if model_type == 'fixed_efficiency':
+ results = PVModel(pv=pv,
+ hourly_electricity_demand_joules=hourly_electricity_demand,
+ solar_radiation=self.building.roofs[0].global_irradiance_tilted[cte.HOUR],
+ installed_pv_area=self.building.roofs[0].installed_solar_collector_area,
+ model_type='fixed_efficiency').fixed_efficiency()
+ return results
+
+ def enrich_building(self):
+ results = self.heating_results | self.cooling_results | self.dhw_results
+ self.building.heating_consumption[cte.HOUR] = self.building_heating_hourly_consumption
+ self.building.heating_consumption[cte.MONTH] = (
+ MonthlyValues.get_total_month(self.building.heating_consumption[cte.HOUR]))
+ self.building.heating_consumption[cte.YEAR] = [sum(self.building.heating_consumption[cte.MONTH])]
+ self.building.cooling_consumption[cte.HOUR] = self.total_cooling_consumption_hourly
+ self.building.cooling_consumption[cte.MONTH] = (
+ MonthlyValues.get_total_month(self.building.cooling_consumption[cte.HOUR]))
+ self.building.cooling_consumption[cte.YEAR] = [sum(self.building.cooling_consumption[cte.MONTH])]
+ self.building.domestic_hot_water_consumption[cte.HOUR] = self.total_dhw_consumption_hourly
+ self.building.domestic_hot_water_consumption[cte.MONTH] = (
+ MonthlyValues.get_total_month(self.building.domestic_hot_water_consumption[cte.HOUR]))
+ self.building.domestic_hot_water_consumption[cte.YEAR] = [
+ sum(self.building.domestic_hot_water_consumption[cte.MONTH])]
+ if self.pv_results is not None:
+ self.building.onsite_electrical_production[cte.HOUR] = [x * cte.WATTS_HOUR_TO_JULES for x in
+ self.pv_results['PV Output (W)']]
+ self.building.onsite_electrical_production[cte.MONTH] = MonthlyValues.get_total_month(self.building.onsite_electrical_production[cte.HOUR])
+ self.building.onsite_electrical_production[cte.YEAR] = [sum(self.building.onsite_electrical_production[cte.MONTH])]
+ if self.csv_output:
+ file_name = f'pv_system_simulation_results_{self.building.name}.csv'
+ with open(self.output_path / file_name, 'w', newline='') as csvfile:
+ output_file = csv.writer(csvfile)
+ # Write header
+ output_file.writerow(self.pv_results.keys())
+ # Write data
+ output_file.writerows(zip(*self.pv_results.values()))
+ if self.csv_output:
+ file_name = f'energy_system_simulation_results_{self.building.name}.csv'
+ with open(self.output_path / file_name, 'w', newline='') as csvfile:
+ output_file = csv.writer(csvfile)
+ # Write header
+ output_file.writerow(results.keys())
+ # Write data
+ output_file.writerows(zip(*results.values()))
+
+
+
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/energy_system_sizing_factory.py b/energy_system_modelling_package/energy_system_modelling_factories/energy_system_sizing_factory.py
new file mode 100644
index 00000000..8ea92fae
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/energy_system_sizing_factory.py
@@ -0,0 +1,79 @@
+"""
+EnergySystemSizingSimulationFactory retrieve the energy system archetype sizing and simulation module
+SPDX - License - Identifier: LGPL - 3.0 - or -later
+Copyright © 2024 Concordia CERC group
+Project Coder Saeed Ranjbar saeed.ranjbar@mail.concordia.ca
+"""
+from energy_system_modelling_package.energy_system_modelling_factories.system_sizing_methods.optimal_sizing import \
+ OptimalSizing
+from energy_system_modelling_package.energy_system_modelling_factories.system_sizing_methods.peak_load_sizing import \
+ PeakLoadSizing
+from energy_system_modelling_package.energy_system_modelling_factories.pv_assessment.pv_sizing import PVSizing
+
+
+class EnergySystemsSizingFactory:
+ """
+ EnergySystemsFactory class
+ """
+
+ def __init__(self, handler, city):
+ self._handler = '_' + handler.lower()
+ self._city = city
+
+ def _peak_load_sizing(self):
+ """
+ Size Energy Systems based on a Load Matching method using the heating, cooling, and dhw peak loads
+ """
+ PeakLoadSizing(self._city).enrich_buildings()
+ self._city.level_of_detail.energy_systems = 1
+ for building in self._city.buildings:
+ building.level_of_detail.energy_systems = 1
+
+ def _optimal_sizing(self):
+ """
+ Size Energy Systems using a Single or Multi Objective GA
+ """
+ OptimalSizing(self._city, optimization_scenario='cost_energy_consumption').enrich_buildings()
+ self._city.level_of_detail.energy_systems = 1
+ for building in self._city.buildings:
+ building.level_of_detail.energy_systems = 1
+
+ def _pv_sizing(self):
+ """
+ Size rooftop, facade or mixture of them for buildings
+ """
+ system_type = 'rooftop'
+ results = {}
+ if system_type == 'rooftop':
+ surface_azimuth = 180
+ maintenance_factor = 0.1
+ mechanical_equipment_factor = 0.3
+ orientation_factor = 0.1
+ tilt_angle = self._city.latitude
+ pv_sizing = PVSizing(self._city,
+ tilt_angle=tilt_angle,
+ surface_azimuth=surface_azimuth,
+ mechanical_equipment_factor=mechanical_equipment_factor,
+ maintenance_factor=maintenance_factor,
+ orientation_factor=orientation_factor,
+ system_type=system_type)
+ results = pv_sizing.rooftop_sizing()
+ pv_sizing.rooftop_tilted_radiation()
+
+ self._city.level_of_detail.energy_systems = 1
+ for building in self._city.buildings:
+ building.level_of_detail.energy_systems = 1
+ return results
+
+ def _district_heating_cooling_sizing(self):
+ """
+ Size District Heating and Cooling Network
+ """
+ pass
+
+ def enrich(self):
+ """
+ Enrich the city given to the class using the class given handler
+ :return: None
+ """
+ return getattr(self, self._handler, lambda: None)()
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/domestic_hot_water_heat_pump_with_tes.py b/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/domestic_hot_water_heat_pump_with_tes.py
new file mode 100644
index 00000000..1034ce63
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/domestic_hot_water_heat_pump_with_tes.py
@@ -0,0 +1,120 @@
+import hub.helpers.constants as cte
+from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.heat_pump_characteristics import HeatPump
+from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.thermal_storage_tank import StorageTank
+from hub.helpers.monthly_values import MonthlyValues
+
+
+class DomesticHotWaterHeatPumpTes:
+ def __init__(self, hp, tes, hourly_dhw_demand_joules, upper_limit_tes,
+ outdoor_temperature, dt=None):
+ self.hp = hp
+ self.tes = tes
+ self.dhw_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in hourly_dhw_demand_joules]
+ self.upper_limit_tes = upper_limit_tes
+ self.hp_characteristics = HeatPump(self.hp, outdoor_temperature)
+ self.t_out = outdoor_temperature
+ self.dt = dt
+ self.results = {}
+
+ def simulation(self):
+ hp = self.hp
+ tes = self.tes
+ heating_coil_nominal_output = 0
+ if tes.heating_coil_capacity is not None:
+ heating_coil_nominal_output = float(tes.heating_coil_capacity)
+ storage_tank = StorageTank(volume=float(tes.volume),
+ height=float(tes.height),
+ material_layers=tes.layers,
+ heating_coil_capacity=heating_coil_nominal_output)
+
+ hp_delta_t = 8
+ number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
+ source_temperature_hourly = self.hp_characteristics.hp_source_temperature()
+ source_temperature = [0] + [x for x in source_temperature_hourly for _ in range(number_of_ts)]
+ demand = [0] + [x for x in self.dhw_demand for _ in range(number_of_ts)]
+ variable_names = ["t_sup_hp", "t_tank", "m_ch", "m_dis", "q_hp", "q_coil", "hp_cop",
+ "hp_electricity", "available hot water (m3)", "refill flow rate (kg/s)", "total_consumption"]
+ num_hours = len(demand)
+ variables = {name: [0] * num_hours for name in variable_names}
+ (t_sup_hp, t_tank, m_ch, m_dis, m_refill, q_hp, q_coil, hp_cop, hp_electricity, v_dhw, total_consumption) = \
+ [variables[name] for name in variable_names]
+ freshwater_temperature = 18
+ t_tank[0] = 65
+ for i in range(len(demand) - 1):
+ delta_t_demand = demand[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY *
+ storage_tank.volume))
+ if t_tank[i] < self.upper_limit_tes:
+ q_hp[i] = hp.nominal_heat_output
+ delta_t_hp = q_hp[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * storage_tank.volume))
+ if demand[i] > 0:
+ dhw_needed = (demand[i] * cte.HOUR_TO_SECONDS) / (cte.WATER_HEAT_CAPACITY * t_tank[i] * cte.WATER_DENSITY)
+ m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
+ m_refill[i] = m_dis[i]
+ delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (self.dt / (storage_tank.volume *
+ cte.WATER_DENSITY))
+ if t_tank[i] < 60:
+ q_coil[i] = float(storage_tank.heating_coil_capacity)
+ delta_t_coil = q_coil[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * storage_tank.volume))
+ if q_hp[i] > 0:
+ m_ch[i] = q_hp[i] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
+ t_sup_hp[i] = (q_hp[i] / (m_ch[i] * cte.WATER_HEAT_CAPACITY)) + t_tank[i]
+ else:
+ m_ch[i] = 0
+ t_sup_hp[i] = t_tank[i]
+ if q_hp[i] > 0:
+ if hp.source_medium == cte.AIR and hp.supply_medium == cte.WATER:
+ hp_cop[i] = self.hp_characteristics.air_to_water_cop(source_temperature[i], t_tank[i],
+ mode=cte.DOMESTIC_HOT_WATER)
+ hp_electricity[i] = q_hp[i] / hp_cop[i]
+ else:
+ hp_cop[i] = 0
+ hp_electricity[i] = 0
+
+ t_tank[i + 1] = t_tank[i] + (delta_t_hp - delta_t_freshwater - delta_t_demand + delta_t_coil)
+ total_consumption[i] = hp_electricity[i] + q_coil[i]
+ tes.temperature = []
+ hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
+ heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
+ hp_hourly = []
+ coil_hourly = []
+ coil_sum = 0
+ hp_sum = 0
+ for i in range(1, len(demand)):
+ hp_sum += hp_electricity_j[i]
+ coil_sum += heating_coil_j[i]
+ if (i - 1) % number_of_ts == 0:
+ tes.temperature.append(t_tank[i])
+ hp_hourly.append(hp_sum)
+ coil_hourly.append(coil_sum)
+ hp_sum = 0
+ coil_sum = 0
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_hourly
+ if len(self.dhw_demand) == 8760:
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
+ sum(hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
+ if self.tes.heating_coil_capacity is not None:
+ tes.heating_coil_energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
+ tes.heating_coil_energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = coil_hourly
+ if len(self.dhw_demand) == 8760:
+ tes.heating_coil_energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
+ tes.heating_coil_energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
+ tes.heating_coil_energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
+ sum(tes.heating_coil_energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
+
+ self.results['DHW Demand (W)'] = demand
+ self.results['DHW HP Heat Output (W)'] = q_hp
+ self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
+ self.results['DHW HP Source Temperature'] = source_temperature
+ self.results['DHW HP Supply Temperature'] = t_sup_hp
+ self.results['DHW HP COP'] = hp_cop
+ self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
+ self.results['DHW TES Temperature'] = t_tank
+ self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
+ self.results['DHW Flow Rate (kg/s)'] = m_dis
+ self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
+ self.results['Available Water in Tank (m3)'] = v_dhw
+ self.results['Total DHW Power Consumption (W)'] = total_consumption
+ return self.results
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/heat_pump_boiler_tes_heating.py b/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/heat_pump_boiler_tes_heating.py
new file mode 100644
index 00000000..affaa871
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/heat_pump_boiler_tes_heating.py
@@ -0,0 +1,171 @@
+import hub.helpers.constants as cte
+from hub.helpers.monthly_values import MonthlyValues
+from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.heat_pump_characteristics import \
+ HeatPump
+from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.thermal_storage_tank import \
+ StorageTank
+
+
+class HeatPumpBoilerTesHeating:
+ def __init__(self, hp, boiler, tes, hourly_heating_demand_joules, heating_peak_load_watts, upper_limit_tes,
+ outdoor_temperature, dt=None):
+ self.hp = hp
+ self.boiler = boiler
+ self.tes = tes
+ self.heating_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in hourly_heating_demand_joules]
+ if heating_peak_load_watts is not None:
+ self.heating_peak_load = heating_peak_load_watts
+ else:
+ self.heating_peak_load = max(hourly_heating_demand_joules) / cte.HOUR_TO_SECONDS
+ self.upper_limit_tes = upper_limit_tes
+ self.hp_characteristics = HeatPump(self.hp, outdoor_temperature)
+ self.t_out = outdoor_temperature
+ self.dt = dt
+ self.results = {}
+
+ def simulation(self):
+ hp, boiler, tes = self.hp, self.boiler, self.tes
+ heating_coil_nominal_output = 0
+ if tes.heating_coil_capacity is not None:
+ heating_coil_nominal_output = float(tes.heating_coil_capacity)
+ storage_tank = StorageTank(volume=float(tes.volume),
+ height=float(tes.height),
+ material_layers=tes.layers,
+ heating_coil_capacity=heating_coil_nominal_output)
+ number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
+ demand = [0] + [x for x in self.heating_demand for _ in range(number_of_ts)]
+ t_out = [0] + [x for x in self.t_out for _ in range(number_of_ts)]
+ source_temperature_hourly = self.hp_characteristics.hp_source_temperature()
+ source_temperature = [0] + [x for x in source_temperature_hourly for _ in range(number_of_ts)]
+ variable_names = ["t_sup_hp", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "q_boiler", "hp_cop",
+ "hp_electricity", "boiler_gas_consumption", "t_sup_boiler", "boiler_energy_consumption",
+ "heating_consumption", "heating_coil_output", "total_heating_energy_consumption"]
+ num_hours = len(demand)
+ variables = {name: [0] * num_hours for name in variable_names}
+ (t_sup_hp, t_tank, t_ret, m_ch, m_dis, q_hp, q_boiler, hp_cop,
+ hp_electricity, boiler_fuel_consumption, t_sup_boiler, boiler_energy_consumption, heating_consumption, q_coil,
+ total_consumption) = [variables[name] for name in variable_names]
+ t_tank[0] = self.upper_limit_tes
+ hp_delta_t = 5
+ # storage temperature prediction
+ for i in range(len(demand) - 1):
+ t_tank[i + 1] = storage_tank.calculate_space_heating_fully_mixed(charging_flow_rate=m_ch[i],
+ discharging_flow_rate=m_dis[i],
+ supply_temperature=t_sup_boiler[i],
+ return_temperature=t_ret[i],
+ current_tank_temperature=t_tank[i],
+ heat_generator_input=q_coil[i],
+ ambient_temperature=t_out[i],
+ dt=self.dt)
+ # hp operation
+ if t_tank[i + 1] < 40:
+ q_hp[i + 1] = hp.nominal_heat_output
+ m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
+ t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
+ elif 40 <= t_tank[i + 1] < self.upper_limit_tes and q_hp[i] == 0:
+ q_hp[i + 1] = 0
+ m_ch[i + 1] = 0
+ t_sup_hp[i + 1] = t_tank[i + 1]
+ elif 40 <= t_tank[i + 1] < self.upper_limit_tes and q_hp[i] > 0:
+ q_hp[i + 1] = hp.nominal_heat_output
+ m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
+ t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
+ else:
+ q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
+ if q_hp[i + 1] > 0:
+ if hp.source_medium == cte.AIR and self.hp.supply_medium == cte.WATER:
+ hp_cop[i + 1] = self.hp_characteristics.air_to_water_cop(source_temperature[i + 1], t_tank[i + 1], mode=cte.HEATING)
+ hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
+ else:
+ hp_cop[i + 1] = 0
+ hp_electricity[i + 1] = 0
+ # boiler operation
+ if q_hp[i + 1] > 0:
+ if t_sup_hp[i + 1] < 45:
+ q_boiler[i + 1] = boiler.nominal_heat_output
+ elif demand[i + 1] > 0.5 * self.heating_peak_load / self.dt:
+ q_boiler[i + 1] = 0.5 * boiler.nominal_heat_output
+ boiler_energy_consumption[i + 1] = q_boiler[i + 1] / float(boiler.heat_efficiency)
+ if boiler.fuel_type == cte.ELECTRICITY:
+ boiler_fuel_consumption[i + 1] = boiler_energy_consumption[i + 1]
+ else:
+ # TODO: Other fuels should be considered
+ boiler_fuel_consumption[i + 1] = (q_boiler[i + 1] * self.dt) / (
+ float(boiler.heat_efficiency) * cte.NATURAL_GAS_LHV)
+ t_sup_boiler[i + 1] = t_sup_hp[i + 1] + (q_boiler[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY))
+ # heating coil operation
+ if t_tank[i + 1] < 35:
+ q_coil[i + 1] = heating_coil_nominal_output
+ # storage discharging
+ if demand[i + 1] == 0:
+ m_dis[i + 1] = 0
+ t_ret[i + 1] = t_tank[i + 1]
+ else:
+ if demand[i + 1] > 0.5 * self.heating_peak_load:
+ factor = 8
+ else:
+ factor = 4
+ m_dis[i + 1] = self.heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor)
+ t_ret[i + 1] = t_tank[i + 1] - demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
+ # total consumption
+ total_consumption[i + 1] = hp_electricity[i + 1] + boiler_energy_consumption[i + 1] + q_coil[i + 1]
+ tes.temperature = []
+ hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
+ boiler_consumption_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in boiler_energy_consumption]
+ heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
+ hp_hourly = []
+ boiler_hourly = []
+ coil_hourly = []
+ boiler_sum = 0
+ hp_sum = 0
+ coil_sum = 0
+ for i in range(1, len(demand)):
+ hp_sum += hp_electricity_j[i]
+ boiler_sum += boiler_consumption_j[i]
+ coil_sum += heating_coil_j[i]
+ if (i - 1) % number_of_ts == 0:
+ tes.temperature.append(t_tank[i])
+ hp_hourly.append(hp_sum)
+ boiler_hourly.append(boiler_sum)
+ coil_hourly.append(coil_sum)
+ hp_sum = 0
+ boiler_sum = 0
+ coil_sum = 0
+ hp.energy_consumption[cte.HEATING] = {}
+ hp.energy_consumption[cte.HEATING][cte.HOUR] = hp_hourly
+ boiler.energy_consumption[cte.HEATING] = {}
+ boiler.energy_consumption[cte.HEATING][cte.HOUR] = boiler_hourly
+ if len(self.heating_demand) == 8760:
+ hp.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
+ hp.energy_consumption[cte.HEATING][cte.HOUR])
+ hp.energy_consumption[cte.HEATING][cte.YEAR] = [
+ sum(hp.energy_consumption[cte.HEATING][cte.MONTH])]
+ boiler.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
+ boiler.energy_consumption[cte.HEATING][cte.HOUR])
+ boiler.energy_consumption[cte.HEATING][cte.YEAR] = [
+ sum(boiler.energy_consumption[cte.HEATING][cte.MONTH])]
+ if tes.heating_coil_capacity is not None:
+ tes.heating_coil_energy_consumption[cte.HEATING] = {}
+ if len(self.heating_demand) == 8760:
+ tes.heating_coil_energy_consumption[cte.HEATING][cte.HOUR] = coil_hourly
+ tes.heating_coil_energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
+ tes.heating_coil_energy_consumption[cte.HEATING][cte.HOUR])
+ tes.heating_coil_energy_consumption[cte.HEATING][cte.YEAR] = [
+ sum(tes.heating_coil_energy_consumption[cte.HEATING][cte.MONTH])]
+ self.results['Heating Demand (W)'] = demand
+ self.results['HP Heat Output (W)'] = q_hp
+ self.results['HP Source Temperature'] = source_temperature
+ self.results['HP Supply Temperature'] = t_sup_hp
+ self.results['HP COP'] = hp_cop
+ self.results['HP Electricity Consumption (W)'] = hp_electricity
+ self.results['Boiler Heat Output (W)'] = q_boiler
+ self.results['Boiler Power Consumption (W)'] = boiler_energy_consumption
+ self.results['Boiler Supply Temperature'] = t_sup_boiler
+ self.results['Boiler Fuel Consumption'] = boiler_fuel_consumption
+ self.results['TES Temperature'] = t_tank
+ self.results['Heating Coil heat input'] = q_coil
+ self.results['TES Charging Flow Rate (kg/s)'] = m_ch
+ self.results['TES Discharge Flow Rate (kg/s)'] = m_dis
+ self.results['Heating Loop Return Temperature'] = t_ret
+ self.results['Total Heating Power Consumption (W)'] = total_consumption
+ return self.results
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/heat_pump_characteristics.py b/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/heat_pump_characteristics.py
new file mode 100644
index 00000000..944c6094
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/heat_pump_characteristics.py
@@ -0,0 +1,54 @@
+import hub.helpers.constants as cte
+
+
+class HeatPump:
+ def __init__(self, hp, t_out):
+ self.hp = hp
+ self.t_out = t_out
+
+ def hp_source_temperature(self):
+ if self.hp.source_medium == cte.AIR:
+ self.hp.source_temperature = self.t_out
+ elif self.hp.source_medium == cte.GROUND:
+ average_air_temperature = sum(self.t_out) / len(self.t_out)
+ self.hp.source_temperature = [average_air_temperature + 10] * len(self.t_out)
+ elif self.hp.source_medium == cte.WATER:
+ self.hp.source_temperature = [15] * len(self.t_out)
+ return self.hp.source_temperature
+
+ def air_to_water_cop(self, source_temperature, inlet_water_temperature, mode=cte.HEATING):
+ cop_coefficient = 1
+ t_inlet_water_fahrenheit = 1.8 * inlet_water_temperature + 32
+ t_source_fahrenheit = 1.8 * source_temperature + 32
+ if mode == cte.HEATING:
+ if self.hp.heat_efficiency_curve is not None:
+ cop_curve_coefficients = [float(coefficient) for coefficient in self.hp.heat_efficiency_curve.coefficients]
+ cop_coefficient = (1 / (cop_curve_coefficients[0] +
+ cop_curve_coefficients[1] * t_inlet_water_fahrenheit +
+ cop_curve_coefficients[2] * t_inlet_water_fahrenheit ** 2 +
+ cop_curve_coefficients[3] * t_source_fahrenheit +
+ cop_curve_coefficients[4] * t_source_fahrenheit ** 2 +
+ cop_curve_coefficients[5] * t_inlet_water_fahrenheit * t_source_fahrenheit))
+ hp_efficiency = float(self.hp.heat_efficiency)
+ elif mode == cte.COOLING:
+ if self.hp.cooling_efficiency_curve is not None:
+ cop_curve_coefficients = [float(coefficient) for coefficient in self.hp.cooling_efficiency_curve.coefficients]
+ cop_coefficient = (1 / (cop_curve_coefficients[0] +
+ cop_curve_coefficients[1] * t_inlet_water_fahrenheit +
+ cop_curve_coefficients[2] * t_inlet_water_fahrenheit ** 2 +
+ cop_curve_coefficients[3] * t_source_fahrenheit +
+ cop_curve_coefficients[4] * t_source_fahrenheit ** 2 +
+ cop_curve_coefficients[5] * t_inlet_water_fahrenheit * t_source_fahrenheit)) / 3.41214
+ hp_efficiency = float(self.hp.cooling_efficiency)
+ else:
+ if self.hp.heat_efficiency_curve is not None:
+ cop_curve_coefficients = [float(coefficient) for coefficient in self.hp.heat_efficiency_curve.coefficients]
+ cop_coefficient = (cop_curve_coefficients[0] +
+ cop_curve_coefficients[1] * source_temperature +
+ cop_curve_coefficients[2] * source_temperature ** 2 +
+ cop_curve_coefficients[3] * inlet_water_temperature +
+ cop_curve_coefficients[4] * inlet_water_temperature ** 2 +
+ cop_curve_coefficients[5] * inlet_water_temperature * source_temperature)
+ hp_efficiency = float(self.hp.heat_efficiency)
+ hp_cop = cop_coefficient * hp_efficiency
+ return hp_cop
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/heat_pump_cooling.py b/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/heat_pump_cooling.py
new file mode 100644
index 00000000..cf838bdf
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/heat_pump_cooling.py
@@ -0,0 +1,89 @@
+import hub.helpers.constants as cte
+from hub.helpers.monthly_values import MonthlyValues
+from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.heat_pump_characteristics import HeatPump
+
+
+class HeatPumpCooling:
+ def __init__(self, hp, hourly_cooling_demand_joules, cooling_peak_load_watts, cutoff_temperature, outdoor_temperature,
+ dt=900):
+ self.hp = hp
+ self.cooling_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in hourly_cooling_demand_joules]
+ self.cooling_peak_load = cooling_peak_load_watts
+ self.cutoff_temperature = cutoff_temperature
+ self.dt = dt
+ self.results = {}
+ self.heat_pump_characteristics = HeatPump(self.hp, outdoor_temperature)
+
+ def simulation(self):
+ source_temperature_hourly = self.heat_pump_characteristics.hp_source_temperature()
+ cooling_efficiency = float(self.hp.cooling_efficiency)
+ number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
+ demand = [0] + [x for x in self.cooling_demand for _ in range(number_of_ts)]
+ source_temperature = [0] + [x for x in source_temperature_hourly for _ in range(number_of_ts)]
+ variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_cop"]
+ num_hours = len(demand)
+ variables = {name: [0] * num_hours for name in variable_names}
+ (t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_cop) = [variables[name] for name in variable_names]
+ t_ret[0] = self.cutoff_temperature
+
+ for i in range(1, len(demand)):
+ if demand[i] > 0.15 * self.cooling_peak_load:
+ m[i] = self.hp.nominal_cooling_output / (cte.WATER_HEAT_CAPACITY * 5)
+ if t_ret[i - 1] >= self.cutoff_temperature:
+ if demand[i] < 0.25 * self.cooling_peak_load:
+ q_hp[i] = 0.25 * self.hp.nominal_cooling_output
+ elif demand[i] < 0.5 * self.cooling_peak_load:
+ q_hp[i] = 0.5 * self.hp.nominal_cooling_output
+ else:
+ q_hp[i] = self.hp.nominal_cooling_output
+ t_sup_hp[i] = t_ret[i - 1] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
+ else:
+ q_hp[i] = 0
+ t_sup_hp[i] = t_ret[i - 1]
+ if m[i] == 0:
+ t_ret[i] = t_sup_hp[i]
+ else:
+ t_ret[i] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
+ else:
+ m[i] = 0
+ q_hp[i] = 0
+ t_sup_hp[i] = t_ret[i - 1]
+ t_ret[i] = t_ret[i - 1]
+ if q_hp[i] > 0:
+ if self.hp.source_medium == cte.AIR and self.hp.supply_medium == cte.WATER:
+ hp_cop[i] = self.heat_pump_characteristics.air_to_water_cop(source_temperature[i], t_ret[i],
+ mode=cte.COOLING)
+ hp_electricity[i] = q_hp[i] / hp_cop[i]
+ else:
+ hp_cop[i] = 0
+ hp_electricity[i] = 0
+ hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
+ hp_hourly = []
+ hp_supply_temperature_hourly = []
+ hp_sum = 0
+ for i in range(1, len(demand)):
+ hp_sum += hp_electricity_j[i]
+ if (i - 1) % number_of_ts == 0:
+ hp_hourly.append(hp_sum)
+ hp_supply_temperature_hourly.append(t_sup_hp[i])
+ hp_sum = 0
+ self.hp.cooling_supply_temperature = hp_supply_temperature_hourly
+ self.hp.energy_consumption[cte.COOLING] = {}
+ self.hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_hourly
+ self.hp.energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
+ self.hp.energy_consumption[cte.COOLING][cte.HOUR])
+ self.hp.energy_consumption[cte.COOLING][cte.YEAR] = [
+ sum(self.hp.energy_consumption[cte.COOLING][cte.MONTH])]
+ self.results['Cooling Demand (W)'] = demand
+ self.results['HP Cooling Output (W)'] = q_hp
+ self.results['HP Cooling Source Temperature'] = source_temperature
+ self.results['HP Cooling Supply Temperature'] = t_sup_hp
+ self.results['HP Cooling COP'] = hp_cop
+ self.results['HP Electricity Consumption'] = hp_electricity
+ self.results['Cooling Loop Flow Rate (kg/s)'] = m
+ self.results['Cooling Loop Return Temperature'] = t_ret
+ return self.results
+
+
+
+
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/thermal_storage_tank.py b/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/thermal_storage_tank.py
new file mode 100644
index 00000000..552e1807
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/hvac_dhw_systems_simulation_models/thermal_storage_tank.py
@@ -0,0 +1,47 @@
+import math
+
+import hub.helpers.constants as cte
+
+
+class StorageTank:
+ """
+ Calculation of the temperature inside a hot water storage tank in the next time step
+ """
+
+ def __init__(self, volume, height, material_layers, heating_coil_capacity, stratification_layer=1):
+ self.volume = volume
+ self.height = height
+ self.materials = material_layers
+ self.number_of_vertical_layers = stratification_layer
+ self.heating_coil_capacity = heating_coil_capacity
+
+ def heat_loss_coefficient(self):
+ r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
+ self.materials)
+ u_tot = 1 / r_tot
+ d = math.sqrt((4 * self.volume) / (math.pi * self.height))
+ a_side = math.pi * d * self.height
+ a_top = math.pi * d ** 2 / 4
+ if self.number_of_vertical_layers == 1:
+ ua = u_tot * (2 * a_top + a_side)
+ return ua
+ else:
+ ua_side = u_tot * a_side
+ ua_top_bottom = u_tot * (a_top + a_side)
+ return ua_side, ua_top_bottom
+
+
+ def calculate_space_heating_fully_mixed(self, charging_flow_rate, discharging_flow_rate, supply_temperature,
+ return_temperature,
+ current_tank_temperature, heat_generator_input, ambient_temperature, dt):
+ ua = self.heat_loss_coefficient()
+ t_tank = (current_tank_temperature +
+ (charging_flow_rate * (supply_temperature - current_tank_temperature) +
+ (ua * (ambient_temperature - current_tank_temperature)) / cte.WATER_HEAT_CAPACITY -
+ discharging_flow_rate * (current_tank_temperature - return_temperature) +
+ heat_generator_input / cte.WATER_HEAT_CAPACITY) * (dt / (cte.WATER_DENSITY * self.volume)))
+ return t_tank
+
+ def calculate_dhw_fully_mixed(self, charging_flow_rate, discharging_flow_rate, supply_temperature, return_temperature,
+ current_tank_temperature, heat_generator_input, ambient_temperature, dt):
+ pass
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/montreal_energy_system_archetype_modelling_factory.py b/energy_system_modelling_package/energy_system_modelling_factories/montreal_energy_system_archetype_modelling_factory.py
new file mode 100644
index 00000000..9fe1176b
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/montreal_energy_system_archetype_modelling_factory.py
@@ -0,0 +1,36 @@
+"""
+EnergySystemSizingSimulationFactory retrieve the energy system archetype sizing and simulation module
+SPDX - License - Identifier: LGPL - 3.0 - or -later
+Copyright © 2024 Concordia CERC group
+Project Coder Saeed Ranjbar saeed.ranjbar@mail.concordia.ca
+"""
+
+from energy_system_modelling_package.energy_system_modelling_factories.archetypes.montreal.archetype_cluster_1 import ArchetypeCluster1
+
+
+class MontrealEnergySystemArchetypesSimulationFactory:
+ """
+ EnergySystemsFactory class
+ """
+
+ def __init__(self, handler, building, output_path, csv_output=True):
+ self._output_path = output_path
+ self._handler = '_' + handler.lower()
+ self._building = building
+ self._csv_output = csv_output
+
+ def _archetype_cluster_1(self):
+ """
+ Enrich the city by using the sizing and simulation model developed for archetype13 of montreal_future_systems
+ """
+ dt = 900
+ ArchetypeCluster1(self._building, dt, self._output_path, self._csv_output).enrich_building()
+ self._building.level_of_detail.energy_systems = 2
+ self._building.level_of_detail.energy_systems = 2
+
+ def enrich(self):
+ """
+ Enrich the city given to the class using the class given handler
+ :return: None
+ """
+ getattr(self, self._handler, lambda: None)()
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/electricity_demand_calculator.py b/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/electricity_demand_calculator.py
new file mode 100644
index 00000000..175f367e
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/electricity_demand_calculator.py
@@ -0,0 +1,73 @@
+import hub.helpers.constants as cte
+class HourlyElectricityDemand:
+ def __init__(self, building):
+ self.building = building
+
+ def calculate(self):
+ hourly_electricity_consumption = []
+ energy_systems = self.building.energy_systems
+ appliance = self.building.appliances_electrical_demand[cte.HOUR]
+ lighting = self.building.lighting_electrical_demand[cte.HOUR]
+ elec_heating = 0
+ elec_cooling = 0
+ elec_dhw = 0
+ if cte.HEATING in self.building.energy_consumption_breakdown[cte.ELECTRICITY]:
+ elec_heating = 1
+ if cte.COOLING in self.building.energy_consumption_breakdown[cte.ELECTRICITY]:
+ elec_cooling = 1
+ if cte.DOMESTIC_HOT_WATER in self.building.energy_consumption_breakdown[cte.ELECTRICITY]:
+ elec_dhw = 1
+ heating = None
+ cooling = None
+ dhw = None
+
+ if elec_heating == 1:
+ for energy_system in energy_systems:
+ if cte.HEATING in energy_system.demand_types:
+ for generation_system in energy_system.generation_systems:
+ if generation_system.fuel_type == cte.ELECTRICITY:
+ if cte.HEATING in generation_system.energy_consumption:
+ heating = generation_system.energy_consumption[cte.HEATING][cte.HOUR]
+ else:
+ if len(energy_system.generation_systems) > 1:
+ heating = [x / 2 for x in self.building.heating_consumption[cte.HOUR]]
+ else:
+ heating = self.building.heating_consumption[cte.HOUR]
+
+ if elec_dhw == 1:
+ for energy_system in energy_systems:
+ if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
+ for generation_system in energy_system.generation_systems:
+ if generation_system.fuel_type == cte.ELECTRICITY:
+ if cte.DOMESTIC_HOT_WATER in generation_system.energy_consumption:
+ dhw = generation_system.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR]
+ else:
+ if len(energy_system.generation_systems) > 1:
+ dhw = [x / 2 for x in self.building.domestic_hot_water_consumption[cte.HOUR]]
+ else:
+ dhw = self.building.domestic_hot_water_consumption[cte.HOUR]
+
+ if elec_cooling == 1:
+ for energy_system in energy_systems:
+ if cte.COOLING in energy_system.demand_types:
+ for generation_system in energy_system.generation_systems:
+ if cte.COOLING in generation_system.energy_consumption:
+ cooling = generation_system.energy_consumption[cte.COOLING][cte.HOUR]
+ else:
+ if len(energy_system.generation_systems) > 1:
+ cooling = [x / 2 for x in self.building.cooling_consumption[cte.HOUR]]
+ else:
+ cooling = self.building.cooling_consumption[cte.HOUR]
+
+ for i in range(len(self.building.heating_demand[cte.HOUR])):
+ hourly = 0
+ hourly += appliance[i]
+ hourly += lighting[i]
+ if heating is not None:
+ hourly += heating[i]
+ if cooling is not None:
+ hourly += cooling[i]
+ if dhw is not None:
+ hourly += dhw[i]
+ hourly_electricity_consumption.append(hourly)
+ return hourly_electricity_consumption
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/pv_feasibility.py b/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/pv_feasibility.py
new file mode 100644
index 00000000..9278b16c
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/pv_feasibility.py
@@ -0,0 +1,37 @@
+from pathlib import Path
+import subprocess
+from hub.imports.geometry_factory import GeometryFactory
+from building_modelling.geojson_creator import process_geojson
+from hub.helpers.dictionaries import Dictionaries
+from hub.imports.weather_factory import WeatherFactory
+from hub.imports.results_factory import ResultFactory
+from hub.exports.exports_factory import ExportsFactory
+
+
+def pv_feasibility(current_x, current_y, current_diff, selected_buildings):
+ input_files_path = (Path(__file__).parent.parent.parent.parent / 'input_files')
+ output_path = (Path(__file__).parent.parent.parent.parent / 'out_files').resolve()
+ sra_output_path = output_path / 'sra_outputs' / 'extended_city_sra_outputs'
+ sra_output_path.mkdir(parents=True, exist_ok=True)
+ new_diff = current_diff * 5
+ geojson_file = process_geojson(x=current_x, y=current_y, diff=new_diff, expansion=True)
+ file_path = input_files_path / 'output_buildings.geojson'
+ city = GeometryFactory('geojson',
+ path=file_path,
+ height_field='height',
+ year_of_construction_field='year_of_construction',
+ function_field='function',
+ function_to_hub=Dictionaries().montreal_function_to_hub_function).city
+ WeatherFactory('epw', city).enrich()
+ ExportsFactory('sra', city, sra_output_path).export()
+ sra_path = (sra_output_path / f'{city.name}_sra.xml').resolve()
+ subprocess.run(['sra', str(sra_path)])
+ ResultFactory('sra', city, sra_output_path).enrich()
+ for selected_building in selected_buildings:
+ for building in city.buildings:
+ if selected_building.name == building.name:
+ selected_building.roofs[0].global_irradiance = building.roofs[0].global_irradiance
+
+
+
+
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/pv_model.py b/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/pv_model.py
new file mode 100644
index 00000000..2714befa
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/pv_model.py
@@ -0,0 +1,42 @@
+import math
+import hub.helpers.constants as cte
+from hub.helpers.monthly_values import MonthlyValues
+
+
+class PVModel:
+ def __init__(self, pv, hourly_electricity_demand_joules, solar_radiation, installed_pv_area, model_type, ns=None,
+ np=None):
+ self.pv = pv
+ self.hourly_electricity_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in hourly_electricity_demand_joules]
+ self.solar_radiation = solar_radiation
+ self.installed_pv_area = installed_pv_area
+ self._model_type = '_' + model_type.lower()
+ self.ns = ns
+ self.np = np
+ self.results = {}
+
+ def fixed_efficiency(self):
+ module_efficiency = float(self.pv.electricity_efficiency)
+ variable_names = ["pv_output", "import", "export", "self_sufficiency_ratio"]
+ variables = {name: [0] * len(self.hourly_electricity_demand) for name in variable_names}
+ (pv_out, grid_import, grid_export, self_sufficiency_ratio) = [variables[name] for name in variable_names]
+ for i in range(len(self.hourly_electricity_demand)):
+ pv_out[i] = module_efficiency * self.installed_pv_area * self.solar_radiation[i] / cte.WATTS_HOUR_TO_JULES
+ if pv_out[i] < self.hourly_electricity_demand[i]:
+ grid_import[i] = self.hourly_electricity_demand[i] - pv_out[i]
+ else:
+ grid_export[i] = pv_out[i] - self.hourly_electricity_demand[i]
+ self_sufficiency_ratio[i] = pv_out[i] / self.hourly_electricity_demand[i]
+ self.results['Electricity Demand (W)'] = self.hourly_electricity_demand
+ self.results['PV Output (W)'] = pv_out
+ self.results['Imported from Grid (W)'] = grid_import
+ self.results['Exported to Grid (W)'] = grid_export
+ self.results['Self Sufficiency Ratio'] = self_sufficiency_ratio
+ return self.results
+
+ def enrich(self):
+ """
+ Enrich the city given to the class using the class given handler
+ :return: None
+ """
+ return getattr(self, self._model_type, lambda: None)()
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/pv_sizing.py b/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/pv_sizing.py
new file mode 100644
index 00000000..b53ba465
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/pv_sizing.py
@@ -0,0 +1,70 @@
+import math
+import hub.helpers.constants as cte
+from energy_system_modelling_package.energy_system_modelling_factories.pv_assessment.solar_angles import CitySolarAngles
+from energy_system_modelling_package.energy_system_modelling_factories.pv_assessment.radiation_tilted import RadiationTilted
+
+
+class PVSizing(CitySolarAngles):
+ def __init__(self, city, tilt_angle, surface_azimuth=180, maintenance_factor=0.1, mechanical_equipment_factor=0.3,
+ orientation_factor=0.1, system_type='rooftop'):
+ super().__init__(location_latitude=city.latitude,
+ location_longitude=city.longitude,
+ tilt_angle=tilt_angle,
+ surface_azimuth_angle=surface_azimuth)
+ self.city = city
+ self.maintenance_factor = maintenance_factor
+ self.mechanical_equipment_factor = mechanical_equipment_factor
+ self.orientation_factor = orientation_factor
+ self.angles = self.calculate
+ self.system_type = system_type
+
+ def rooftop_sizing(self):
+ results = {}
+ # Available Roof Area
+ for building in self.city.buildings:
+ for energy_system in building.energy_systems:
+ for generation_system in energy_system.generation_systems:
+ if generation_system.system_type == cte.PHOTOVOLTAIC:
+ module_width = float(generation_system.width)
+ module_height = float(generation_system.height)
+ roof_area = 0
+ for roof in building.roofs:
+ roof_area += roof.perimeter_area
+ pv_module_area = module_width * module_height
+ available_roof = ((self.maintenance_factor + self.orientation_factor + self.mechanical_equipment_factor) *
+ roof_area)
+ # Inter-Row Spacing
+ winter_solstice = self.angles[(self.angles['AST'].dt.month == 12) &
+ (self.angles['AST'].dt.day == 21) &
+ (self.angles['AST'].dt.hour == 12)]
+ solar_altitude = winter_solstice['solar altitude'].values[0]
+ solar_azimuth = winter_solstice['solar azimuth'].values[0]
+ distance = ((module_height * abs(math.cos(math.radians(solar_azimuth)))) /
+ math.tan(math.radians(solar_altitude)))
+ distance = float(format(distance, '.1f'))
+ # Calculation of the number of panels
+ space_dimension = math.sqrt(available_roof)
+ space_dimension = float(format(space_dimension, '.2f'))
+ panels_per_row = math.ceil(space_dimension / module_width)
+ number_of_rows = math.ceil(space_dimension / distance)
+ total_number_of_panels = panels_per_row * number_of_rows
+ total_pv_area = panels_per_row * number_of_rows * pv_module_area
+ building.roofs[0].installed_solar_collector_area = total_pv_area
+ results[f'Building {building.name}'] = {'total_roof_area': roof_area,
+ 'PV dedicated area': available_roof,
+ 'total_pv_area': total_pv_area,
+ 'total_number_of_panels': total_number_of_panels,
+ 'number_of_rows': number_of_rows,
+ 'panels_per_row': panels_per_row}
+ return results
+
+ def rooftop_tilted_radiation(self):
+ for building in self.city.buildings:
+ RadiationTilted(building=building,
+ solar_angles=self.angles,
+ tilt_angle=self.tilt_angle,
+ ghi=building.roofs[0].global_irradiance[cte.HOUR],
+ ).enrich()
+
+ def facade_sizing(self):
+ pass
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/pv_sizing_and_simulation.py b/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/pv_sizing_and_simulation.py
new file mode 100644
index 00000000..fc26fe7e
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/pv_sizing_and_simulation.py
@@ -0,0 +1,59 @@
+import math
+
+from energy_system_modelling_package.energy_system_modelling_factories.pv_assessment.radiation_tilted import RadiationTilted
+import hub.helpers.constants as cte
+from hub.helpers.monthly_values import MonthlyValues
+
+
+class PVSizingSimulation(RadiationTilted):
+ def __init__(self, building, solar_angles, tilt_angle, module_height, module_width, ghi):
+ super().__init__(building, solar_angles, tilt_angle, ghi)
+ self.module_height = module_height
+ self.module_width = module_width
+ self.total_number_of_panels = 0
+ self.enrich()
+
+ def available_space(self):
+ roof_area = self.building.roofs[0].perimeter_area
+ maintenance_factor = 0.1
+ orientation_factor = 0.2
+ if self.building.function == cte.RESIDENTIAL:
+ mechanical_equipment_factor = 0.2
+ else:
+ mechanical_equipment_factor = 0.3
+ available_roof = (maintenance_factor + orientation_factor + mechanical_equipment_factor) * roof_area
+ return available_roof
+
+ def inter_row_spacing(self):
+ winter_solstice = self.df[(self.df['AST'].dt.month == 12) &
+ (self.df['AST'].dt.day == 21) &
+ (self.df['AST'].dt.hour == 12)]
+ solar_altitude = winter_solstice['solar altitude'].values[0]
+ solar_azimuth = winter_solstice['solar azimuth'].values[0]
+ distance = ((self.module_height * abs(math.cos(math.radians(solar_azimuth)))) /
+ math.tan(math.radians(solar_altitude)))
+ distance = float(format(distance, '.1f'))
+ return distance
+
+ def number_of_panels(self, available_roof, inter_row_distance):
+ space_dimension = math.sqrt(available_roof)
+ space_dimension = float(format(space_dimension, '.2f'))
+ panels_per_row = math.ceil(space_dimension / self.module_width)
+ number_of_rows = math.ceil(space_dimension / inter_row_distance)
+ self.total_number_of_panels = panels_per_row * number_of_rows
+ return panels_per_row, number_of_rows
+
+ def pv_output_constant_efficiency(self):
+ radiation = self.total_radiation_tilted
+ pv_module_area = self.module_width * self.module_height
+ available_roof = self.available_space()
+ inter_row_spacing = self.inter_row_spacing()
+ self.number_of_panels(available_roof, inter_row_spacing)
+ self.building.roofs[0].installed_solar_collector_area = pv_module_area * self.total_number_of_panels
+ system_efficiency = 0.2
+ pv_hourly_production = [x * system_efficiency * self.total_number_of_panels * pv_module_area *
+ cte.WATTS_HOUR_TO_JULES for x in radiation]
+ self.building.onsite_electrical_production[cte.HOUR] = pv_hourly_production
+ self.building.onsite_electrical_production[cte.MONTH] = (
+ MonthlyValues.get_total_month(self.building.onsite_electrical_production[cte.HOUR]))
+ self.building.onsite_electrical_production[cte.YEAR] = [sum(self.building.onsite_electrical_production[cte.MONTH])]
\ No newline at end of file
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/radiation_tilted.py b/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/radiation_tilted.py
new file mode 100644
index 00000000..31bd5636
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/radiation_tilted.py
@@ -0,0 +1,110 @@
+import pandas as pd
+import math
+import hub.helpers.constants as cte
+from hub.helpers.monthly_values import MonthlyValues
+
+
+class RadiationTilted:
+ def __init__(self, building, solar_angles, tilt_angle, ghi, solar_constant=1366.1, maximum_clearness_index=1,
+ min_cos_zenith=0.065, maximum_zenith_angle=87):
+ self.building = building
+ self.ghi = ghi
+ self.tilt_angle = tilt_angle
+ self.zeniths = solar_angles['zenith'].tolist()[:-1]
+ self.incidents = solar_angles['incident angle'].tolist()[:-1]
+ self.date_time = solar_angles['DateTime'].tolist()[:-1]
+ self.ast = solar_angles['AST'].tolist()[:-1]
+ self.solar_azimuth = solar_angles['solar azimuth'].tolist()[:-1]
+ self.solar_altitude = solar_angles['solar altitude'].tolist()[:-1]
+ data = {'DateTime': self.date_time, 'AST': self.ast, 'solar altitude': self.solar_altitude, 'zenith': self.zeniths,
+ 'solar azimuth': self.solar_azimuth, 'incident angle': self.incidents, 'ghi': self.ghi}
+ self.df = pd.DataFrame(data)
+ self.df['DateTime'] = pd.to_datetime(self.df['DateTime'])
+ self.df['AST'] = pd.to_datetime(self.df['AST'])
+ self.df.set_index('DateTime', inplace=True)
+ self.solar_constant = solar_constant
+ self.maximum_clearness_index = maximum_clearness_index
+ self.min_cos_zenith = min_cos_zenith
+ self.maximum_zenith_angle = maximum_zenith_angle
+ self.i_on = []
+ self.i_oh = []
+ self.k_t = []
+ self.fraction_diffuse = []
+ self.diffuse_horizontal = []
+ self.beam_horizontal = []
+ self.dni = []
+ self.beam_tilted = []
+ self.diffuse_tilted = []
+ self.total_radiation_tilted = []
+ self.calculate()
+
+ def dni_extra(self):
+ for i in range(len(self.df)):
+ self.i_on.append(self.solar_constant * (1 + 0.033 * math.cos(math.radians(360 * self.df.index.dayofyear[i] / 365))))
+
+ self.df['extraterrestrial normal radiation (Wh/m2)'] = self.i_on
+
+ def clearness_index(self):
+ for i in range(len(self.df)):
+ self.i_oh.append(self.i_on[i] * max(math.cos(math.radians(self.zeniths[i])), self.min_cos_zenith))
+ self.k_t.append(self.ghi[i] / self.i_oh[i])
+ self.k_t[i] = max(0, self.k_t[i])
+ self.k_t[i] = min(self.maximum_clearness_index, self.k_t[i])
+ self.df['extraterrestrial radiation on horizontal (Wh/m2)'] = self.i_oh
+ self.df['clearness index'] = self.k_t
+
+ def diffuse_fraction(self):
+ for i in range(len(self.df)):
+ if self.k_t[i] <= 0.22:
+ self.fraction_diffuse.append(1 - 0.09 * self.k_t[i])
+ elif self.k_t[i] <= 0.8:
+ self.fraction_diffuse.append(0.9511 - 0.1604 * self.k_t[i] + 4.388 * self.k_t[i] ** 2 -
+ 16.638 * self.k_t[i] ** 3 + 12.336 * self.k_t[i] ** 4)
+ else:
+ self.fraction_diffuse.append(0.165)
+ if self.zeniths[i] > self.maximum_zenith_angle:
+ self.fraction_diffuse[i] = 1
+
+ self.df['diffuse fraction'] = self.fraction_diffuse
+
+ def radiation_components_horizontal(self):
+ for i in range(len(self.df)):
+ self.diffuse_horizontal.append(self.ghi[i] * self.fraction_diffuse[i])
+ self.beam_horizontal.append(self.ghi[i] - self.diffuse_horizontal[i])
+ self.dni.append((self.ghi[i] - self.diffuse_horizontal[i]) / math.cos(math.radians(self.zeniths[i])))
+ if self.zeniths[i] > self.maximum_zenith_angle or self.dni[i] < 0:
+ self.dni[i] = 0
+
+ self.df['diffuse horizontal (Wh/m2)'] = self.diffuse_horizontal
+ self.df['dni (Wh/m2)'] = self.dni
+ self.df['beam horizontal (Wh/m2)'] = self.beam_horizontal
+
+ def radiation_components_tilted(self):
+ for i in range(len(self.df)):
+ self.beam_tilted.append(self.dni[i] * math.cos(math.radians(self.incidents[i])))
+ self.beam_tilted[i] = max(self.beam_tilted[i], 0)
+ self.diffuse_tilted.append(self.diffuse_horizontal[i] * ((1 + math.cos(math.radians(self.tilt_angle))) / 2))
+ self.total_radiation_tilted.append(self.beam_tilted[i] + self.diffuse_tilted[i])
+
+ self.df['beam tilted (Wh/m2)'] = self.beam_tilted
+ self.df['diffuse tilted (Wh/m2)'] = self.diffuse_tilted
+ self.df['total radiation tilted (Wh/m2)'] = self.total_radiation_tilted
+
+ def calculate(self) -> pd.DataFrame:
+ self.dni_extra()
+ self.clearness_index()
+ self.diffuse_fraction()
+ self.radiation_components_horizontal()
+ self.radiation_components_tilted()
+ return self.df
+
+ def enrich(self):
+ tilted_radiation = self.total_radiation_tilted
+ self.building.roofs[0].global_irradiance_tilted[cte.HOUR] = tilted_radiation
+ self.building.roofs[0].global_irradiance_tilted[cte.MONTH] = (
+ MonthlyValues.get_total_month(self.building.roofs[0].global_irradiance_tilted[cte.HOUR]))
+ self.building.roofs[0].global_irradiance_tilted[cte.YEAR] = \
+ [sum(self.building.roofs[0].global_irradiance_tilted[cte.MONTH])]
+
+
+
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/solar_angles.py b/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/solar_angles.py
new file mode 100644
index 00000000..560bd27c
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/pv_assessment/solar_angles.py
@@ -0,0 +1,145 @@
+import math
+import pandas as pd
+from datetime import datetime
+from pathlib import Path
+
+
+class CitySolarAngles:
+ def __init__(self, location_latitude, location_longitude, tilt_angle, surface_azimuth_angle,
+ standard_meridian=-75):
+ self.location_latitude = location_latitude
+ self.location_longitude = location_longitude
+ self.location_latitude_rad = math.radians(location_latitude)
+ self.surface_azimuth_angle = surface_azimuth_angle
+ self.surface_azimuth_rad = math.radians(surface_azimuth_angle)
+ self.tilt_angle = tilt_angle
+ self.tilt_angle_rad = math.radians(tilt_angle)
+ self.standard_meridian = standard_meridian
+ self.longitude_correction = (location_longitude - standard_meridian) * 4
+ self.timezone = 'Etc/GMT+5'
+
+ self.eot = []
+ self.ast = []
+ self.hour_angles = []
+ self.declinations = []
+ self.solar_altitudes = []
+ self.solar_azimuths = []
+ self.zeniths = []
+ self.incidents = []
+ self.beam_tilted = []
+ self.factor = []
+ self.times = pd.date_range(start='2023-01-01', end='2024-01-01', freq='h', tz=self.timezone)
+ self.df = pd.DataFrame(index=self.times)
+ self.day_of_year = self.df.index.dayofyear
+
+ def solar_time(self, datetime_val, day_of_year):
+ b = (day_of_year - 81) * 2 * math.pi / 364
+ eot = 9.87 * math.sin(2 * b) - 7.53 * math.cos(b) - 1.5 * math.sin(b)
+ self.eot.append(eot)
+
+ # Calculate Local Solar Time (LST)
+ lst_hour = datetime_val.hour
+ lst_minute = datetime_val.minute
+ lst_second = datetime_val.second
+ lst = lst_hour + lst_minute / 60 + lst_second / 3600
+
+ # Calculate Apparent Solar Time (AST) in decimal hours
+ ast_decimal = lst + eot / 60 + self.longitude_correction / 60
+ ast_hours = int(ast_decimal)
+ ast_minutes = round((ast_decimal - ast_hours) * 60)
+
+ # Ensure ast_minutes is within valid range
+ if ast_minutes == 60:
+ ast_hours += 1
+ ast_minutes = 0
+ elif ast_minutes < 0:
+ ast_minutes = 0
+ ast_time = datetime(year=datetime_val.year, month=datetime_val.month, day=datetime_val.day,
+ hour=ast_hours, minute=ast_minutes)
+ self.ast.append(ast_time)
+ return ast_time
+
+ def declination_angle(self, day_of_year):
+ declination = 23.45 * math.sin(math.radians(360 / 365 * (284 + day_of_year)))
+ declination_radian = math.radians(declination)
+ self.declinations.append(declination)
+ return declination_radian
+
+ def hour_angle(self, ast_time):
+ hour_angle = ((ast_time.hour * 60 + ast_time.minute) - 720) / 4
+ hour_angle_radian = math.radians(hour_angle)
+ self.hour_angles.append(hour_angle)
+ return hour_angle_radian
+
+ def solar_altitude(self, declination_radian, hour_angle_radian):
+ solar_altitude_radians = math.asin(math.cos(self.location_latitude_rad) * math.cos(declination_radian) *
+ math.cos(hour_angle_radian) + math.sin(self.location_latitude_rad) *
+ math.sin(declination_radian))
+ solar_altitude = math.degrees(solar_altitude_radians)
+ self.solar_altitudes.append(solar_altitude)
+ return solar_altitude_radians
+
+ def zenith(self, solar_altitude_radians):
+ solar_altitude = math.degrees(solar_altitude_radians)
+ zenith_degree = 90 - solar_altitude
+ zenith_radian = math.radians(zenith_degree)
+ self.zeniths.append(zenith_degree)
+ return zenith_radian
+
+ def solar_azimuth_analytical(self, hourangle, declination, zenith):
+ numer = (math.cos(zenith) * math.sin(self.location_latitude_rad) - math.sin(declination))
+ denom = (math.sin(zenith) * math.cos(self.location_latitude_rad))
+ if math.isclose(denom, 0.0, abs_tol=1e-8):
+ cos_azi = 1.0
+ else:
+ cos_azi = numer / denom
+
+ cos_azi = max(-1.0, min(1.0, cos_azi))
+
+ sign_ha = math.copysign(1, hourangle)
+ solar_azimuth_radians = sign_ha * math.acos(cos_azi) + math.pi
+ solar_azimuth_degrees = math.degrees(solar_azimuth_radians)
+ self.solar_azimuths.append(solar_azimuth_degrees)
+ return solar_azimuth_radians
+
+ def incident_angle(self, solar_altitude_radians, solar_azimuth_radians):
+ incident_radian = math.acos(math.cos(solar_altitude_radians) *
+ math.cos(abs(solar_azimuth_radians - self.surface_azimuth_rad)) *
+ math.sin(self.tilt_angle_rad) + math.sin(solar_altitude_radians) *
+ math.cos(self.tilt_angle_rad))
+ incident_angle_degrees = math.degrees(incident_radian)
+ self.incidents.append(incident_angle_degrees)
+ return incident_radian
+
+ @property
+ def calculate(self) -> pd.DataFrame:
+ for i in range(len(self.times)):
+ datetime_val = self.times[i]
+ day_of_year = self.day_of_year[i]
+ declination_radians = self.declination_angle(day_of_year)
+ ast_time = self.solar_time(datetime_val, day_of_year)
+ hour_angle_radians = self.hour_angle(ast_time)
+ solar_altitude_radians = self.solar_altitude(declination_radians, hour_angle_radians)
+ zenith_radians = self.zenith(solar_altitude_radians)
+ solar_azimuth_radians = self.solar_azimuth_analytical(hour_angle_radians, declination_radians, zenith_radians)
+ incident_angle_radian = self.incident_angle(solar_altitude_radians, solar_azimuth_radians)
+
+ self.df['DateTime'] = self.times
+ self.df['AST'] = self.ast
+ self.df['hour angle'] = self.hour_angles
+ self.df['eot'] = self.eot
+ self.df['declination angle'] = self.declinations
+ self.df['solar altitude'] = self.solar_altitudes
+ self.df['zenith'] = self.zeniths
+ self.df['solar azimuth'] = self.solar_azimuths
+ self.df['incident angle'] = self.incidents
+
+ return self.df
+
+
+
+
+
+
+
+
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/genetic_algorithm/individual.py b/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/genetic_algorithm/individual.py
new file mode 100644
index 00000000..5a25e72e
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/genetic_algorithm/individual.py
@@ -0,0 +1,470 @@
+import math
+import random
+from hub.helpers.dictionaries import Dictionaries
+from hub.catalog_factories.costs_catalog_factory import CostsCatalogFactory
+import hub.helpers.constants as cte
+from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.domestic_hot_water_heat_pump_with_tes import \
+ DomesticHotWaterHeatPumpTes
+from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.heat_pump_boiler_tes_heating import \
+ HeatPumpBoilerTesHeating
+import numpy_financial as npf
+
+
+class Individual:
+ def __init__(self, building, energy_system, design_period_energy_demands, optimization_scenario,
+ heating_design_load=None, cooling_design_load=None, dt=900, fuel_price_index=0.05,
+ electricity_tariff_type='fixed', consumer_price_index=0.04, interest_rate=0.04,
+ discount_rate=0.03, percentage_credit=0, credit_years=15):
+ """
+ :param building: building object
+ :param energy_system: energy system to be optimized
+ :param design_period_energy_demands: A dictionary of design period heating, cooling and dhw demands. Design period
+ is the day with the highest total demand and the two days before and after it
+ :param optimization_scenario: a string indicating the objective function from minimization of cost,
+ energy consumption, and both together
+ :param heating_design_load: heating design load in W
+ :param cooling_design_load: cooling design load in W
+ :param dt the time step size used for simulations
+ :param fuel_price_index the price increase index of all fuels. A single value is used for all fuels.
+ :param electricity_tariff_type the electricity tariff type between 'fixed' and 'variable' for economic optimization
+ :param consumer_price_index
+ """
+ self.building = building
+ self.energy_system = energy_system
+ self.design_period_energy_demands = design_period_energy_demands
+ self.demand_types = energy_system.demand_types
+ self.optimization_scenario = optimization_scenario
+ self.heating_design_load = heating_design_load
+ self.cooling_design_load = cooling_design_load
+ self.available_space = building.volume / building.storeys_above_ground
+ self.dt = dt
+ self.fuel_price_index = fuel_price_index
+ self.electricity_tariff_type = electricity_tariff_type
+ self.consumer_price_index = consumer_price_index
+ self.interest_rate = interest_rate
+ self.discount_rate = discount_rate
+ self.credit_years = credit_years
+ self.percentage_credit = percentage_credit
+ self.costs = self.costs_archetype()
+ self.feasibility = True
+ self.fitness_score = 0
+ self.individual = {}
+
+ def system_components(self):
+ """
+ Extracts system components (generation and storage) for a given energy system.
+ :return: Dictionary of system components.
+ """
+ self.individual['Generation Components'] = []
+ self.individual['Energy Storage Components'] = []
+ self.individual['End of Life Cost'] = self.costs.end_of_life_cost
+ for generation_component in self.energy_system.generation_systems:
+ investment_cost, reposition_cost, lifetime = self.unit_investment_cost('Generation',
+ generation_component.system_type)
+ maintenance_cost = self.unit_maintenance_cost(generation_component)
+ if generation_component.system_type == cte.PHOTOVOLTAIC:
+ heating_capacity = None
+ cooling_capacity = None
+ heat_efficiency = None
+ cooling_efficiency = None
+ unit_fuel_cost = 0
+ else:
+ heating_capacity = 0
+ cooling_capacity = 0
+ heat_efficiency = generation_component.heat_efficiency
+ cooling_efficiency = generation_component.cooling_efficiency
+ unit_fuel_cost = self.fuel_cost_per_kwh(generation_component.fuel_type, 'fixed')
+ self.individual['Generation Components'].append({
+ 'type': generation_component.system_type,
+ 'heating_capacity': heating_capacity,
+ 'cooling_capacity': cooling_capacity,
+ 'electricity_capacity': 0,
+ 'nominal_heating_efficiency': heat_efficiency,
+ 'nominal_cooling_efficiency': cooling_efficiency,
+ 'nominal_electricity_efficiency': generation_component.electricity_efficiency,
+ 'fuel_type': generation_component.fuel_type,
+ 'unit_investment_cost': investment_cost,
+ 'unit_reposition_cost': reposition_cost,
+ 'unit_fuel_cost(CAD/kWh)': unit_fuel_cost,
+ 'unit_maintenance_cost': maintenance_cost,
+ 'lifetime': lifetime
+ })
+ if generation_component.energy_storage_systems is not None:
+ for energy_storage_system in generation_component.energy_storage_systems:
+ investment_cost, reposition_cost, lifetime = (
+ self.unit_investment_cost('Storage',
+ f'{energy_storage_system.type_energy_stored}_storage'))
+ if energy_storage_system.type_energy_stored == cte.THERMAL:
+ heating_coil_capacity = energy_storage_system.heating_coil_capacity
+ heating_coil_fuel_cost = self.fuel_cost_per_kwh(f'{cte.ELECTRICITY}', 'fixed')
+ volume = 0
+ capacity = None
+ else:
+ heating_coil_capacity = None
+ heating_coil_fuel_cost = None
+ volume = None
+ capacity = 0
+ self.individual['Energy Storage Components'].append(
+ {'type': f'{energy_storage_system.type_energy_stored}_storage',
+ 'capacity': capacity,
+ 'volume': volume,
+ 'heating_coil_capacity': heating_coil_capacity,
+ 'unit_investment_cost': investment_cost,
+ 'unit_reposition_cost': reposition_cost,
+ 'heating_coil_fuel_cost': heating_coil_fuel_cost,
+ 'unit_maintenance_cost': 0,
+ 'lifetime': lifetime
+ })
+
+ def initialization(self):
+ """
+ Assigns initial sizes to generation and storage components based on heating and cooling design loads and
+ available space in the building.
+ :return:
+ """
+ self.system_components()
+ generation_components = self.individual['Generation Components']
+ storage_components = self.individual['Energy Storage Components']
+ for generation_component in generation_components:
+ if generation_component[
+ 'nominal_heating_efficiency'] is not None and cte.HEATING or cte.DOMESTIC_HOT_WATER in self.demand_types:
+ if self.heating_design_load is not None:
+ generation_component['heating_capacity'] = random.uniform(0, self.heating_design_load)
+ else:
+ if cte.HEATING in self.demand_types:
+ generation_component['heating_capacity'] = random.uniform(0, max(
+ self.design_period_energy_demands[cte.HEATING]['demands']) / cte.WATTS_HOUR_TO_JULES)
+ else:
+ generation_component['heating_capacity'] = random.uniform(0, max(
+ self.design_period_energy_demands[cte.DOMESTIC_HOT_WATER]['demands']) / cte.WATTS_HOUR_TO_JULES)
+ else:
+ generation_component['heating_capacity'] = None
+ if generation_component['nominal_cooling_efficiency'] is not None and cte.COOLING in self.demand_types:
+ if self.cooling_design_load is not None:
+ generation_component['cooling_capacity'] = random.uniform(0, self.cooling_design_load)
+ else:
+ generation_component['cooling_capacity'] = random.uniform(0, max(
+ self.design_period_energy_demands[cte.COOLING]['demands']) / cte.WATTS_HOUR_TO_JULES)
+ else:
+ generation_component['cooling_capacity'] = None
+ if generation_component['nominal_electricity_efficiency'] is None:
+ generation_component['electricity_capacity'] = None
+ for storage_component in storage_components:
+ if storage_component['type'] == f'{cte.THERMAL}_storage':
+ storage_component['volume'] = random.uniform(0, 0.01 * self.available_space)
+ if storage_component['heating_coil_capacity'] is not None:
+ if self.heating_design_load is not None:
+ storage_component['heating_coil_capacity'] = random.uniform(0, self.heating_design_load)
+ else:
+ if cte.HEATING in self.demand_types:
+ storage_component['heating_coil_capacity'] = random.uniform(0, max(
+ self.design_period_energy_demands[cte.HEATING]['demands']) / cte.WATTS_HOUR_TO_JULES)
+ else:
+ storage_component['heating_coil_capacity'] = random.uniform(0, max(
+ self.design_period_energy_demands[cte.DOMESTIC_HOT_WATER]['demands']) / cte.WATTS_HOUR_TO_JULES)
+
+ def score_evaluation(self):
+ self.system_simulation()
+ self.individual['feasible'] = self.feasibility
+ lcc = 0
+ total_energy_consumption = 0
+ if self.feasibility:
+ if 'cost' in self.optimization_scenario:
+ investment_cost = 0
+ operation_cost_year_0 = 0
+ maintenance_cost_year_0 = 0
+ for generation_system in self.individual['Generation Components']:
+ heating_capacity = 0 if generation_system['heating_capacity'] is None else generation_system[
+ 'heating_capacity']
+ cooling_capacity = 0 if generation_system['cooling_capacity'] is None else generation_system[
+ 'cooling_capacity']
+ capacity = max(heating_capacity, cooling_capacity)
+ investment_cost += capacity * generation_system['unit_investment_cost'] / 1000
+ maintenance_cost_year_0 += capacity * generation_system['unit_maintenance_cost'] / 1000
+ operation_cost_year_0 += (generation_system['total_energy_consumption(kWh)'] *
+ generation_system['unit_fuel_cost(CAD/kWh)'])
+ for storage_system in self.individual['Energy Storage Components']:
+ if cte.THERMAL in storage_system['type']:
+ investment_cost += storage_system['volume'] * storage_system['unit_investment_cost']
+ if storage_system['heating_coil_capacity'] is not None:
+ operation_cost_year_0 += (storage_system['total_energy_consumption(kWh)'] *
+ storage_system['heating_coil_fuel_cost'])
+ lcc = self.life_cycle_cost_calculation(investment_cost=investment_cost,
+ operation_cost_year_0=operation_cost_year_0,
+ maintenance_cost_year_0=maintenance_cost_year_0)
+ self.individual['lcc'] = lcc
+ if 'energy_consumption' in self.optimization_scenario:
+ total_energy_consumption = 0
+ for generation_system in self.individual['Generation Components']:
+ total_energy_consumption += generation_system['total_energy_consumption(kWh)']
+ for storage_system in self.individual['Energy Storage Components']:
+ if cte.THERMAL in storage_system['type'] and storage_system['heating_coil_capacity'] is not None:
+ total_energy_consumption += storage_system['total_energy_consumption(kWh)']
+ self.individual['total_energy_consumption'] = total_energy_consumption
+ # Fitness score based on the optimization scenario
+ if self.optimization_scenario == 'cost':
+ self.fitness_score = lcc
+ self.individual['fitness_score'] = lcc
+ elif self.optimization_scenario == 'energy_consumption':
+ self.fitness_score = total_energy_consumption
+ self.individual['fitness_score'] = total_energy_consumption
+ elif self.optimization_scenario == 'cost_energy_consumption' or self.optimization_scenario == 'energy_consumption_cost':
+ self.fitness_score = (lcc, total_energy_consumption)
+ self.individual['fitness_score'] = (lcc, total_energy_consumption)
+ else:
+ lcc = float('inf')
+ total_energy_consumption = float('inf')
+ self.individual['lcc'] = lcc
+ self.individual['total_energy_consumption'] = total_energy_consumption
+ if self.optimization_scenario == 'cost_energy_consumption' or self.optimization_scenario == 'energy_consumption_cost':
+ self.individual['fitness_score'] = (float('inf'), float('inf'))
+ self.fitness_score = (float('inf'), float('inf'))
+ else:
+ self.individual['fitness_score'] = float('inf')
+ self.fitness_score = float('inf')
+
+ def system_simulation(self):
+ """
+ The method to run the energy system model using the existing models in the energy_system_modelling_package.
+ Based on cluster id and demands, model is imported and run.
+ :return: dictionary of results
+ """
+ if self.building.energy_systems_archetype_cluster_id == '1':
+ if cte.HEATING in self.demand_types:
+ boiler = self.energy_system.generation_systems[0]
+ boiler.nominal_heat_output = self.individual['Generation Components'][0]['heating_capacity']
+ hp = self.energy_system.generation_systems[1]
+ hp.nominal_heat_output = self.individual['Generation Components'][1]['heating_capacity']
+ tes = self.energy_system.generation_systems[0].energy_storage_systems[0]
+ tes.volume = self.individual['Energy Storage Components'][0]['volume']
+ tes.height = self.building.average_storey_height - 1
+ tes.heating_coil_capacity = self.individual['Energy Storage Components'][0]['heating_coil_capacity'] \
+ if self.individual['Energy Storage Components'][0]['heating_coil_capacity'] is not None else None
+ heating_demand_joules = self.design_period_energy_demands[cte.HEATING]['demands']
+ heating_peak_load_watts = max(self.design_period_energy_demands[cte.HEATING]) if \
+ (self.heating_design_load is not None) else self.building.heating_peak_load[cte.YEAR][0]
+ upper_limit_tes_heating = 55
+ design_period_start_index = self.design_period_energy_demands[cte.HEATING]['start_index']
+ design_period_end_index = self.design_period_energy_demands[cte.HEATING]['end_index']
+ outdoor_temperature = self.building.external_temperature[cte.HOUR][
+ design_period_start_index:design_period_end_index]
+ results = HeatPumpBoilerTesHeating(hp=hp,
+ boiler=boiler,
+ tes=tes,
+ hourly_heating_demand_joules=heating_demand_joules,
+ heating_peak_load_watts=heating_peak_load_watts,
+ upper_limit_tes=upper_limit_tes_heating,
+ outdoor_temperature=outdoor_temperature,
+ dt=self.dt).simulation()
+ if min(results['TES Temperature']) < 35:
+ self.feasibility = False
+ elif cte.DOMESTIC_HOT_WATER in self.demand_types:
+ hp = self.energy_system.generation_systems[0]
+ hp.nominal_heat_output = self.individual['Generation Components'][0]['heating_capacity']
+ tes = self.energy_system.generation_systems[0].energy_storage_systems[0]
+ tes.volume = self.individual['Energy Storage Components'][0]['volume']
+ tes.height = self.building.average_storey_height - 1
+ tes.heating_coil_capacity = self.individual['Energy Storage Components'][0]['heating_coil_capacity'] \
+ if self.individual['Energy Storage Components'][0]['heating_coil_capacity'] is not None else None
+ dhw_demand_joules = self.design_period_energy_demands[cte.DOMESTIC_HOT_WATER]['demands']
+ upper_limit_tes = 65
+ design_period_start_index = self.design_period_energy_demands[cte.DOMESTIC_HOT_WATER]['start_index']
+ design_period_end_index = self.design_period_energy_demands[cte.DOMESTIC_HOT_WATER]['end_index']
+ outdoor_temperature = self.building.external_temperature[cte.HOUR][
+ design_period_start_index:design_period_end_index]
+ results = DomesticHotWaterHeatPumpTes(hp=hp,
+ tes=tes,
+ hourly_dhw_demand_joules=dhw_demand_joules,
+ upper_limit_tes=upper_limit_tes,
+ outdoor_temperature=outdoor_temperature,
+ dt=self.dt).simulation()
+ if min(results['DHW TES Temperature']) < 55:
+ self.feasibility = False
+ if self.feasibility:
+ generation_system_types = [generation_system.system_type for generation_system in
+ self.energy_system.generation_systems]
+ for generation_component in self.individual['Generation Components']:
+ if generation_component['type'] in generation_system_types:
+ index = generation_system_types.index(generation_component['type'])
+ for demand_type in self.demand_types:
+ if demand_type in self.energy_system.generation_systems[index].energy_consumption:
+ generation_component['total_energy_consumption(kWh)'] = (sum(
+ self.energy_system.generation_systems[index].energy_consumption[demand_type][cte.HOUR]) / 3.6e6)
+ for storage_component in self.individual['Energy Storage Components']:
+ if storage_component['type'] == f'{cte.THERMAL}_storage' and storage_component[
+ 'heating_coil_capacity'] is not None:
+ for generation_system in self.energy_system.generation_systems:
+ if generation_system.energy_storage_systems is not None:
+ for storage_system in generation_system.energy_storage_systems:
+ if storage_system.type_energy_stored == cte.THERMAL:
+ for demand_type in self.demand_types:
+ if demand_type in storage_system.heating_coil_energy_consumption:
+ storage_component['total_energy_consumption(kWh)'] = (sum(
+ storage_system.heating_coil_energy_consumption[demand_type][cte.HOUR]) / 3.6e6)
+
+ def life_cycle_cost_calculation(self, investment_cost, operation_cost_year_0, maintenance_cost_year_0,
+ life_cycle_duration=41):
+ """
+ Calculating the life cycle cost of the energy system. The original cost workflow in hub is not used to reduce
+ computation time.Here are the steps:
+ 1- Costs catalog and different components are imported.
+ 2- Capital costs (investment and reposition) are calculated and appended to a list to have the capital cash
+ flow.
+ 3-
+ :param maintenance_cost_year_0:
+ :param operation_cost_year_0:
+ :param investment_cost:
+ :param life_cycle_duration:
+ :return:
+ """
+ capital_costs_cash_flow = [investment_cost]
+ operational_costs_cash_flow = [0]
+ maintenance_costs_cash_flow = [0]
+ end_of_life_costs = [0] * (life_cycle_duration + 1)
+ for i in range(1, life_cycle_duration + 1):
+ yearly_operational_cost = math.pow(1 + self.fuel_price_index, i) * operation_cost_year_0
+ yearly_maintenance_cost = math.pow(1 + self.consumer_price_index, i) * maintenance_cost_year_0
+ yearly_capital_cost = 0
+ for generation_system in self.individual['Generation Components']:
+ if (i % generation_system['lifetime']) == 0 and i != (life_cycle_duration - 1):
+ cost_increase = math.pow(1 + self.consumer_price_index, i)
+ heating_capacity = 0 if generation_system['heating_capacity'] is None else generation_system[
+ 'heating_capacity']
+ cooling_capacity = 0 if generation_system['cooling_capacity'] is None else generation_system[
+ 'cooling_capacity']
+ capacity = max(heating_capacity, cooling_capacity)
+ yearly_capital_cost += generation_system['unit_reposition_cost'] * capacity * cost_increase / 1000
+ yearly_capital_cost += -npf.pmt(self.interest_rate, self.credit_years,
+ investment_cost * self.percentage_credit)
+ for storage_system in self.individual['Energy Storage Components']:
+ if (i % storage_system['lifetime']) == 0 and i != (life_cycle_duration - 1):
+ cost_increase = math.pow(1 + self.consumer_price_index, i)
+ capacity = storage_system['volume'] if cte.THERMAL in storage_system['type'] else storage_system['capacity']
+ yearly_capital_cost += storage_system['unit_reposition_cost'] * capacity * cost_increase
+ yearly_capital_cost += -npf.pmt(self.interest_rate, self.credit_years,
+ investment_cost * self.percentage_credit)
+ capital_costs_cash_flow.append(yearly_capital_cost)
+ operational_costs_cash_flow.append(yearly_operational_cost)
+ maintenance_costs_cash_flow.append(yearly_maintenance_cost)
+ for year in range(1, life_cycle_duration + 1):
+ price_increase = math.pow(1 + self.consumer_price_index, year)
+ if year == life_cycle_duration:
+ end_of_life_costs[year] = (
+ self.building.thermal_zones_from_internal_zones[0].total_floor_area *
+ self.individual['End of Life Cost'] * price_increase
+ )
+
+ life_cycle_capital_cost = npf.npv(self.discount_rate, capital_costs_cash_flow)
+ life_cycle_operational_cost = npf.npv(self.discount_rate, operational_costs_cash_flow)
+ life_cycle_maintenance_cost = npf.npv(self.discount_rate, maintenance_costs_cash_flow)
+ life_cycle_end_of_life_cost = npf.npv(self.discount_rate, end_of_life_costs)
+ total_life_cycle_cost = life_cycle_capital_cost + life_cycle_operational_cost + life_cycle_maintenance_cost + life_cycle_end_of_life_cost
+ return total_life_cycle_cost
+
+ def costs_archetype(self):
+ costs_catalogue = CostsCatalogFactory('montreal_new').catalog.entries().archetypes
+ dictionary = Dictionaries().hub_function_to_montreal_custom_costs_function
+ costs_archetype = None
+ for archetype in costs_catalogue:
+ if dictionary[str(self.building.function)] == str(archetype.function):
+ costs_archetype = archetype
+ return costs_archetype
+
+ def unit_investment_cost(self, component_category, component_type):
+ """
+ Reading the investment and reposition costs of any component from costs catalogue
+ :param component_category: Due to the categorizations in the cost catalogue, we need this parameter to realize if
+ the component is a generation or storage component
+ :param component_type: Type of the component
+ :return:
+ """
+ investment_cost = 0
+ reposition_cost = 0
+ lifetime = 0
+ name = ''
+ capital_costs_chapter = self.costs.capital_cost.chapter('D_services')
+ if component_category == 'Generation':
+ generation_systems = self.energy_system.generation_systems
+ for generation_system in generation_systems:
+ if component_type == generation_system.system_type:
+ if generation_system.system_type == cte.HEAT_PUMP:
+ name += (
+ generation_system.source_medium.lower() + '_to_' + generation_system.supply_medium.lower() + '_' +
+ generation_system.system_type.lower().replace(' ', '_'))
+ elif generation_system.system_type == cte.BOILER:
+ if generation_system.fuel_type == cte.ELECTRICITY:
+ name += cte.ELECTRICAL.lower() + f'_{generation_system.system_type}'.lower()
+ else:
+ name += generation_system.fuel_type.lower() + f'_{generation_system.system_type}'.lower()
+ elif generation_system.system_type == cte.PHOTOVOLTAIC:
+ name += 'D2010_photovoltaic_system'
+ else:
+ if cte.HEATING or cte.DOMESTIC_HOT_WATER in self.demand_types:
+ name += 'template_heat'
+ else:
+ name += 'template_cooling'
+ for item in capital_costs_chapter.items:
+ if name in item.type:
+ investment_cost += float(capital_costs_chapter.item(item.type).initial_investment[0])
+ reposition_cost += float(capital_costs_chapter.item(item.type).reposition[0])
+ lifetime += float(capital_costs_chapter.item(item.type).lifetime)
+ elif component_category == 'Storage':
+ for generation_system in self.energy_system.generation_systems:
+ if generation_system.energy_storage_systems is not None:
+ for energy_storage_system in generation_system.energy_storage_systems:
+ if energy_storage_system.type_energy_stored == cte.THERMAL:
+ if energy_storage_system.heating_coil_capacity is not None:
+ investment_cost += float(capital_costs_chapter.item('D306010_storage_tank').initial_investment[0])
+ reposition_cost += float(capital_costs_chapter.item('D306010_storage_tank').reposition[0])
+ lifetime += float(capital_costs_chapter.item('D306010_storage_tank').lifetime)
+ else:
+ investment_cost += float(
+ capital_costs_chapter.item('D306020_storage_tank_with_coil').initial_investment[0])
+ reposition_cost += float(capital_costs_chapter.item('D306020_storage_tank_with_coil').reposition[0])
+ lifetime += float(capital_costs_chapter.item('D306020_storage_tank_with_coil').lifetime)
+
+ return investment_cost, reposition_cost, lifetime
+
+ def unit_maintenance_cost(self, generation_system):
+ hvac_maintenance = self.costs.operational_cost.maintenance_hvac
+ pv_maintenance = self.costs.operational_cost.maintenance_pv
+ maintenance_cost = 0
+ component = None
+ if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR:
+ component = 'air_source_heat_pump'
+ elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.GROUND:
+ component = 'ground_source_heat_pump'
+ elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.WATER:
+ component = 'water_source_heat_pump'
+ elif generation_system.system_type == cte.BOILER and generation_system.fuel_type == cte.GAS:
+ component = 'gas_boiler'
+ elif generation_system.system_type == cte.BOILER and generation_system.fuel_type == cte.ELECTRICITY:
+ component = 'electric_boiler'
+ elif generation_system.system_type == cte.PHOTOVOLTAIC:
+ maintenance_cost += pv_maintenance
+ else:
+ if cte.HEATING or cte.DOMESTIC_HOT_WATER in self.demand_types:
+ component = 'general_heating_equipment'
+ else:
+ component = 'general_cooling_equipment'
+ for item in hvac_maintenance:
+ if item.type == component:
+ maintenance_cost += item.maintenance[0]
+ return maintenance_cost
+
+ def fuel_cost_per_kwh(self, fuel_type, fuel_cost_tariff_type):
+ fuel_cost = 0
+ catalog_fuels = self.costs.operational_cost.fuels
+ for fuel in catalog_fuels:
+ if fuel_type == fuel.type and fuel_cost_tariff_type == fuel.variable.rate_type:
+ if fuel.type == cte.ELECTRICITY and fuel_cost_tariff_type == 'fixed':
+ fuel_cost = fuel.variable.values[0]
+ elif fuel.type == cte.ELECTRICITY and fuel_cost_tariff_type == 'variable':
+ fuel_cost = fuel.variable.values[0]
+ else:
+ if fuel.type == cte.BIOMASS:
+ conversion_factor = 1
+ else:
+ conversion_factor = fuel.density[0]
+ fuel_cost = fuel.variable.values[0] / (conversion_factor * fuel.lower_heating_value[0] * 0.277)
+ return fuel_cost
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/genetic_algorithm/multi_objective_genetic_algorithm.py b/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/genetic_algorithm/multi_objective_genetic_algorithm.py
new file mode 100644
index 00000000..a063cb48
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/genetic_algorithm/multi_objective_genetic_algorithm.py
@@ -0,0 +1,418 @@
+import copy
+import math
+import random
+import hub.helpers.constants as cte
+from energy_system_modelling_package.energy_system_modelling_factories.system_sizing_methods.genetic_algorithm.individual import \
+ Individual
+import matplotlib.pyplot as plt
+
+
+class MultiObjectiveGeneticAlgorithm:
+ def __init__(self, population_size=100, generations=50, crossover_rate=0.8, mutation_rate=0.1,
+ optimization_scenario=None, output_path=None):
+ self.population_size = population_size
+ self.population = []
+ self.generations = generations
+ self.crossover_rate = crossover_rate
+ self.mutation_rate = mutation_rate
+ self.optimization_scenario = optimization_scenario
+ self.list_of_solutions = []
+ self.best_solution = None
+ self.best_solution_generation = None
+ self.output_path = output_path
+
+# Initialize Population
+ def initialize_population(self, building, energy_system):
+ design_period_energy_demands = self.design_period_identification(building)
+ attempts = 0
+ max_attempts = self.population_size * 5
+ while len(self.population) < self.population_size and attempts < max_attempts:
+ individual = Individual(building=building,
+ energy_system=energy_system,
+ design_period_energy_demands=design_period_energy_demands,
+ optimization_scenario=self.optimization_scenario)
+ individual.initialization()
+ attempts += 1
+ if self.initial_population_feasibility_check(individual, energy_system.demand_types,
+ design_period_energy_demands):
+ self.population.append(individual)
+ if len(self.population) < self.population_size:
+ raise RuntimeError(f"Could not generate a feasible population of size {self.population_size}. "
+ f"Only {len(self.population)} feasible individuals were generated.")
+
+ @staticmethod
+ def initial_population_feasibility_check(individual, demand_types, design_period_demands):
+ total_heating_capacity = sum(
+ component['heating_capacity'] for component in individual.individual['Generation Components']
+ if component['heating_capacity'] is not None
+ )
+ total_cooling_capacity = sum(
+ component['cooling_capacity'] for component in individual.individual['Generation Components']
+ if component['cooling_capacity'] is not None
+ )
+ max_heating_demand = max(design_period_demands[cte.HEATING]['demands']) / cte.WATTS_HOUR_TO_JULES
+ max_cooling_demand = max(design_period_demands[cte.COOLING]['demands']) / cte.WATTS_HOUR_TO_JULES
+ max_dhw_demand = max(design_period_demands[cte.DOMESTIC_HOT_WATER]['demands']) / cte.WATTS_HOUR_TO_JULES
+ if cte.HEATING in demand_types and total_heating_capacity < 0.5 * max_heating_demand:
+ return False
+ if cte.DOMESTIC_HOT_WATER in demand_types and total_heating_capacity < 0.5 * max_dhw_demand:
+ return False
+ if cte.COOLING in demand_types and total_cooling_capacity < 0.5 * max_cooling_demand:
+ return False
+ total_volume = sum(
+ component['volume'] for component in individual.individual['Energy Storage Components']
+ if component['volume'] is not None
+ )
+ max_storage_volume = individual.available_space * 0.1
+ if total_volume > max_storage_volume:
+ return False
+ return True
+
+ def nsga2_selection(self, population, fronts, crowding_distances):
+ new_population = []
+ i = 0
+ while len(new_population) + len(fronts[i]) <= self.population_size:
+ for index in fronts[i]:
+ # Skip individuals with infinite fitness values to avoid propagation
+ if not math.isinf(self.population[index].individual['fitness_score'][0]) and \
+ not math.isinf(self.population[index].individual['fitness_score'][1]):
+ new_population.append(population[index])
+ i += 1
+ if i >= len(fronts):
+ break
+ if len(new_population) < self.population_size and i < len(fronts):
+ sorted_front = sorted(fronts[i], key=lambda x: crowding_distances[i][x], reverse=True)
+ for index in sorted_front:
+ if len(new_population) < self.population_size:
+ if not math.isinf(self.population[index].individual['fitness_score'][0]) and \
+ not math.isinf(self.population[index].individual['fitness_score'][1]):
+ new_population.append(population[index])
+ else:
+ break
+ return new_population
+
+ def fast_non_dominated_sort(self):
+ population_size = self.population_size
+ s = [[] for _ in range(population_size)]
+ front = [[]]
+ n = [0] * population_size
+ rank = [0] * population_size
+ for p in range(population_size):
+ s[p] = []
+ n[p] = 0
+ for q in range(population_size):
+ if self.dominates(self.population[p], self.population[q]):
+ s[p].append(q)
+ elif self.dominates(self.population[q], self.population[p]):
+ n[p] += 1
+ if n[p] == 0:
+ rank[p] = 0
+ front[0].append(p)
+ i = 0
+ while front[i]:
+ next_front = set()
+ for p in front[i]:
+ for q in s[p]:
+ n[q] -= 1
+ if n[q] == 0:
+ rank[q] = i + 1
+ next_front.add(q)
+ i += 1
+ front.append(list(next_front))
+ del front[-1]
+ return front
+
+ @staticmethod
+ def dominates(individual1, individual2):
+ lcc1, lce1 = individual1.individual['fitness_score']
+ lcc2, lce2 = individual2.individual['fitness_score']
+ return (lcc1 <= lcc2 and lce1 <= lce2) and (lcc1 < lcc2 or lce1 < lce2)
+
+ def calculate_crowding_distance(self, front):
+ crowding_distance = [0] * len(self.population)
+ for objective in ['lcc', 'total_energy_consumption']:
+ sorted_front = sorted(front, key=lambda x: self.population[x].individual[objective])
+ # Set distances to finite large numbers rather than `inf`
+ crowding_distance[sorted_front[0]] = float(1e9)
+ crowding_distance[sorted_front[-1]] = float(1e9)
+ objective_min = self.population[sorted_front[0]].individual[objective]
+ objective_max = self.population[sorted_front[-1]].individual[objective]
+ if objective_max != objective_min:
+ for i in range(1, len(sorted_front) - 1):
+ crowding_distance[sorted_front[i]] += (
+ (self.population[sorted_front[i + 1]].individual[objective] -
+ self.population[sorted_front[i - 1]].individual[objective]) /
+ (objective_max - objective_min))
+ return crowding_distance
+
+ def crossover(self, parent1, parent2):
+ """
+ Crossover between two parents to produce two children.
+ swaps generation components and storage components between the two parents with a 50% chance.
+ :param parent1: First parent individual.
+ :param parent2: second parent individual.
+ :return: Two child individuals (child1 and child2).
+ """
+ if random.random() < self.crossover_rate:
+ # Deep copy of the parents to create children
+ child1, child2 = copy.deepcopy(parent1), copy.deepcopy(parent2)
+ # Crossover for Generation Components
+ for i in range(len(parent1.individual['Generation Components'])):
+ if random.random() < 0.5:
+ # swap the entire generation component
+ child1.individual['Generation Components'][i], child2.individual['Generation Components'][i] = (
+ child2.individual['Generation Components'][i],
+ child1.individual['Generation Components'][i]
+ )
+
+ # Crossover for Energy storage Components
+ for i in range(len(parent1.individual['Energy Storage Components'])):
+ if random.random() < 0.5:
+ # swap the entire storage component
+ child1.individual['Energy Storage Components'][i], child2.individual['Energy Storage Components'][i] = (
+ child2.individual['Energy Storage Components'][i],
+ child1.individual['Energy Storage Components'][i]
+ )
+
+ return child1, child2
+ else:
+ # If crossover does not happen, return copies of the original parents
+ return copy.deepcopy(parent1), copy.deepcopy(parent2)
+
+ def mutate(self, individual, building, energy_system):
+ """
+ Mutates the individual's generation and storage components.
+
+ - `individual`: The individual to mutate (contains generation and storage components).
+ - `building`: Building data that contains constraints such as peak heating load and available space.
+
+ Returns the mutated individual.
+ """
+ design_period_energy_demands = self.design_period_identification(building)
+ # Mutate Generation Components
+ for generation_component in individual['Generation Components']:
+ if random.random() < self.mutation_rate:
+ if (generation_component['nominal_heating_efficiency'] is not None and cte.HEATING or cte.DOMESTIC_HOT_WATER in
+ energy_system.demand_types):
+ # Mutate heating capacity
+ if cte.HEATING in energy_system.demand_types:
+ generation_component['heating_capacity'] = random.uniform(
+ 0, max(design_period_energy_demands[cte.HEATING]['demands']) / cte.WATTS_HOUR_TO_JULES)
+ else:
+ generation_component['heating_capacity'] = random.uniform(
+ 0, max(design_period_energy_demands[cte.DOMESTIC_HOT_WATER]['demands']) / cte.WATTS_HOUR_TO_JULES)
+ if generation_component['nominal_cooling_efficiency'] is not None and cte.COOLING in energy_system.demand_types:
+ # Mutate cooling capacity
+ generation_component['cooling_capacity'] = random.uniform(
+ 0, max(design_period_energy_demands[cte.COOLING]['demands']) / cte.WATTS_HOUR_TO_JULES)
+ # Mutate storage Components
+ for storage_component in individual['Energy Storage Components']:
+ if random.random() < self.mutation_rate:
+ if storage_component['type'] == f'{cte.THERMAL}_storage':
+ # Mutate the volume of thermal storage
+ max_available_space = 0.01 * building.volume / building.storeys_above_ground
+ storage_component['volume'] = random.uniform(0, max_available_space)
+ if storage_component['heating_coil_capacity'] is not None:
+ if cte.HEATING in energy_system.demand_types:
+ storage_component['heating_coil_capacity'] = random.uniform(0, max(
+ design_period_energy_demands[cte.HEATING]['demands']) / cte.WATTS_HOUR_TO_JULES)
+ else:
+ storage_component['heating_coil_capacity'] = random.uniform(0, max(
+ design_period_energy_demands[cte.DOMESTIC_HOT_WATER]['demands']) / cte.WATTS_HOUR_TO_JULES)
+ return individual
+
+ def solve_ga(self, building, energy_system):
+ self.initialize_population(building, energy_system)
+ for individual in self.population:
+ individual.score_evaluation()
+ pareto_population = []
+
+ for generation in range(1, self.generations + 1):
+ print(f"Generation {generation}")
+ fronts = self.fast_non_dominated_sort()
+
+ # Ensure the front calculation is valid
+ if not fronts or not fronts[0]:
+ print("Warning: No valid non-dominated front found.")
+ continue
+
+ # Calculate crowding distances and select individuals
+ crowding_distances = [self.calculate_crowding_distance(front) for front in fronts]
+ self.population = self.nsga2_selection(self.population, fronts, crowding_distances)
+
+ # Add only valid indices to pareto_population
+ pareto_population.extend([self.population[i] for i in fronts[0] if i < len(self.population)])
+
+ # Check population bounds
+ if len(pareto_population) > self.population_size:
+ pareto_population = pareto_population[:self.population_size]
+
+ # Generate the next population through crossover and mutation
+ next_population = []
+ while len(next_population) < self.population_size:
+ parent1, parent2 = random.choice(self.population), random.choice(self.population)
+ child1, child2 = self.crossover(parent1, parent2)
+ self.mutate(child1.individual, building, energy_system)
+ self.mutate(child2.individual, building, energy_system)
+ child1.score_evaluation()
+ child2.score_evaluation()
+ next_population.extend([child1, child2])
+
+ self.population = next_population[:self.population_size]
+
+ # Ensure pareto_population contains the correct non-dominated individuals before TOPSIS
+ if not pareto_population:
+ print("No Pareto solutions found during optimization.")
+ return None
+
+ # Recalculate pareto front indices based on updated pareto_population
+ fronts = self.fast_non_dominated_sort()
+ pareto_front_indices = fronts[0] if fronts else []
+ pareto_front_indices = [i for i in pareto_front_indices if i < len(pareto_population)]
+ print(f"Final pareto_front_indices: {pareto_front_indices}, pareto_population size: {len(pareto_population)}")
+
+ if not pareto_front_indices:
+ print("No valid solution found after TOPSIS due to empty pareto front indices.")
+ return None
+
+ global_pareto_front = [pareto_population[i] for i in pareto_front_indices]
+
+ # Get the top N solutions with TOPSIS
+ top_n = 3 # Adjust this value based on how many top solutions you want to explore
+ self.best_solution = self.topsis_decision_making(global_pareto_front, top_n=top_n)
+
+ # Print the top N solutions
+ if self.best_solution:
+ print("Top solutions after TOPSIS:")
+ for idx, solution in enumerate(self.best_solution, 1):
+ print(f"Solution {idx}: LCC = {solution.individual['lcc']}, "
+ f"LCE = {solution.individual['total_energy_consumption']}")
+ else:
+ print("No valid solutions found after TOPSIS.")
+
+ if pareto_population:
+ self.plot_pareto_front(pareto_population)
+
+ return self.best_solution
+
+ @staticmethod
+ def design_period_identification(building):
+ def get_start_end_indices(max_day_index, total_days):
+ if max_day_index > 0 and max_day_index < total_days - 1:
+ start_index = (max_day_index - 1) * 24
+ end_index = (max_day_index + 2) * 24
+ elif max_day_index == 0:
+ start_index = 0
+ end_index = (max_day_index + 2) * 24
+ else:
+ start_index = (max_day_index - 1) * 24
+ end_index = total_days * 24
+ return start_index, end_index
+
+ # Calculate daily demands
+ heating_daily_demands = [sum(building.heating_demand[cte.HOUR][i:i + 24]) for i in
+ range(0, len(building.heating_demand[cte.HOUR]), 24)]
+ cooling_daily_demands = [sum(building.cooling_demand[cte.HOUR][i:i + 24]) for i in
+ range(0, len(building.cooling_demand[cte.HOUR]), 24)]
+ dhw_daily_demands = [sum(building.domestic_hot_water_heat_demand[cte.HOUR][i:i + 24]) for i in
+ range(0, len(building.domestic_hot_water_heat_demand[cte.HOUR]), 24)]
+ # Get the day with maximum demand for each type
+ heating_max_day = heating_daily_demands.index(max(heating_daily_demands))
+ cooling_max_day = cooling_daily_demands.index(max(cooling_daily_demands))
+ dhw_max_day = dhw_daily_demands.index(max(dhw_daily_demands))
+ # Get the start and end indices for each demand type
+ heating_start, heating_end = get_start_end_indices(heating_max_day, len(heating_daily_demands))
+ cooling_start, cooling_end = get_start_end_indices(cooling_max_day, len(cooling_daily_demands))
+ dhw_start, dhw_end = get_start_end_indices(dhw_max_day, len(dhw_daily_demands))
+ # Return the design period energy demands
+ return {
+ f'{cte.HEATING}': {'demands': building.heating_demand[cte.HOUR][heating_start:heating_end],
+ 'start_index': heating_start, 'end_index': heating_end},
+ f'{cte.COOLING}': {'demands': building.cooling_demand[cte.HOUR][cooling_start:cooling_end],
+ 'start_index': cooling_start, 'end_index': cooling_end},
+ f'{cte.DOMESTIC_HOT_WATER}': {'demands': building.domestic_hot_water_heat_demand[cte.HOUR][dhw_start:dhw_end],
+ 'start_index': dhw_start, 'end_index': dhw_end}
+ }
+
+ def topsis_decision_making(self, pareto_front, top_n=5):
+ """
+ Perform TOPSIS decision-making to choose the best solutions from the Pareto front.
+
+ :param pareto_front: List of individuals in the Pareto front
+ :param top_n: Number of top solutions to select based on TOPSIS ranking
+ :return: List of top N individuals based on TOPSIS ranking
+ """
+ # Filter out infinite values from the pareto front before processing
+ pareto_front = [ind for ind in pareto_front if all(math.isfinite(v) for v in ind.individual['fitness_score'])]
+ if not pareto_front:
+ return None
+
+ # Step 1: Normalize the objective functions (cost and energy consumption)
+ min_lcc = min([ind.individual['lcc'] for ind in pareto_front])
+ max_lcc = max([ind.individual['lcc'] for ind in pareto_front])
+ min_lce = min([ind.individual['total_energy_consumption'] for ind in pareto_front])
+ max_lce = max([ind.individual['total_energy_consumption'] for ind in pareto_front])
+
+ normalized_pareto_front = []
+ for ind in pareto_front:
+ normalized_lcc = (ind.individual['lcc'] - min_lcc) / (max_lcc - min_lcc) if max_lcc > min_lcc else 0
+ normalized_lce = (ind.individual['total_energy_consumption'] - min_lce) / (
+ max_lce - min_lce) if max_lce > min_lce else 0
+ normalized_pareto_front.append((ind, normalized_lcc, normalized_lce))
+
+ # Step 2: Calculate the ideal and worst solutions
+ ideal_solution = (0, 0) # Ideal is minimum LCC and minimum LCE (0, 0 after normalization)
+ worst_solution = (1, 1) # Worst is maximum LCC and maximum LCE (1, 1 after normalization)
+
+ # Step 3: Calculate the distance to the ideal and worst solutions
+ best_distances = []
+ worst_distances = []
+ for ind, normalized_lcc, normalized_lce in normalized_pareto_front:
+ distance_to_ideal = math.sqrt(
+ (normalized_lcc - ideal_solution[0]) ** 2 + (normalized_lce - ideal_solution[1]) ** 2)
+ distance_to_worst = math.sqrt(
+ (normalized_lcc - worst_solution[0]) ** 2 + (normalized_lce - worst_solution[1]) ** 2)
+ best_distances.append(distance_to_ideal)
+ worst_distances.append(distance_to_worst)
+
+ # Step 4: Calculate relative closeness to the ideal solution
+ similarity = [worst / (best + worst) for best, worst in zip(best_distances, worst_distances)]
+
+ # Step 5: Select the top N individuals with the highest similarity scores
+ top_indices = sorted(range(len(similarity)), key=lambda i: similarity[i], reverse=True)[:top_n]
+ top_solutions = [pareto_front[i] for i in top_indices]
+
+ # Plot the similarity scores
+ self.plot_topsis_similarity(similarity)
+
+ return top_solutions
+
+ @staticmethod
+ def plot_topsis_similarity(similarity):
+ """
+ Plot the TOPSIS similarity scores for visualization.
+
+ :param similarity: List of similarity scores for each individual in the Pareto front
+ """
+ plt.figure(figsize=(10, 6))
+ plt.plot(range(len(similarity)), similarity, 'bo-', label='TOPSIS Similarity Scores')
+ plt.xlabel('Pareto Front Solution Index')
+ plt.ylabel('Similarity Score')
+ plt.title('TOPSIS Similarity Scores for Pareto Front Solutions')
+ plt.legend()
+ plt.grid(True)
+ plt.show()
+
+ @staticmethod
+ def plot_pareto_front(pareto_population):
+ # Extract LCC and LCE for plotting
+ lcc_values = [individual.individual['lcc'] for individual in pareto_population]
+ lce_values = [individual.individual['total_energy_consumption'] for individual in pareto_population]
+ plt.figure(figsize=(10, 6))
+ plt.scatter(lcc_values, lce_values, color='blue', label='Pareto Front', alpha=0.6, edgecolors='w', s=80)
+ plt.title('Pareto Front for Life Cycle Cost vs Life Cycle Energy')
+ plt.xlabel('Life Cycle Cost (LCC)')
+ plt.ylabel('Life Cycle Energy (LCE)')
+ plt.grid(True)
+ plt.legend()
+ plt.show()
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/genetic_algorithm/multi_objective_genetic_algorithm_rethinking.py b/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/genetic_algorithm/multi_objective_genetic_algorithm_rethinking.py
new file mode 100644
index 00000000..23ef7ff2
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/genetic_algorithm/multi_objective_genetic_algorithm_rethinking.py
@@ -0,0 +1,94 @@
+import copy
+import math
+import random
+import hub.helpers.constants as cte
+from energy_system_modelling_package.energy_system_modelling_factories.system_sizing_methods.genetic_algorithm.individual import \
+ Individual
+import matplotlib.pyplot as plt
+import time
+
+
+class MultiObjectiveGeneticAlgorithm:
+ def __init__(self, population_size=100, generations=50, crossover_rate=0.8, mutation_rate=0.1,
+ optimization_scenario=None, output_path=None):
+ self.population_size = population_size
+ self.population = []
+ self.generations = generations
+ self.crossover_rate = crossover_rate
+ self.mutation_rate = mutation_rate
+ self.optimization_scenario = optimization_scenario
+ self.list_of_solutions = []
+ self.best_solution = None
+ self.best_solution_generation = None
+ self.output_path = output_path
+
+# Initialize Population
+ def initialize_population(self, building, energy_system):
+ design_period_start_time = time.time()
+ design_period_energy_demands = self.design_period_identification(building)
+ design_period_time = time.time() - design_period_start_time
+ print(f"design period identification took {design_period_time:.2f} seconds")
+ initializing_time_start = time.time()
+ attempts = 0
+ max_attempts = self.population_size * 20
+ while len(self.population) < self.population_size and attempts < max_attempts:
+ individual = Individual(building=building,
+ energy_system=energy_system,
+ design_period_energy_demands=design_period_energy_demands,
+ optimization_scenario=self.optimization_scenario)
+ individual.initialization()
+ individual.score_evaluation()
+ attempts += 1
+ if individual.feasibility:
+ self.population.append(individual)
+ if len(self.population) < self.population_size:
+ raise RuntimeError(f"Could not generate a feasible population of size {self.population_size}. "
+ f"Only {len(self.population)} feasible individuals were generated.")
+ initializing_time = time.time() - initializing_time_start
+ print(f"initializing took {initializing_time:.2f} seconds")
+
+
+ @staticmethod
+ def design_period_identification(building):
+ def get_start_end_indices(max_day_index, total_days):
+ if max_day_index > 0 and max_day_index < total_days - 1:
+ start_index = (max_day_index - 1) * 24
+ end_index = (max_day_index + 2) * 24
+ elif max_day_index == 0:
+ start_index = 0
+ end_index = (max_day_index + 2) * 24
+ else:
+ start_index = (max_day_index - 1) * 24
+ end_index = total_days * 24
+ return start_index, end_index
+
+ # Calculate daily demands
+ heating_daily_demands = [sum(building.heating_demand[cte.HOUR][i:i + 24]) for i in
+ range(0, len(building.heating_demand[cte.HOUR]), 24)]
+ cooling_daily_demands = [sum(building.cooling_demand[cte.HOUR][i:i + 24]) for i in
+ range(0, len(building.cooling_demand[cte.HOUR]), 24)]
+ dhw_daily_demands = [sum(building.domestic_hot_water_heat_demand[cte.HOUR][i:i + 24]) for i in
+ range(0, len(building.domestic_hot_water_heat_demand[cte.HOUR]), 24)]
+ # Get the day with maximum demand for each type
+ heating_max_day = heating_daily_demands.index(max(heating_daily_demands))
+ cooling_max_day = cooling_daily_demands.index(max(cooling_daily_demands))
+ dhw_max_day = dhw_daily_demands.index(max(dhw_daily_demands))
+ # Get the start and end indices for each demand type
+ heating_start, heating_end = get_start_end_indices(heating_max_day, len(heating_daily_demands))
+ cooling_start, cooling_end = get_start_end_indices(cooling_max_day, len(cooling_daily_demands))
+ dhw_start, dhw_end = get_start_end_indices(dhw_max_day, len(dhw_daily_demands))
+ # Return the design period energy demands
+ return {
+ f'{cte.HEATING}': {'demands': building.heating_demand[cte.HOUR][heating_start:heating_end],
+ 'start_index': heating_start, 'end_index': heating_end},
+ f'{cte.COOLING}': {'demands': building.cooling_demand[cte.HOUR][cooling_start:cooling_end],
+ 'start_index': cooling_start, 'end_index': cooling_end},
+ f'{cte.DOMESTIC_HOT_WATER}': {'demands': building.domestic_hot_water_heat_demand[cte.HOUR][dhw_start:dhw_end],
+ 'start_index': dhw_start, 'end_index': dhw_end}
+ }
+
+ def solve_ga(self, building, energy_system):
+ self.initialize_population(building, energy_system)
+ for individual in self.population:
+ print(individual.individual)
+ print([ind.fitness_score for ind in self.population])
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/genetic_algorithm/single_objective_genetic_algorithm.py b/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/genetic_algorithm/single_objective_genetic_algorithm.py
new file mode 100644
index 00000000..b7e5f7c3
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/genetic_algorithm/single_objective_genetic_algorithm.py
@@ -0,0 +1,342 @@
+import copy
+import math
+import random
+import hub.helpers.constants as cte
+from energy_system_modelling_package.energy_system_modelling_factories.system_sizing_methods.genetic_algorithm.individual import \
+ Individual
+
+
+class SingleObjectiveGeneticAlgorithm:
+ def __init__(self, population_size=100, generations=20, crossover_rate=0.8, mutation_rate=0.1,
+ optimization_scenario=None, output_path=None):
+ self.population_size = population_size
+ self.population = []
+ self.generations = generations
+ self.crossover_rate = crossover_rate
+ self.mutation_rate = mutation_rate
+ self.optimization_scenario = optimization_scenario
+ self.list_of_solutions = []
+ self.best_solution = None
+ self.best_solution_generation = None
+ self.output_path = output_path
+
+ # Initialize Population
+ def initialize_population(self, building, energy_system):
+ """
+ Initialize a population of individuals with feasible configurations for optimizing the sizes of
+ generation and storage components of an energy system.
+
+ :param building: Building object with associated data
+ :param energy_system: Energy system to optimize
+ """
+ design_period_energy_demands = self.design_period_identification(building)
+ attempts = 0 # Track attempts to avoid an infinite loop in rare cases
+ max_attempts = self.population_size * 5
+
+ while len(self.population) < self.population_size and attempts < max_attempts:
+ individual = Individual(building=building,
+ energy_system=energy_system,
+ design_period_energy_demands=design_period_energy_demands,
+ optimization_scenario=self.optimization_scenario)
+
+ individual.initialization()
+ attempts += 1
+
+ # Enhanced feasibility check
+ if self.initial_population_feasibility_check(individual, energy_system.demand_types, design_period_energy_demands):
+ self.population.append(individual)
+
+ # Raise an error or print a warning if the population size goal is not met after max_attempts
+ if len(self.population) < self.population_size:
+ raise RuntimeError(f"Could not generate a feasible population of size {self.population_size}. "
+ f"Only {len(self.population)} feasible individuals were generated.")
+
+ @staticmethod
+ def initial_population_feasibility_check(individual, demand_types, design_period_demands):
+ """
+ Check if the individual meets basic feasibility requirements for heating, cooling, and DHW capacities
+ and storage volume.
+
+ :param individual: Individual to check
+ :param demand_types: List of demand types (e.g., heating, cooling, DHW)
+ :param design_period_demands: Design period demand values for heating, cooling, and DHW
+ :return: True if feasible, False otherwise
+ """
+ # Calculate total heating and cooling capacities
+ total_heating_capacity = sum(
+ component['heating_capacity'] for component in individual.individual['Generation Components']
+ if component['heating_capacity'] is not None
+ )
+ total_cooling_capacity = sum(
+ component['cooling_capacity'] for component in individual.individual['Generation Components']
+ if component['cooling_capacity'] is not None
+ )
+
+ # Maximum demands for each demand type (converted to kW)
+ max_heating_demand = max(design_period_demands[cte.HEATING]['demands']) / cte.WATTS_HOUR_TO_JULES
+ max_cooling_demand = max(design_period_demands[cte.COOLING]['demands']) / cte.WATTS_HOUR_TO_JULES
+ max_dhw_demand = max(design_period_demands[cte.DOMESTIC_HOT_WATER]['demands']) / cte.WATTS_HOUR_TO_JULES
+
+ # Check heating capacity feasibility
+ if cte.HEATING in demand_types and total_heating_capacity < 0.5 * max_heating_demand:
+ return False
+
+ # Check DHW capacity feasibility
+ if cte.DOMESTIC_HOT_WATER in demand_types and total_heating_capacity < 0.5 * max_dhw_demand:
+ return False
+
+ # Check cooling capacity feasibility
+ if cte.COOLING in demand_types and total_cooling_capacity < 0.5 * max_cooling_demand:
+ return False
+
+ # Check storage volume feasibility
+ total_volume = sum(
+ component['volume'] for component in individual.individual['Energy Storage Components']
+ if component['volume'] is not None
+ )
+ # Limit storage to 10% of building's available space
+ max_storage_volume = individual.available_space * 0.1
+ if total_volume > max_storage_volume:
+ return False
+
+ return True # Feasible if all checks are passed
+
+ def order_population(self):
+ """
+ ordering the population based on the fitness score in ascending order
+ :return:
+ """
+ self.population = sorted(self.population, key=lambda x: x.fitness_score)
+
+ def tournament_selection(self):
+ selected = []
+ for _ in range(len(self.population)):
+ i, j = random.sample(range(self.population_size), 2)
+ if self.population[i].individual['fitness_score'] < self.population[j].individual['fitness_score']:
+ selected.append(copy.deepcopy(self.population[i]))
+ else:
+ selected.append(copy.deepcopy(self.population[j]))
+ return selected
+
+ def crossover(self, parent1, parent2):
+ """
+ Crossover between two parents to produce two children.
+
+ swaps generation components and storage components between the two parents with a 50% chance.
+
+ :param parent1: First parent individual.
+ :param parent2: second parent individual.
+ :return: Two child individuals (child1 and child2).
+ """
+ if random.random() < self.crossover_rate:
+ # Deep copy of the parents to create children
+ child1, child2 = copy.deepcopy(parent1), copy.deepcopy(parent2)
+ # Crossover for Generation Components
+ for i in range(len(parent1.individual['Generation Components'])):
+ if random.random() < 0.5:
+ # swap the entire generation component
+ child1.individual['Generation Components'][i], child2.individual['Generation Components'][i] = (
+ child2.individual['Generation Components'][i],
+ child1.individual['Generation Components'][i]
+ )
+
+ # Crossover for Energy storage Components
+ for i in range(len(parent1.individual['Energy Storage Components'])):
+ if random.random() < 0.5:
+ # swap the entire storage component
+ child1.individual['Energy Storage Components'][i], child2.individual['Energy Storage Components'][i] = (
+ child2.individual['Energy Storage Components'][i],
+ child1.individual['Energy Storage Components'][i]
+ )
+
+ return child1, child2
+ else:
+ # If crossover does not happen, return copies of the original parents
+ return copy.deepcopy(parent1), copy.deepcopy(parent2)
+
+ def mutate(self, individual, building, energy_system):
+ """
+ Mutates the individual's generation and storage components.
+
+ - `individual`: The individual to mutate (contains generation and storage components).
+ - `building`: Building data that contains constraints such as peak heating load and available space.
+
+ Returns the mutated individual.
+ """
+ design_period_energy_demands = self.design_period_identification(building)
+ # Mutate Generation Components
+ for generation_component in individual['Generation Components']:
+ if random.random() < self.mutation_rate:
+ if (generation_component['nominal_heating_efficiency'] is not None and cte.HEATING or cte.DOMESTIC_HOT_WATER in
+ energy_system.demand_types):
+ # Mutate heating capacity
+ if cte.HEATING in energy_system.demand_types:
+ generation_component['heating_capacity'] = random.uniform(
+ 0, max(design_period_energy_demands[cte.HEATING]['demands']) / cte.WATTS_HOUR_TO_JULES)
+ else:
+ generation_component['heating_capacity'] = random.uniform(
+ 0, max(design_period_energy_demands[cte.DOMESTIC_HOT_WATER]['demands']) / cte.WATTS_HOUR_TO_JULES)
+ if generation_component['nominal_cooling_efficiency'] is not None and cte.COOLING in energy_system.demand_types:
+ # Mutate cooling capacity
+ generation_component['cooling_capacity'] = random.uniform(
+ 0, max(design_period_energy_demands[cte.COOLING]['demands']) / cte.WATTS_HOUR_TO_JULES)
+ # Mutate storage Components
+ for storage_component in individual['Energy Storage Components']:
+ if random.random() < self.mutation_rate:
+ if storage_component['type'] == f'{cte.THERMAL}_storage':
+ # Mutate the volume of thermal storage
+ max_available_space = 0.01 * building.volume / building.storeys_above_ground
+ storage_component['volume'] = random.uniform(0, max_available_space)
+ if storage_component['heating_coil_capacity'] is not None:
+ if cte.HEATING in energy_system.demand_types:
+ storage_component['heating_coil_capacity'] = random.uniform(0, max(
+ design_period_energy_demands[cte.HEATING]['demands']) / cte.WATTS_HOUR_TO_JULES)
+ else:
+ storage_component['heating_coil_capacity'] = random.uniform(0, max(
+ design_period_energy_demands[cte.DOMESTIC_HOT_WATER]['demands']) / cte.WATTS_HOUR_TO_JULES)
+ return individual
+
+ def solve_ga(self, building, energy_system):
+ """
+ solving GA for a single energy system. Here are the steps:
+ 1. Initialize population using the "initialize_population" method in this class.
+ 2. Evaluate the initial population using the "score_evaluation" method in the Individual class.
+ 3. sort population based on fitness score.
+ 4. Repeat selection, crossover, and mutation for a fixed number of generations.
+ 5. Track the best solution found during the optimization process.
+
+ :param building: Building object for the energy system.
+ :param energy_system: Energy system to optimize.
+ :return: Best solution after running the GA.
+ """
+ # step 1: Initialize the population
+ self.initialize_population(building, energy_system)
+ # step 2: Evaluate the initial population
+ for individual in self.population:
+ individual.score_evaluation()
+ # step 3: Order population based on fitness scores
+ self.order_population()
+ print([individual.fitness_score for individual in self.population])
+ # Track the best solution
+ self.best_solution = self.population[0]
+ self.best_solution_generation = 0
+ self.list_of_solutions.append(copy.deepcopy(self.best_solution.individual))
+ # step 4: Run GA for a fixed number of generations
+ for generation in range(1, self.generations):
+ print(f"Generation {generation}")
+ # selection (using tournament selection)
+ selected_population = self.tournament_selection()
+ # Create the next generation through crossover and mutation
+ next_population = []
+ for i in range(0, self.population_size, 2):
+ parent1 = selected_population[i]
+ parent2 = selected_population[i + 1] if (i + 1) < len(selected_population) else selected_population[0]
+ # step 5: Apply crossover
+ child1, child2 = self.crossover(parent1, parent2)
+ # step 6: Apply mutation
+ self.mutate(child1.individual, building, energy_system)
+ self.mutate(child2.individual, building, energy_system)
+ # step 7: Evaluate the children
+ child1.score_evaluation()
+ child2.score_evaluation()
+ next_population.extend([child1, child2])
+ # Replace old population with the new one
+ self.population = next_population
+ # step 8: sort the new population based on fitness
+ self.order_population()
+ print([individual.fitness_score for individual in self.population])
+ # Track the best solution found in this generation
+ if self.population[0].individual['fitness_score'] < self.best_solution.individual['fitness_score']:
+ self.best_solution = self.population[0]
+ self.best_solution_generation = generation
+ # store the best solution in the list of solutions
+ self.list_of_solutions.append(copy.deepcopy(self.population[0].individual))
+ print(f"Best solution found in generation {self.best_solution_generation}")
+ print(f"Best solution: {self.best_solution.individual}")
+ return self.best_solution
+
+ @staticmethod
+ def topsis_decision_making(pareto_front):
+ """
+ Perform TOPSIS decision-making to choose the best solution from the Pareto front.
+
+ :param pareto_front: List of individuals in the Pareto front
+ :return: The best individual based on TOPSIS ranking
+ """
+ # Step 1: Normalize the objective functions (cost and energy consumption)
+ min_lcc = min([ind.individual['lcc'] for ind in pareto_front])
+ max_lcc = max([ind.individual['lcc'] for ind in pareto_front])
+ min_lce = min([ind.individual['total_energy_consumption'] for ind in pareto_front])
+ max_lce = max([ind.individual['total_energy_consumption'] for ind in pareto_front])
+
+ normalized_pareto_front = []
+ for ind in pareto_front:
+ normalized_lcc = (ind.individual['lcc'] - min_lcc) / (max_lcc - min_lcc) if max_lcc > min_lcc else 0
+ normalized_lce = (ind.individual['total_energy_consumption'] - min_lce) / (
+ max_lce - min_lce) if max_lce > min_lce else 0
+ normalized_pareto_front.append((ind, normalized_lcc, normalized_lce))
+
+ # Step 2: Calculate the ideal and worst solutions
+ ideal_solution = (0, 0) # Ideal is minimum LCC and minimum LCE (0, 0 after normalization)
+ worst_solution = (1, 1) # Worst is maximum LCC and maximum LCE (1, 1 after normalization)
+
+ # Step 3: Calculate the distance to the ideal and worst solutions
+ best_distances = []
+ worst_distances = []
+
+ for ind, normalized_lcc, normalized_lce in normalized_pareto_front:
+ distance_to_ideal = math.sqrt(
+ (normalized_lcc - ideal_solution[0]) ** 2 + (normalized_lce - ideal_solution[1]) ** 2)
+ distance_to_worst = math.sqrt(
+ (normalized_lcc - worst_solution[0]) ** 2 + (normalized_lce - worst_solution[1]) ** 2)
+ best_distances.append(distance_to_ideal)
+ worst_distances.append(distance_to_worst)
+
+ # Step 4: Calculate relative closeness to the ideal solution
+ similarity = [worst / (best + worst) for best, worst in zip(best_distances, worst_distances)]
+
+ # Step 5: Select the individual with the highest similarity score
+ best_index = similarity.index(max(similarity))
+ best_solution = pareto_front[best_index]
+
+ return best_solution
+
+ @staticmethod
+ def design_period_identification(building):
+ def get_start_end_indices(max_day_index, total_days):
+ if max_day_index > 0 and max_day_index < total_days - 1:
+ start_index = (max_day_index - 1) * 24
+ end_index = (max_day_index + 2) * 24
+ elif max_day_index == 0:
+ start_index = 0
+ end_index = (max_day_index + 2) * 24
+ else:
+ start_index = (max_day_index - 1) * 24
+ end_index = total_days * 24
+ return start_index, end_index
+
+ # Calculate daily demands
+ heating_daily_demands = [sum(building.heating_demand[cte.HOUR][i:i + 24]) for i in
+ range(0, len(building.heating_demand[cte.HOUR]), 24)]
+ cooling_daily_demands = [sum(building.cooling_demand[cte.HOUR][i:i + 24]) for i in
+ range(0, len(building.cooling_demand[cte.HOUR]), 24)]
+ dhw_daily_demands = [sum(building.domestic_hot_water_heat_demand[cte.HOUR][i:i + 24]) for i in
+ range(0, len(building.domestic_hot_water_heat_demand[cte.HOUR]), 24)]
+ # Get the day with maximum demand for each type
+ heating_max_day = heating_daily_demands.index(max(heating_daily_demands))
+ cooling_max_day = cooling_daily_demands.index(max(cooling_daily_demands))
+ dhw_max_day = dhw_daily_demands.index(max(dhw_daily_demands))
+ # Get the start and end indices for each demand type
+ heating_start, heating_end = get_start_end_indices(heating_max_day, len(heating_daily_demands))
+ cooling_start, cooling_end = get_start_end_indices(cooling_max_day, len(cooling_daily_demands))
+ dhw_start, dhw_end = get_start_end_indices(dhw_max_day, len(dhw_daily_demands))
+ # Return the design period energy demands
+ return {
+ f'{cte.HEATING}': {'demands': building.heating_demand[cte.HOUR][heating_start:heating_end],
+ 'start_index': heating_start, 'end_index': heating_end},
+ f'{cte.COOLING}': {'demands': building.cooling_demand[cte.HOUR][cooling_start:cooling_end],
+ 'start_index': cooling_start, 'end_index': cooling_end},
+ f'{cte.DOMESTIC_HOT_WATER}': {'demands': building.domestic_hot_water_heat_demand[cte.HOUR][dhw_start:dhw_end],
+ 'start_index': dhw_start, 'end_index': dhw_end}
+ }
+
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/optimal_sizing.py b/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/optimal_sizing.py
new file mode 100644
index 00000000..2127dcc4
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/optimal_sizing.py
@@ -0,0 +1,42 @@
+import hub.helpers.constants as cte
+from energy_system_modelling_package.energy_system_modelling_factories.system_sizing_methods.genetic_algorithm.single_objective_genetic_algorithm import \
+ SingleObjectiveGeneticAlgorithm
+
+
+class OptimalSizing:
+ def __init__(self, city, optimization_scenario):
+ self.city = city
+ self.optimization_scenario = optimization_scenario
+
+ def enrich_buildings(self):
+ for building in self.city.buildings:
+ for energy_system in building.energy_systems:
+ if len(energy_system.generation_systems) == 1 and energy_system.generation_systems[0].energy_storage_systems is None:
+ if energy_system.generation_systems[0].system_type == cte.PHOTOVOLTAIC:
+ pass
+ else:
+ if cte.HEATING in energy_system.demand_types:
+ if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
+ design_load = max([building.heating_demand[cte.HOUR][i] +
+ building.domestic_hot_water_heat_demand[cte.HOUR][i] for i in
+ range(len(building.heating_demand))]) / cte.WATTS_HOUR_TO_JULES
+ else:
+ design_load = building.heating_peak_load[cte.YEAR][0]
+ energy_system.generation_systems[0].nominal_heat_output = design_load
+ elif cte.COOLING in energy_system.demand_types:
+ energy_system.generation_systems[0].nominal_cooling_output = building.cooling_peak_load[cte.YEAR][0]
+ else:
+ optimized_system = SingleObjectiveGeneticAlgorithm(optimization_scenario=self.optimization_scenario).solve_ga(building, energy_system)
+ for generation_system in energy_system.generation_systems:
+ system_type = generation_system.system_type
+ for generation_component in optimized_system.individual['Generation Components']:
+ if generation_component['type'] == system_type:
+ generation_system.nominal_heat_output = generation_component['heating_capacity']
+ generation_system.nominal_cooling_output = generation_component['cooling_capacity']
+ if generation_system.energy_storage_systems is not None:
+ for storage_system in generation_system.energy_storage_systems:
+ storage_type = f'{storage_system.type_energy_stored}_storage'
+ for storage_component in optimized_system.individual['Energy Storage Components']:
+ if storage_component['type'] == storage_type:
+ storage_system.nominal_capacity = storage_component['capacity']
+ storage_system.volume = storage_component['volume']
diff --git a/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/peak_load_sizing.py b/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/peak_load_sizing.py
new file mode 100644
index 00000000..1f1fe74a
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_modelling_factories/system_sizing_methods/peak_load_sizing.py
@@ -0,0 +1,99 @@
+import hub.helpers.constants as cte
+
+
+class PeakLoadSizing:
+ def __init__(self, city, default_primary_unit_percentage=0.7, storage_peak_coverage=3):
+ self.city = city
+ self.default_primary_unit_percentage = default_primary_unit_percentage
+ self.storage_peak_coverage = storage_peak_coverage
+
+ def enrich_buildings(self):
+ total_demand = 0
+ for building in self.city.buildings:
+ energy_systems = building.energy_systems
+ for energy_system in energy_systems:
+ if cte.HEATING in energy_system.demand_types:
+ if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
+ total_demand = [(building.heating_demand[cte.HOUR][i] +
+ building.domestic_hot_water_heat_demand[cte.HOUR][i]) / cte.WATTS_HOUR_TO_JULES
+ for i in range(len(building.heating_demand[cte.HOUR]))]
+ else:
+ total_demand = building.heating_peak_load[cte.YEAR]
+ design_load = max(total_demand)
+ self.allocate_capacity(energy_system, design_load, cte.HEATING, self.default_primary_unit_percentage)
+ if cte.COOLING in energy_system.demand_types:
+ cooling_design_load = building.cooling_peak_load[cte.YEAR][0]
+ self.allocate_capacity(energy_system, cooling_design_load, cte.COOLING,
+ self.default_primary_unit_percentage)
+
+ elif cte.COOLING in energy_system.demand_types:
+ design_load = building.cooling_peak_load[cte.YEAR][0]
+ self.allocate_capacity(energy_system, design_load, cte.COOLING, self.default_primary_unit_percentage)
+ elif cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
+ design_load = building.domestic_hot_water_peak_load[cte.YEAR][0]
+ self.allocate_capacity(energy_system, design_load, cte.DOMESTIC_HOT_WATER,
+ self.default_primary_unit_percentage)
+
+ for generation_system in energy_system.generation_systems:
+ storage_systems = generation_system.energy_storage_systems
+ if storage_systems is not None:
+ if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
+ operation_range = 10
+ else:
+ operation_range = 20
+ for storage_system in storage_systems:
+ if storage_system.type_energy_stored == cte.THERMAL:
+ self.tes_sizing(storage_system, max(total_demand), self.storage_peak_coverage, operation_range)
+
+ def allocate_capacity(self, energy_system, design_load, demand_type, default_primary_unit_percentage):
+ if len(energy_system.generation_systems) == 1:
+ # If there's only one generation system, it gets the full design load.
+ if demand_type == cte.HEATING or demand_type == cte.DOMESTIC_HOT_WATER:
+ energy_system.generation_systems[0].nominal_heat_output = design_load
+ elif demand_type == cte.COOLING:
+ energy_system.generation_systems[0].nominal_cooling_output = design_load
+ else:
+ cooling_equipments_number = 0
+ # Distribute the load among generation systems.
+ max_efficiency = 0
+ main_generation_unit = None
+ for generation_system in energy_system.generation_systems:
+ if demand_type == cte.HEATING or demand_type == cte.DOMESTIC_HOT_WATER:
+ if max_efficiency < float(generation_system.heat_efficiency):
+ max_efficiency = float(generation_system.heat_efficiency)
+ main_generation_unit = generation_system
+ elif demand_type == cte.COOLING and generation_system.fuel_type == cte.ELECTRICITY:
+ cooling_equipments_number += 1
+ if max_efficiency < float(generation_system.cooling_efficiency):
+ max_efficiency = float(generation_system.heat_efficiency)
+ main_generation_unit = generation_system
+
+ for generation_system in energy_system.generation_systems:
+ if generation_system.system_type == main_generation_unit.system_type:
+ if demand_type == cte.HEATING or demand_type == cte.DOMESTIC_HOT_WATER:
+ generation_system.nominal_heat_output = round(default_primary_unit_percentage * design_load)
+ elif demand_type == cte.COOLING and cooling_equipments_number > 1:
+ generation_system.nominal_cooling_output = round(default_primary_unit_percentage * design_load)
+ else:
+ generation_system.nominal_cooling_output = design_load
+ else:
+ if demand_type == cte.HEATING or demand_type == cte.DOMESTIC_HOT_WATER:
+ generation_system.nominal_heat_output = round(((1 - default_primary_unit_percentage) * design_load /
+ (len(energy_system.generation_systems) - 1)))
+ elif demand_type == cte.COOLING and cooling_equipments_number > 1:
+ generation_system.nominal_cooling_output = round(((1 - default_primary_unit_percentage) * design_load /
+ (len(energy_system.generation_systems) - 1)))
+
+
+ @staticmethod
+ def tes_sizing(storage, peak_load, coverage, operational_temperature_range):
+ storage.volume = round((peak_load * coverage * cte.WATTS_HOUR_TO_JULES) /
+ (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * operational_temperature_range))
+
+ @staticmethod
+ def cooling_equipments(energy_system):
+ counter = 0
+ for generation_system in energy_system.generation_systems:
+ if generation_system.fuel_type == cte.ELECTRICITY:
+ counter += 1
+ return counter
diff --git a/energy_system_modelling_package/energy_system_retrofit/energy_system_retrofit_report.py b/energy_system_modelling_package/energy_system_retrofit/energy_system_retrofit_report.py
new file mode 100644
index 00000000..1c211eba
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_retrofit/energy_system_retrofit_report.py
@@ -0,0 +1,595 @@
+import os
+import hub.helpers.constants as cte
+import matplotlib.pyplot as plt
+from matplotlib import cm
+from energy_system_modelling_package.report_creation import LatexReport
+from matplotlib.ticker import MaxNLocator
+import numpy as np
+from pathlib import Path
+import glob
+
+
+class EnergySystemRetrofitReport:
+ def __init__(self, city, output_path, retrofit_scenario, current_status_energy_consumption_data,
+ retrofitted_energy_consumption_data, current_status_lcc_data, retrofitted_lcc_data):
+ self.city = city
+ self.current_status_data = current_status_energy_consumption_data
+ self.retrofitted_data = retrofitted_energy_consumption_data
+ self.current_status_lcc = current_status_lcc_data
+ self.retrofitted_lcc = retrofitted_lcc_data
+ self.output_path = output_path
+ self.content = []
+ self.retrofit_scenario = retrofit_scenario
+ self.report = LatexReport('energy_system_retrofit_report',
+ 'Energy System Retrofit Report', self.retrofit_scenario, output_path)
+ self.system_schemas_path = (Path(__file__).parent.parent.parent / 'hub' / 'data' / 'energy_systems' / 'schemas')
+ self.charts_path = Path(output_path) / 'charts'
+ self.charts_path.mkdir(parents=True, exist_ok=True)
+ files = glob.glob(f'{self.charts_path}/*')
+ for file in files:
+ os.remove(file)
+
+ def building_energy_info(self):
+ table_data = [
+ ["Building Name", "Year of Construction", "function", "Yearly Heating Demand (MWh)",
+ "Yearly Cooling Demand (MWh)", "Yearly DHW Demand (MWh)", "Yearly Electricity Demand (MWh)"]
+ ]
+ intensity_table_data = [["Building Name", "Total Floor Area $m^2$", "Heating Demand Intensity kWh/ $m^2$",
+ "Cooling Demand Intensity kWh/ $m^2$", "Electricity Intensity kWh/ $m^2$"]]
+ peak_load_data = [["Building Name", "Heating Peak Load (kW)", "Cooling Peak Load (kW)",
+ "Domestic Hot Water Peak Load (kW)"]]
+
+ for building in self.city.buildings:
+ total_floor_area = 0
+ for zone in building.thermal_zones_from_internal_zones:
+ total_floor_area += zone.total_floor_area
+ building_data = [
+ building.name,
+ str(building.year_of_construction),
+ building.function,
+ str(format(building.heating_demand[cte.YEAR][0] / 3.6e9, '.2f')),
+ str(format(building.cooling_demand[cte.YEAR][0] / 3.6e9, '.2f')),
+ str(format(building.domestic_hot_water_heat_demand[cte.YEAR][0] / 3.6e9, '.2f')),
+ str(format(
+ (building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0])
+ / 3.6e9, '.2f')),
+ ]
+ intensity_data = [
+ building.name,
+ str(format(total_floor_area, '.2f')),
+ str(format(building.heating_demand[cte.YEAR][0] / (3.6e6 * total_floor_area), '.2f')),
+ str(format(building.cooling_demand[cte.YEAR][0] / (3.6e6 * total_floor_area), '.2f')),
+ str(format(
+ (building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0]) /
+ (3.6e6 * total_floor_area), '.2f'))
+ ]
+ peak_data = [
+ building.name,
+ str(format(building.heating_peak_load[cte.YEAR][0] / 1000, '.2f')),
+ str(format(building.cooling_peak_load[cte.YEAR][0] / 1000, '.2f')),
+ str(format(
+ (building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0]) /
+ (3.6e6 * total_floor_area), '.2f'))
+ ]
+ table_data.append(building_data)
+ intensity_table_data.append(intensity_data)
+ peak_load_data.append(peak_data)
+
+ self.report.add_table(table_data, caption='Buildings Energy Consumption Data')
+ self.report.add_table(intensity_table_data, caption='Buildings Energy Use Intensity Data')
+ self.report.add_table(peak_load_data, caption='Buildings Peak Load Data')
+
+ def plot_monthly_energy_demands(self, data, file_name, title):
+ # Data preparation
+ months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
+ demands = {
+ 'Heating': ('heating', '#2196f3'),
+ 'Cooling': ('cooling', '#ff5a5f'),
+ 'DHW': ('dhw', '#4caf50'),
+ 'Electricity': ('lighting_appliance', '#ffc107')
+ }
+
+ # Helper function for plotting
+ def plot_bar_chart(ax, demand_type, color, ylabel, title):
+ values = data[demand_type]
+ ax.bar(months, values, color=color, width=0.6, zorder=2)
+ ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
+ ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
+ ax.set_ylabel(ylabel, fontsize=14, labelpad=10)
+ ax.set_title(title, fontsize=14, weight='bold', alpha=.8, pad=40)
+ ax.xaxis.set_major_locator(MaxNLocator(integer=True))
+ ax.yaxis.set_major_locator(MaxNLocator(integer=True))
+ ax.set_xticks(np.arange(len(months)))
+ ax.set_xticklabels(months, rotation=45, ha='right')
+ ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=90)
+ ax.spines[['top', 'left', 'bottom']].set_visible(False)
+ ax.spines['right'].set_linewidth(1.1)
+ average_value = np.mean(values)
+ ax.axhline(y=average_value, color='grey', linewidth=2, linestyle='--')
+ ax.text(len(months) - 1, average_value, f'Average = {average_value:.1f} kWh', ha='right', va='bottom',
+ color='grey')
+
+ # Plotting
+ fig, axs = plt.subplots(4, 1, figsize=(20, 16), dpi=96)
+ fig.suptitle(title, fontsize=16, weight='bold', alpha=.8)
+
+ plot_bar_chart(axs[0], 'heating', demands['Heating'][1], 'Heating Demand (kWh)', 'Monthly Heating Demand')
+ plot_bar_chart(axs[1], 'cooling', demands['Cooling'][1], 'Cooling Demand (kWh)', 'Monthly Cooling Demand')
+ plot_bar_chart(axs[2], 'dhw', demands['DHW'][1], 'DHW Demand (kWh)', 'Monthly DHW Demand')
+ plot_bar_chart(axs[3], 'lighting_appliance', demands['Electricity'][1], 'Electricity Demand (kWh)',
+ 'Monthly Electricity Demand')
+
+ # Set a white background
+ fig.patch.set_facecolor('white')
+
+ # Adjust the margins around the plot area
+ plt.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.1, hspace=0.5)
+
+ # Save the plot
+ chart_path = self.charts_path / f'{file_name}.png'
+ plt.savefig(chart_path, bbox_inches='tight')
+ plt.close()
+
+ return chart_path
+
+ def plot_monthly_energy_consumption(self, data, file_name, title):
+ # Data preparation
+ months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
+ consumptions = {
+ 'Heating': ('heating', '#2196f3', 'Heating Consumption (kWh)', 'Monthly Energy Consumption for Heating'),
+ 'Cooling': ('cooling', '#ff5a5f', 'Cooling Consumption (kWh)', 'Monthly Energy Consumption for Cooling'),
+ 'DHW': ('dhw', '#4caf50', 'DHW Consumption (kWh)', 'Monthly DHW Consumption')
+ }
+
+ # Helper function for plotting
+ def plot_bar_chart(ax, consumption_type, color, ylabel, title):
+ values = data[consumption_type]
+ ax.bar(months, values, color=color, width=0.6, zorder=2)
+ ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
+ ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
+ ax.set_xlabel('Month', fontsize=12, labelpad=10)
+ ax.set_ylabel(ylabel, fontsize=14, labelpad=10)
+ ax.set_title(title, fontsize=14, weight='bold', alpha=.8, pad=40)
+ ax.xaxis.set_major_locator(MaxNLocator(integer=True))
+ ax.yaxis.set_major_locator(MaxNLocator(integer=True))
+ ax.set_xticks(np.arange(len(months)))
+ ax.set_xticklabels(months, rotation=45, ha='right')
+ ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=90)
+ ax.spines[['top', 'left', 'bottom']].set_visible(False)
+ ax.spines['right'].set_linewidth(1.1)
+ average_value = np.mean(values)
+ ax.axhline(y=average_value, color='grey', linewidth=2, linestyle='--')
+ ax.text(len(months) - 1, average_value, f'Average = {average_value:.1f} kWh', ha='right', va='bottom',
+ color='grey')
+
+ # Plotting
+ fig, axs = plt.subplots(3, 1, figsize=(20, 15), dpi=96)
+ fig.suptitle(title, fontsize=16, weight='bold', alpha=.8)
+
+ plot_bar_chart(axs[0], 'heating', consumptions['Heating'][1], consumptions['Heating'][2],
+ consumptions['Heating'][3])
+ plot_bar_chart(axs[1], 'cooling', consumptions['Cooling'][1], consumptions['Cooling'][2],
+ consumptions['Cooling'][3])
+ plot_bar_chart(axs[2], 'dhw', consumptions['DHW'][1], consumptions['DHW'][2], consumptions['DHW'][3])
+
+ # Set a white background
+ fig.patch.set_facecolor('white')
+
+ # Adjust the margins around the plot area
+ plt.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.1, wspace=0.3, hspace=0.5)
+
+ # Save the plot
+ chart_path = self.charts_path / f'{file_name}.png'
+ plt.savefig(chart_path, bbox_inches='tight')
+ plt.close()
+
+ return chart_path
+
+ def fuel_consumption_breakdown(self, file_name, data):
+ fuel_consumption_breakdown = {}
+ for building in self.city.buildings:
+ for key, breakdown in data[f'{building.name}']['energy_consumption_breakdown'].items():
+ if key not in fuel_consumption_breakdown:
+ fuel_consumption_breakdown[key] = {sector: 0 for sector in breakdown}
+ for sector, value in breakdown.items():
+ if sector in fuel_consumption_breakdown[key]:
+ fuel_consumption_breakdown[key][sector] += value / 3.6e6
+ else:
+ fuel_consumption_breakdown[key][sector] = value / 3.6e6
+
+ plt.style.use('ggplot')
+ num_keys = len(fuel_consumption_breakdown)
+ fig, axs = plt.subplots(1 if num_keys <= 2 else num_keys, min(num_keys, 2), figsize=(12, 5))
+ axs = axs if num_keys > 1 else [axs] # Ensure axs is always iterable
+
+ for i, (fuel, breakdown) in enumerate(fuel_consumption_breakdown.items()):
+ labels = breakdown.keys()
+ values = breakdown.values()
+ colors = cm.get_cmap('tab20c', len(labels))
+ ax = axs[i] if num_keys > 1 else axs[0]
+ ax.pie(values, labels=labels,
+ autopct=lambda pct: f"{pct:.1f}%\n({pct / 100 * sum(values):.2f})",
+ startangle=90, colors=[colors(j) for j in range(len(labels))])
+ ax.set_title(f'{fuel} Consumption Breakdown')
+
+ plt.suptitle('City Energy Consumption Breakdown', fontsize=16, fontweight='bold')
+ plt.tight_layout(rect=[0, 0, 1, 0.95]) # Adjust layout to fit the suptitle
+
+ chart_path = self.charts_path / f'{file_name}.png'
+ plt.savefig(chart_path, dpi=300)
+ plt.close()
+ return chart_path
+
+ def energy_system_archetype_schematic(self):
+ energy_system_archetypes = {}
+ for building in self.city.buildings:
+ if building.energy_systems_archetype_name not in energy_system_archetypes:
+ energy_system_archetypes[building.energy_systems_archetype_name] = [building.name]
+ else:
+ energy_system_archetypes[building.energy_systems_archetype_name].append(building.name)
+
+ text = ""
+ items = ""
+ for archetype, buildings in energy_system_archetypes.items():
+ buildings_str = ", ".join(buildings)
+ text += f"Figure 4 shows the schematic of the proposed energy system for buildings {buildings_str}.\n"
+ if archetype in ['PV+4Pipe+DHW', 'PV+ASHP+GasBoiler+TES', 'Central 4 Pipes Air to Water Heat Pump and Gas Boiler with Independent Water Heating and PV']:
+ text += "This energy system archetype is formed of the following systems: \par"
+ items = ['Rooftop Photovoltaic System: The rooftop PV system is tied to the grid and in case there is surplus '
+ 'energy, it is sold to Hydro-Quebec through their Net-Meterin program.',
+ '4-Pipe HVAC System: This systems includes a 4-pipe heat pump capable of generating heat and cooling '
+ 'at the same time, a natural gas boiler as the auxiliary heating system, and a hot water storage tank.'
+ 'The temperature inside the tank is kept between 40-55 C. The cooling demand is totally supplied by '
+ 'the heat pump unit.',
+ 'Domestic Hot Water Heat Pump System: This system is in charge of supplying domestic hot water demand.'
+ 'The heat pump is connected to a thermal storage tank with electric resistance heating coil inside it.'
+ ' The temperature inside the tank should always remain above 60 C.']
+
+ self.report.add_text(text)
+ self.report.add_itemize(items=items)
+ schema_path = self.system_schemas_path / f'{archetype}.jpg'
+ self.report.add_image(str(schema_path).replace('\\', '/'),
+ f'Proposed energy system for buildings {buildings_str}')
+
+ def plot_monthly_radiation(self):
+ months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
+ monthly_roof_radiation = []
+ for i in range(len(months)):
+ tilted_radiation = 0
+ for building in self.city.buildings:
+ tilted_radiation += (building.roofs[0].global_irradiance_tilted[cte.MONTH][i] / 1000)
+ monthly_roof_radiation.append(tilted_radiation)
+
+ def plot_bar_chart(ax, months, values, color, ylabel, title):
+ ax.bar(months, values, color=color, width=0.6, zorder=2)
+ ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
+ ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
+ ax.set_xlabel('Month', fontsize=12, labelpad=10)
+ ax.set_ylabel(ylabel, fontsize=14, labelpad=10)
+ ax.set_title(title, fontsize=14, weight='bold', alpha=.8, pad=40)
+ ax.xaxis.set_major_locator(MaxNLocator(integer=True))
+ ax.yaxis.set_major_locator(MaxNLocator(integer=True))
+ ax.set_xticks(np.arange(len(months)))
+ ax.set_xticklabels(months, rotation=45, ha='right')
+ ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=90)
+ ax.spines[['top', 'left', 'bottom']].set_visible(False)
+ ax.spines['right'].set_linewidth(1.1)
+ average_value = np.mean(values)
+ ax.axhline(y=average_value, color='grey', linewidth=2, linestyle='--')
+ ax.text(len(months) - 1, average_value, f'Average = {average_value:.1f} kWh', ha='right', va='bottom',
+ color='grey')
+
+ # Plotting the bar chart
+ fig, ax = plt.subplots(figsize=(15, 8), dpi=96)
+ plot_bar_chart(ax, months, monthly_roof_radiation, '#ffc107', 'Tilted Roof Radiation (kWh / m2)',
+ 'Monthly Tilted Roof Radiation')
+
+ # Set a white background
+ fig.patch.set_facecolor('white')
+
+ # Adjust the margins around the plot area
+ plt.subplots_adjust(left=0.1, right=0.95, top=0.9, bottom=0.1)
+
+ # Save the plot
+ chart_path = self.charts_path / 'monthly_tilted_roof_radiation.png'
+ plt.savefig(chart_path, bbox_inches='tight')
+ plt.close()
+ return chart_path
+
+ def energy_consumption_comparison(self, current_status_data, retrofitted_data, file_name, title):
+ months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
+ consumptions = {
+ 'Heating': ('heating', '#2196f3', 'Heating Consumption (kWh)', 'Monthly Energy Consumption for Heating'),
+ 'Cooling': ('cooling', '#ff5a5f', 'Cooling Consumption (kWh)', 'Monthly Energy Consumption for Cooling'),
+ 'DHW': ('dhw', '#4caf50', 'DHW Consumption (kWh)', 'Monthly DHW Consumption')
+ }
+
+ # Helper function for plotting
+ def plot_double_bar_chart(ax, consumption_type, color, ylabel, title):
+ current_values = current_status_data[consumption_type]
+ retrofitted_values = retrofitted_data[consumption_type]
+ bar_width = 0.35
+ index = np.arange(len(months))
+
+ ax.bar(index, current_values, bar_width, label='Current Status', color=color, alpha=0.7, zorder=2)
+ ax.bar(index + bar_width, retrofitted_values, bar_width, label='Retrofitted', color=color, hatch='/', zorder=2)
+
+ ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
+ ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
+ ax.set_xlabel('Month', fontsize=12, labelpad=10)
+ ax.set_ylabel(ylabel, fontsize=14, labelpad=10)
+ ax.set_title(title, fontsize=14, weight='bold', alpha=.8, pad=40)
+ ax.set_xticks(index + bar_width / 2)
+ ax.set_xticklabels(months, rotation=45, ha='right')
+ ax.legend()
+
+ # Adding bar labels
+ ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=90)
+ ax.bar_label(ax.containers[1], padding=3, color='black', fontsize=12, rotation=90)
+
+ ax.spines[['top', 'left', 'bottom']].set_visible(False)
+ ax.spines['right'].set_linewidth(1.1)
+
+ # Plotting
+ fig, axs = plt.subplots(3, 1, figsize=(20, 25), dpi=96)
+ fig.suptitle(title, fontsize=16, weight='bold', alpha=.8)
+
+ plot_double_bar_chart(axs[0], 'heating', consumptions['Heating'][1], consumptions['Heating'][2],
+ consumptions['Heating'][3])
+ plot_double_bar_chart(axs[1], 'cooling', consumptions['Cooling'][1], consumptions['Cooling'][2],
+ consumptions['Cooling'][3])
+ plot_double_bar_chart(axs[2], 'dhw', consumptions['DHW'][1], consumptions['DHW'][2], consumptions['DHW'][3])
+
+ # Set a white background
+ fig.patch.set_facecolor('white')
+
+ # Adjust the margins around the plot area
+ plt.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.1, wspace=0.3, hspace=0.5)
+
+ # Save the plot
+ chart_path = self.charts_path / f'{file_name}.png'
+ plt.savefig(chart_path, bbox_inches='tight')
+ plt.close()
+
+ return chart_path
+
+ def yearly_consumption_comparison(self):
+ current_total_consumption = round(self.current_status_data['total_consumption'], 2)
+ retrofitted_total_consumption = round(self.retrofitted_data['total_consumption'], 2)
+ text = (
+ f'The total yearly energy consumption before and after the retrofit are {current_total_consumption} MWh and '
+ f'{retrofitted_total_consumption} MWh, respectively.')
+ if retrofitted_total_consumption < current_total_consumption:
+ change = str(round((current_total_consumption - retrofitted_total_consumption) * 100 / current_total_consumption,
+ 2))
+ text += f'Therefore, the total yearly energy consumption decreased by {change} \%.'
+ else:
+ change = str(round((retrofitted_total_consumption - current_total_consumption) * 100 /
+ retrofitted_total_consumption, 2))
+ text += f'Therefore, the total yearly energy consumption increased by {change} \%. \par'
+ self.report.add_text(text)
+
+ def pv_system(self):
+ self.report.add_text('The first step in PV assessments is evaluating the potential of buildings for installing '
+ 'rooftop PV system. The benchmark value used for this evaluation is the mean yearly solar '
+ 'incident in Montreal. According to Hydro-Quebec, the mean annual incident in Montreal is 1350'
+ 'kWh/m2. Therefore, any building with rooftop annual global horizontal radiation of less than '
+ '1080 kWh/m2 is considered to be infeasible. Table 4 shows the yearly horizontal radiation on '
+ 'buildings roofs. \par')
+ radiation_data = [
+ ["Building Name", "Roof Area $m^2$", "Function", "Rooftop Annual Global Horizontal Radiation kWh/ $m^2$"]
+ ]
+ pv_feasible_buildings = []
+ for building in self.city.buildings:
+ if building.roofs[0].global_irradiance[cte.YEAR][0] > 1080:
+ pv_feasible_buildings.append(building.name)
+ data = [building.name, str(format(building.roofs[0].perimeter_area, '.2f')), building.function,
+ str(format(building.roofs[0].global_irradiance[cte.YEAR][0] / (cte.WATTS_HOUR_TO_JULES * 1000), '.2f'))]
+ radiation_data.append(data)
+
+ self.report.add_table(radiation_data,
+ caption='Buildings Roof Characteristics')
+
+ if len(pv_feasible_buildings) == len(self.city.buildings):
+ buildings_str = 'all'
+ else:
+ buildings_str = ", ".join(pv_feasible_buildings)
+ self.report.add_text(f"From the table it can be seen that {buildings_str} buildings are good candidates to have "
+ f"rooftop PV system. The next step is calculating the amount of solar radiation on a tilted "
+ f"surface. Figure 5 shows the total monthly solar radiation on a surface with the tilt angle "
+ f"of 45 degrees on the roofs of those buildings that are identified to have rooftop PV system."
+ f"\par")
+ tilted_radiation = self.plot_monthly_radiation()
+ self.report.add_image(str(tilted_radiation).replace('\\', '/'),
+ caption='Total Monthly Solar Radiation on Buildings Roofs on a 45 Degrees Tilted Surface',
+ placement='H')
+ self.report.add_text('The first step in sizing the PV system is to find the available roof area. '
+ 'Few considerations need to be made here. The considerations include space for maintenance '
+ 'crew, space for mechanical equipment, and orientation correction factor to make sure all '
+ 'the panel are truly facing south. After all these considerations, the minimum distance '
+ 'between the panels to avoid shading throughout the year is found. Table 5 shows the number of'
+ 'panles on each buildings roof, yearly PV production, total electricity consumption, and self '
+ 'consumption. \par')
+
+ pv_output_table = [['Building Name', 'Total Surface Area of PV Panels ($m^2$)',
+ 'Total Solar Incident on PV Modules (MWh)', 'Yearly PV production (MWh)']]
+
+ for building in self.city.buildings:
+ if building.name in pv_feasible_buildings:
+ pv_data = []
+ pv_data.append(building.name)
+ yearly_solar_incident = (building.roofs[0].global_irradiance_tilted[cte.YEAR][0] *
+ building.roofs[0].installed_solar_collector_area) / (cte.WATTS_HOUR_TO_JULES * 1e6)
+ yearly_solar_incident_str = format(yearly_solar_incident, '.2f')
+ yearly_pv_output = building.onsite_electrical_production[cte.YEAR][0] / (cte.WATTS_HOUR_TO_JULES * 1e6)
+ yearly_pv_output_str = format(yearly_pv_output, '.2f')
+
+ pv_data.append(format(building.roofs[0].installed_solar_collector_area, '.2f'))
+ pv_data.append(yearly_solar_incident_str)
+ pv_data.append(yearly_pv_output_str)
+
+ pv_output_table.append(pv_data)
+
+ self.report.add_table(pv_output_table, caption='PV System Simulation Results', first_column_width=3)
+
+ def life_cycle_cost_stacked_bar(self, file_name, title):
+ # Aggregate LCC components for current and retrofitted statuses
+ current_status_capex = 0
+ current_status_opex = 0
+ current_status_maintenance = 0
+ current_status_end_of_life = 0
+ retrofitted_capex = 0
+ retrofitted_opex = 0
+ retrofitted_maintenance = 0
+ retrofitted_end_of_life = 0
+ current_status_operational_income = 0
+ retrofitted_operational_income = 0
+
+ for building in self.city.buildings:
+ current_status_capex += self.current_status_lcc[f'{building.name}']['capital_cost_per_sqm']
+ retrofitted_capex += self.retrofitted_lcc[f'{building.name}']['capital_cost_per_sqm']
+ current_status_opex += self.current_status_lcc[f'{building.name}']['operational_cost_per_sqm']
+ retrofitted_opex += self.retrofitted_lcc[f'{building.name}']['operational_cost_per_sqm']
+ current_status_maintenance += self.current_status_lcc[f'{building.name}']['maintenance_cost_per_sqm']
+ retrofitted_maintenance += self.retrofitted_lcc[f'{building.name}']['maintenance_cost_per_sqm']
+ current_status_end_of_life += self.current_status_lcc[f'{building.name}']['end_of_life_cost_per_sqm']
+ retrofitted_end_of_life += self.retrofitted_lcc[f'{building.name}']['end_of_life_cost_per_sqm']
+ current_status_operational_income += self.current_status_lcc[f'{building.name}']['operational_income_per_sqm']
+ retrofitted_operational_income += self.retrofitted_lcc[f'{building.name}']['operational_income_per_sqm']
+
+ current_status_lcc_components_sqm = {
+ 'Capital Cost': current_status_capex / len(self.city.buildings),
+ 'Operational Cost': (current_status_opex - current_status_operational_income) / len(self.city.buildings),
+ 'Maintenance Cost': current_status_maintenance / len(self.city.buildings),
+ 'End of Life Cost': current_status_end_of_life / len(self.city.buildings),
+ }
+ retrofitted_lcc_components_sqm = {
+ 'Capital Cost': retrofitted_capex / len(self.city.buildings),
+ 'Operational Cost': (retrofitted_opex - retrofitted_operational_income) / len(self.city.buildings),
+ 'Maintenance Cost': retrofitted_maintenance / len(self.city.buildings),
+ 'End of Life Cost': retrofitted_end_of_life / len(self.city.buildings),
+ }
+
+ labels = ['Current Status', 'Retrofitted Status']
+ categories = ['Capital Cost', 'Operational Cost', 'Maintenance Cost', 'End of Life Cost']
+ colors = ['#2196f3', '#ff5a5f', '#4caf50', '#ffc107'] # Added new color
+
+ # Data preparation
+ bar_width = 0.35
+ r = np.arange(len(labels))
+
+ fig, ax = plt.subplots(figsize=(12, 8), dpi=96)
+ fig.suptitle(title, fontsize=16, weight='bold', alpha=.8)
+
+ # Plotting current status data
+ bottom = np.zeros(len(labels))
+ for category, color in zip(categories, colors):
+ values = [current_status_lcc_components_sqm[category], retrofitted_lcc_components_sqm[category]]
+ ax.bar(r, values, bottom=bottom, color=color, edgecolor='white', width=bar_width, label=category)
+ bottom += values
+
+ # Adding summation annotations at the top of the bars
+ for idx, (x, total) in enumerate(zip(r, bottom)):
+ ax.text(x, total, f'{total:.1f}', ha='center', va='bottom', fontsize=12, fontweight='bold')
+
+ # Adding labels, title, and grid
+ ax.set_xlabel('LCC Components', fontsize=12, labelpad=10)
+ ax.set_ylabel('Average Cost (CAD/m²)', fontsize=14, labelpad=10)
+ ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
+ ax.set_xticks(r)
+ ax.set_xticklabels(labels, rotation=45, ha='right')
+ ax.legend()
+
+ # Adding a white background
+ fig.patch.set_facecolor('white')
+
+ # Adjusting the margins around the plot area
+ plt.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.2)
+
+ # Save the plot
+ chart_path = self.charts_path / f'{file_name}.png'
+ plt.savefig(chart_path, bbox_inches='tight')
+ plt.close()
+
+ return chart_path
+
+ def create_report(self):
+ # Add sections and text to the report
+ self.report.add_section('Overview of the Current Status in Buildings')
+ self.report.add_text('In this section, an overview of the current status of buildings characteristics, '
+ 'energy demand and consumptions are provided')
+ self.report.add_subsection('Buildings Characteristics')
+
+ self.building_energy_info()
+
+ # current monthly demands and consumptions
+ current_monthly_demands = self.current_status_data['monthly_demands']
+ current_monthly_consumptions = self.current_status_data['monthly_consumptions']
+
+ # Plot and save demand chart
+ current_demand_chart_path = self.plot_monthly_energy_demands(data=current_monthly_demands,
+ file_name='current_monthly_demands',
+ title='Current Status Monthly Energy Demands')
+ # Plot and save consumption chart
+ current_consumption_chart_path = self.plot_monthly_energy_consumption(data=current_monthly_consumptions,
+ file_name='monthly_consumptions',
+ title='Monthly Energy Consumptions')
+ current_consumption_breakdown_path = self.fuel_consumption_breakdown('City_Energy_Consumption_Breakdown',
+ self.current_status_data)
+ retrofitted_consumption_breakdown_path = self.fuel_consumption_breakdown(
+ 'fuel_consumption_breakdown_after_retrofit',
+ self.retrofitted_data)
+ life_cycle_cost_sqm_stacked_bar_chart_path = self.life_cycle_cost_stacked_bar('lcc_per_sqm',
+ 'LCC Analysis')
+ # Add current state of energy demands in the city
+ self.report.add_subsection('Current State of Energy Demands in the City')
+ self.report.add_text('The total monthly energy demands in the city are shown in Figure 1. It should be noted '
+ 'that the electricity demand refers to total lighting and appliance electricity demands')
+ self.report.add_image(str(current_demand_chart_path).replace('\\', '/'),
+ 'Total Monthly Energy Demands in City',
+ placement='h')
+
+ # Add current state of energy consumption in the city
+ self.report.add_subsection('Current State of Energy Consumption in the City')
+ self.report.add_text('The following figure shows the amount of energy consumed to supply heating, cooling, and '
+ 'domestic hot water needs in the city. The details of the systems in each building before '
+ 'and after retrofit are provided in Section 4. \par')
+ self.report.add_image(str(current_consumption_chart_path).replace('\\', '/'),
+ 'Total Monthly Energy Consumptions in City',
+ placement='H')
+ self.report.add_text('Figure 3 shows the yearly energy supplied to the city by fuel in different sectors. '
+ 'All the values are in kWh.')
+ self.report.add_image(str(current_consumption_breakdown_path).replace('\\', '/'),
+ 'Current Energy Consumption Breakdown in the City by Fuel',
+ placement='H')
+ self.report.add_section(f'{self.retrofit_scenario}')
+ self.report.add_subsection('Proposed Systems')
+ self.energy_system_archetype_schematic()
+ if 'PV' in self.retrofit_scenario:
+ self.report.add_subsection('Rooftop Photovoltaic System Implementation')
+ self.pv_system()
+ if 'System' in self.retrofit_scenario:
+ self.report.add_subsection('Retrofitted HVAC and DHW Systems')
+ self.report.add_text('Figure 6 shows a comparison between total monthly energy consumption in the selected '
+ 'buildings before and after retrofitting.')
+ consumption_comparison = self.energy_consumption_comparison(self.current_status_data['monthly_consumptions'],
+ self.retrofitted_data['monthly_consumptions'],
+ 'energy_consumption_comparison_in_city',
+ 'Total Monthly Energy Consumption Comparison in '
+ 'Buildings')
+ self.report.add_image(str(consumption_comparison).replace('\\', '/'),
+ caption='Comparison of Total Monthly Energy Consumption in City Buildings',
+ placement='H')
+ self.yearly_consumption_comparison()
+ self.report.add_text('Figure 7 shows the fuel consumption breakdown in the area after the retrofit.')
+ self.report.add_image(str(retrofitted_consumption_breakdown_path).replace('\\', '/'),
+ caption=f'Fuel Consumption Breakdown After {self.retrofit_scenario}',
+ placement='H')
+ self.report.add_subsection('Life Cycle Cost Analysis')
+ self.report.add_image(str(life_cycle_cost_sqm_stacked_bar_chart_path).replace('\\', '/'),
+ caption='Average Life Cycle Cost Components',
+ placement='H')
+
+ # Save and compile the report
+ self.report.save_report()
+ self.report.compile_to_pdf()
diff --git a/energy_system_modelling_package/energy_system_retrofit/energy_system_retrofit_results.py b/energy_system_modelling_package/energy_system_retrofit/energy_system_retrofit_results.py
new file mode 100644
index 00000000..1b84601a
--- /dev/null
+++ b/energy_system_modelling_package/energy_system_retrofit/energy_system_retrofit_results.py
@@ -0,0 +1,176 @@
+import hub.helpers.constants as cte
+
+
+def hourly_electricity_consumption_profile(building):
+ hourly_electricity_consumption = []
+ energy_systems = building.energy_systems
+ appliance = building.appliances_electrical_demand[cte.HOUR]
+ lighting = building.lighting_electrical_demand[cte.HOUR]
+ elec_heating = 0
+ elec_cooling = 0
+ elec_dhw = 0
+ if cte.HEATING in building.energy_consumption_breakdown[cte.ELECTRICITY]:
+ elec_heating = 1
+ if cte.COOLING in building.energy_consumption_breakdown[cte.ELECTRICITY]:
+ elec_cooling = 1
+ if cte.DOMESTIC_HOT_WATER in building.energy_consumption_breakdown[cte.ELECTRICITY]:
+ elec_dhw = 1
+ heating = None
+ cooling = None
+ dhw = None
+ if elec_heating == 1:
+ for energy_system in energy_systems:
+ if cte.HEATING in energy_system.demand_types:
+ for generation_system in energy_system.generation_systems:
+ if generation_system.fuel_type == cte.ELECTRICITY:
+ if cte.HEATING in generation_system.energy_consumption:
+ heating = generation_system.energy_consumption[cte.HEATING][cte.HOUR]
+ else:
+ if len(energy_system.generation_systems) > 1:
+ heating = [x / 2 for x in building.heating_consumption[cte.HOUR]]
+ else:
+ heating = building.heating_consumption[cte.HOUR]
+ if elec_dhw == 1:
+ for energy_system in energy_systems:
+ if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
+ for generation_system in energy_system.generation_systems:
+ if generation_system.fuel_type == cte.ELECTRICITY:
+ if cte.DOMESTIC_HOT_WATER in generation_system.energy_consumption:
+ dhw = generation_system.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR]
+ else:
+ if len(energy_system.generation_systems) > 1:
+ dhw = [x / 2 for x in building.domestic_hot_water_consumption[cte.HOUR]]
+ else:
+ dhw = building.domestic_hot_water_consumption[cte.HOUR]
+
+ if elec_cooling == 1:
+ for energy_system in energy_systems:
+ if cte.COOLING in energy_system.demand_types:
+ for generation_system in energy_system.generation_systems:
+ if cte.COOLING in generation_system.energy_consumption:
+ cooling = generation_system.energy_consumption[cte.COOLING][cte.HOUR]
+ else:
+ if len(energy_system.generation_systems) > 1:
+ cooling = [x / 2 for x in building.cooling_consumption[cte.HOUR]]
+ else:
+ cooling = building.cooling_consumption[cte.HOUR]
+
+ for i in range(len(building.heating_demand[cte.HOUR])):
+ hourly = 0
+ hourly += appliance[i] / 3600
+ hourly += lighting[i] / 3600
+ if heating is not None:
+ hourly += heating[i] / 3600
+ if cooling is not None:
+ hourly += cooling[i] / 3600
+ if dhw is not None:
+ hourly += dhw[i] / 3600
+ hourly_electricity_consumption.append(hourly)
+ return hourly_electricity_consumption
+
+
+def consumption_data(city):
+ energy_consumption_data = {}
+ for building in city.buildings:
+ hourly_electricity_consumption = hourly_electricity_consumption_profile(building)
+ energy_consumption_data[f'{building.name}'] = {'heating_consumption': building.heating_consumption,
+ 'cooling_consumption': building.cooling_consumption,
+ 'domestic_hot_water_consumption':
+ building.domestic_hot_water_consumption,
+ 'energy_consumption_breakdown':
+ building.energy_consumption_breakdown,
+ 'hourly_electricity_consumption': hourly_electricity_consumption}
+ peak_electricity_consumption = 0
+ for building in energy_consumption_data:
+ peak_electricity_consumption += max(energy_consumption_data[building]['hourly_electricity_consumption'])
+ heating_demand_monthly = []
+ cooling_demand_monthly = []
+ dhw_demand_monthly = []
+ lighting_appliance_monthly = []
+ heating_consumption_monthly = []
+ cooling_consumption_monthly = []
+ dhw_consumption_monthly = []
+ for i in range(12):
+ heating_demand = 0
+ cooling_demand = 0
+ dhw_demand = 0
+ lighting_appliance_demand = 0
+ heating_consumption = 0
+ cooling_consumption = 0
+ dhw_consumption = 0
+ for building in city.buildings:
+ heating_demand += building.heating_demand[cte.MONTH][i] / 3.6e6
+ cooling_demand += building.cooling_demand[cte.MONTH][i] / 3.6e6
+ dhw_demand += building.domestic_hot_water_heat_demand[cte.MONTH][i] / 3.6e6
+ lighting_appliance_demand += building.lighting_electrical_demand[cte.MONTH][i] / 3.6e6
+ heating_consumption += building.heating_consumption[cte.MONTH][i] / 3.6e6
+ if building.cooling_consumption[cte.YEAR][0] == 0:
+ cooling_consumption += building.cooling_demand[cte.MONTH][i] / (3.6e6 * 2)
+ else:
+ cooling_consumption += building.cooling_consumption[cte.MONTH][i] / 3.6e6
+ dhw_consumption += building.domestic_hot_water_consumption[cte.MONTH][i] / 3.6e6
+ heating_demand_monthly.append(heating_demand)
+ cooling_demand_monthly.append(cooling_demand)
+ dhw_demand_monthly.append(dhw_demand)
+ lighting_appliance_monthly.append(lighting_appliance_demand)
+ heating_consumption_monthly.append(heating_consumption)
+ cooling_consumption_monthly.append(cooling_consumption)
+ dhw_consumption_monthly.append(dhw_consumption)
+
+ monthly_demands = {'heating': heating_demand_monthly,
+ 'cooling': cooling_demand_monthly,
+ 'dhw': dhw_demand_monthly,
+ 'lighting_appliance': lighting_appliance_monthly}
+ monthly_consumptions = {'heating': heating_consumption_monthly,
+ 'cooling': cooling_consumption_monthly,
+ 'dhw': dhw_consumption_monthly}
+ yearly_heating = 0
+ yearly_cooling = 0
+ yearly_dhw = 0
+ yearly_appliance = 0
+ yearly_lighting = 0
+ for building in city.buildings:
+ yearly_appliance += building.appliances_electrical_demand[cte.YEAR][0] / 3.6e9
+ yearly_lighting += building.lighting_electrical_demand[cte.YEAR][0] / 3.6e9
+ yearly_heating += building.heating_consumption[cte.YEAR][0] / 3.6e9
+ yearly_cooling += building.cooling_consumption[cte.YEAR][0] / 3.6e9
+ yearly_dhw += building.domestic_hot_water_consumption[cte.YEAR][0] / 3.6e9
+
+ total_consumption = yearly_heating + yearly_cooling + yearly_dhw + yearly_appliance + yearly_lighting
+ energy_consumption_data['monthly_demands'] = monthly_demands
+ energy_consumption_data['monthly_consumptions'] = monthly_consumptions
+ energy_consumption_data['total_consumption'] = total_consumption
+ energy_consumption_data['maximum_hourly_electricity_consumption'] = peak_electricity_consumption
+
+ return energy_consumption_data
+
+
+def cost_data(building, lcc_dataframe, cost_retrofit_scenario):
+ total_floor_area = 0
+ for thermal_zone in building.thermal_zones_from_internal_zones:
+ total_floor_area += thermal_zone.total_floor_area
+ capital_cost = lcc_dataframe.loc['total_capital_costs_systems', f'Scenario {cost_retrofit_scenario}']
+ operational_cost = lcc_dataframe.loc['total_operational_costs', f'Scenario {cost_retrofit_scenario}']
+ maintenance_cost = lcc_dataframe.loc['total_maintenance_costs', f'Scenario {cost_retrofit_scenario}']
+ end_of_life_cost = lcc_dataframe.loc['end_of_life_costs', f'Scenario {cost_retrofit_scenario}']
+ operational_income = lcc_dataframe.loc['operational_incomes', f'Scenario {cost_retrofit_scenario}']
+ total_life_cycle_cost = capital_cost + operational_cost + maintenance_cost + end_of_life_cost + operational_income
+ specific_capital_cost = capital_cost / total_floor_area
+ specific_operational_cost = operational_cost / total_floor_area
+ specific_maintenance_cost = maintenance_cost / total_floor_area
+ specific_end_of_life_cost = end_of_life_cost / total_floor_area
+ specific_operational_income = operational_income / total_floor_area
+ specific_life_cycle_cost = total_life_cycle_cost / total_floor_area
+ life_cycle_cost_analysis = {'capital_cost': capital_cost,
+ 'capital_cost_per_sqm': specific_capital_cost,
+ 'operational_cost': operational_cost,
+ 'operational_cost_per_sqm': specific_operational_cost,
+ 'maintenance_cost': maintenance_cost,
+ 'maintenance_cost_per_sqm': specific_maintenance_cost,
+ 'end_of_life_cost': end_of_life_cost,
+ 'end_of_life_cost_per_sqm': specific_end_of_life_cost,
+ 'operational_income': operational_income,
+ 'operational_income_per_sqm': specific_operational_income,
+ 'total_life_cycle_cost': total_life_cycle_cost,
+ 'total_life_cycle_cost_per_sqm': specific_life_cycle_cost}
+ return life_cycle_cost_analysis
diff --git a/energy_system_modelling_package/random_assignation.py b/energy_system_modelling_package/random_assignation.py
new file mode 100644
index 00000000..605def1c
--- /dev/null
+++ b/energy_system_modelling_package/random_assignation.py
@@ -0,0 +1,123 @@
+"""
+This project aims to assign energy systems archetype names to Montreal buildings.
+The random assignation is based on statistical information extracted from different sources, being:
+- For residential buildings:
+ - SHEU 2015: https://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/menus/sheu/2015/tables.cfm
+- For non-residential buildings:
+ - Montreal dataportal: https://dataportalforcities.org/north-america/canada/quebec/montreal
+ - https://www.eia.gov/consumption/commercial/data/2018/
+"""
+import json
+import random
+
+from hub.city_model_structure.building import Building
+
+energy_systems_format = 'montreal_custom'
+
+# parameters:
+residential_systems_percentage = {'system 1 gas': 15,
+ 'system 1 electricity': 35,
+ 'system 2 gas': 0,
+ 'system 2 electricity': 0,
+ 'system 3 and 4 gas': 0,
+ 'system 3 and 4 electricity': 0,
+ 'system 5 gas': 0,
+ 'system 5 electricity': 0,
+ 'system 6 gas': 0,
+ 'system 6 electricity': 0,
+ 'system 8 gas': 15,
+ 'system 8 electricity': 35}
+
+residential_new_systems_percentage = {
+ 'Central Hydronic Air and Gas Source Heating System with Unitary Split Cooling and Air Source HP DHW and PV': 100,
+ 'Central Hydronic Air and Electricity Source Heating System with Unitary Split Cooling and Air Source HP DHW and PV': 0,
+ 'Central Hydronic Ground and Gas Source Heating System with Unitary Split Cooling and Air Source HP DHW and PV': 0,
+ 'Central Hydronic Ground and Electricity Source Heating System with Unitary Split Cooling and Air Source HP DHW '
+ 'and PV': 0,
+ 'Central Hydronic Water and Gas Source Heating System with Unitary Split Cooling and Air Source HP DHW and PV': 0,
+ 'Central Hydronic Water and Electricity Source Heating System with Unitary Split Cooling and Air Source HP DHW '
+ 'and PV': 0,
+ 'Central Hydronic Air and Gas Source Heating System with Unitary Split and Air Source HP DHW': 0,
+ 'Central Hydronic Air and Electricity Source Heating System with Unitary Split and Air Source HP DHW': 0,
+ 'Central Hydronic Ground and Gas Source Heating System with Unitary Split and Air Source HP DHW': 0,
+ 'Central Hydronic Ground and Electricity Source Heating System with Unitary Split and Air Source HP DHW': 0,
+ 'Central Hydronic Water and Gas Source Heating System with Unitary Split and Air Source HP DHW': 0,
+ 'Central Hydronic Water and Electricity Source Heating System with Unitary Split and Air Source HP DHW': 0,
+ 'Rooftop PV System': 0
+}
+
+non_residential_systems_percentage = {'system 1 gas': 0,
+ 'system 1 electricity': 0,
+ 'system 2 gas': 0,
+ 'system 2 electricity': 0,
+ 'system 3 and 4 gas': 39,
+ 'system 3 and 4 electricity': 36,
+ 'system 5 gas': 0,
+ 'system 5 electricity': 0,
+ 'system 6 gas': 13,
+ 'system 6 electricity': 12,
+ 'system 8 gas': 0,
+ 'system 8 electricity': 0}
+
+
+def _retrieve_buildings(path, year_of_construction_field=None,
+ function_field=None, function_to_hub=None, aliases_field=None):
+ _buildings = []
+ with open(path, 'r', encoding='utf8') as json_file:
+ _geojson = json.loads(json_file.read())
+ for feature in _geojson['features']:
+ _building = {}
+ year_of_construction = None
+ if year_of_construction_field is not None:
+ year_of_construction = int(feature['properties'][year_of_construction_field])
+ function = None
+ if function_field is not None:
+ function = feature['properties'][function_field]
+ if function_to_hub is not None:
+ # use the transformation dictionary to retrieve the proper function
+ if function in function_to_hub:
+ function = function_to_hub[function]
+ building_name = ''
+ building_aliases = []
+ if 'id' in feature:
+ building_name = feature['id']
+ if aliases_field is not None:
+ for alias_field in aliases_field:
+ building_aliases.append(feature['properties'][alias_field])
+ _building['year_of_construction'] = year_of_construction
+ _building['function'] = function
+ _building['building_name'] = building_name
+ _building['building_aliases'] = building_aliases
+ _buildings.append(_building)
+ return _buildings
+
+
+def call_random(_buildings: [Building], _systems_percentage):
+ _buildings_with_systems = []
+ _systems_distribution = []
+ _selected_buildings = list(range(0, len(_buildings)))
+ random.shuffle(_selected_buildings)
+ total = 0
+ maximum = 0
+ add_to = 0
+ for _system in _systems_percentage:
+ if _systems_percentage[_system] > 0:
+ number_of_buildings = round(_systems_percentage[_system] / 100 * len(_selected_buildings))
+ _systems_distribution.append({'system': _system, 'number': _systems_percentage[_system],
+ 'number_of_buildings': number_of_buildings})
+ if number_of_buildings > maximum:
+ maximum = number_of_buildings
+ add_to = len(_systems_distribution) - 1
+ total += number_of_buildings
+ missing = 0
+ if total != len(_selected_buildings):
+ missing = len(_selected_buildings) - total
+ if missing != 0:
+ _systems_distribution[add_to]['number_of_buildings'] += missing
+ _position = 0
+ for case in _systems_distribution:
+ for i in range(0, case['number_of_buildings']):
+ _buildings[_selected_buildings[_position]].energy_systems_archetype_name = case['system']
+ _position += 1
+ return _buildings
+
diff --git a/energy_system_modelling_package/report_creation.py b/energy_system_modelling_package/report_creation.py
new file mode 100644
index 00000000..6298d232
--- /dev/null
+++ b/energy_system_modelling_package/report_creation.py
@@ -0,0 +1,119 @@
+import subprocess
+import datetime
+import os
+from pathlib import Path
+
+
+class LatexReport:
+ def __init__(self, file_name, title, subtitle, output_path):
+ self.file_name = file_name
+ self.output_path = Path(output_path) / 'report'
+ self.output_path.mkdir(parents=True, exist_ok=True)
+ self.file_path = self.output_path / f"{file_name}.tex"
+ self.content = []
+ self.content.append(r'\documentclass{article}')
+ self.content.append(r'\usepackage[margin=2.5cm]{geometry}')
+ self.content.append(r'\usepackage{graphicx}')
+ self.content.append(r'\usepackage{tabularx}')
+ self.content.append(r'\usepackage{multirow}')
+ self.content.append(r'\usepackage{float}')
+ self.content.append(r'\begin{document}')
+
+ current_datetime = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
+
+ self.content.append(r'\title{' + title + '}')
+ self.content.append(r'\author{Next-Generation Cities Institute}')
+ self.content.append(r'\date{}')
+ self.content.append(r'\maketitle')
+
+ self.content.append(r'\begin{center}')
+ self.content.append(r'\large ' + subtitle + r'\\')
+ self.content.append(r'\large ' + current_datetime)
+ self.content.append(r'\end{center}')
+
+ def add_section(self, section_title):
+ self.content.append(r'\section{' + section_title + r'}')
+
+ def add_subsection(self, subsection_title):
+ self.content.append(r'\subsection{' + subsection_title + r'}')
+
+ def add_subsubsection(self, subsection_title):
+ self.content.append(r'\subsubsection{' + subsection_title + r'}')
+
+ def add_text(self, text):
+ self.content.append(text)
+
+ def add_table(self, table_data, caption=None, first_column_width=None, merge_first_column=False):
+ num_columns = len(table_data[0])
+ total_width = 0.9
+ first_column_width_str = ''
+
+ if first_column_width is not None:
+ first_column_width_str = str(first_column_width) + 'cm'
+ total_width -= first_column_width / 16.0
+
+ if caption:
+ self.content.append(r'\begin{table}[htbp]')
+ self.content.append(r'\caption{' + caption + r'}')
+ self.content.append(r'\centering')
+
+ column_format = '|p{' + first_column_width_str + r'}|' + '|'.join(
+ ['X'] * (num_columns - 1)) + '|' if first_column_width is not None else '|' + '|'.join(['X'] * num_columns) + '|'
+ self.content.append(r'\begin{tabularx}{\textwidth}{' + column_format + '}')
+ self.content.append(r'\hline')
+
+ previous_first_column = None
+ rowspan_count = 1
+
+ for i, row in enumerate(table_data):
+ if merge_first_column and i > 0 and row[0] == previous_first_column:
+ rowspan_count += 1
+ self.content.append(' & '.join(['' if j == 0 else cell for j, cell in enumerate(row)]) + r' \\')
+ else:
+ if merge_first_column and i > 0 and rowspan_count > 1:
+ self.content[-rowspan_count] = self.content[-rowspan_count].replace(r'\multirow{1}',
+ r'\multirow{' + str(rowspan_count) + '}')
+ rowspan_count = 1
+ if merge_first_column and i < len(table_data) - 1 and row[0] == table_data[i + 1][0]:
+ self.content.append(r'\multirow{1}{*}{' + row[0] + '}' + ' & ' + ' & '.join(row[1:]) + r' \\')
+ else:
+ self.content.append(' & '.join(row) + r' \\')
+ previous_first_column = row[0]
+ self.content.append(r'\hline')
+
+ if merge_first_column and rowspan_count > 1:
+ self.content[-rowspan_count] = self.content[-rowspan_count].replace(r'\multirow{1}',
+ r'\multirow{' + str(rowspan_count) + '}')
+
+ self.content.append(r'\end{tabularx}')
+
+ if caption:
+ self.content.append(r'\end{table}')
+
+ def add_image(self, image_path, caption=None, placement='ht'):
+ if caption:
+ self.content.append(r'\begin{figure}[' + placement + r']')
+ self.content.append(r'\centering')
+ self.content.append(r'\includegraphics[width=\textwidth]{' + image_path + r'}')
+ self.content.append(r'\caption{' + caption + r'}')
+ self.content.append(r'\end{figure}')
+ else:
+ self.content.append(r'\begin{figure}[' + placement + r']')
+ self.content.append(r'\centering')
+ self.content.append(r'\includegraphics[width=\textwidth]{' + image_path + r'}')
+ self.content.append(r'\end{figure}')
+
+ def add_itemize(self, items):
+ self.content.append(r'\begin{itemize}')
+ for item in items:
+ self.content.append(r'\item ' + item)
+ self.content.append(r'\end{itemize}')
+
+ def save_report(self):
+ self.content.append(r'\end{document}')
+ with open(self.file_path, 'w') as f:
+ f.write('\n'.join(self.content))
+
+ def compile_to_pdf(self):
+ subprocess.run(['pdflatex', '-output-directory', str(self.output_path), str(self.file_path)])
+
diff --git a/hub/data/energy_systems/montreal_custom_systems.xml b/hub/data/energy_systems/montreal_custom_systems.xml
index f3b0466f..258fe86a 100644
--- a/hub/data/energy_systems/montreal_custom_systems.xml
+++ b/hub/data/energy_systems/montreal_custom_systems.xml
@@ -22,7 +22,7 @@
Air cooled DX with external condenser
- 3.23
+ 2.5
false
@@ -32,8 +32,8 @@
Heat Pump
- 2.79
- 3.23
+ 2.5
+ 3
false
@@ -198,7 +198,7 @@
3
8
-g
+
Single zone packaged rooftop unit with electrical resistance furnace and baseboards and fuel boiler for acs
diff --git a/hub/data/energy_systems/montreal_future_systems.xml b/hub/data/energy_systems/montreal_future_systems.xml
index b51c9488..e687524f 100644
--- a/hub/data/energy_systems/montreal_future_systems.xml
+++ b/hub/data/energy_systems/montreal_future_systems.xml
@@ -911,7 +911,7 @@
- 4.5
+ 4
@@ -1411,7 +1411,7 @@
23
- 16
+ 17
diff --git a/monthly_dhw.py b/monthly_dhw.py
new file mode 100644
index 00000000..754e464a
--- /dev/null
+++ b/monthly_dhw.py
@@ -0,0 +1,56 @@
+import json
+from pathlib import Path
+import matplotlib.pyplot as plt
+import numpy as np
+from matplotlib.ticker import MaxNLocator
+
+output_path = (Path(__file__).parent / 'out_files').resolve()
+
+# File paths for the three JSON files
+file1 = output_path / 'base_case_buildings_data.json'
+file2 = output_path / 'air_to_air_hp_buildings_data.json'
+file3 = output_path / 'air_to_water_hp_buildings_data.json'
+
+# Opening and reading all three JSON files at the same time
+with open(file1) as f1, open(file2) as f2, open(file3) as f3:
+ base_case = json.load(f1)
+ air = json.load(f2)
+ water = json.load(f3)
+
+month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
+x = np.arange(len(month_names)) # the label locations
+width = 0.25 # the width of the bars
+
+# Prettier colors for each scenario
+colors = ['#66B2FF', '#e74c3c'] # Blue, Red, Green
+
+
+# Plotting heating data for all buildings in a 2x5 grid
+fig, axes = plt.subplots(2, 5, figsize=(20, 10), dpi=96)
+fig.suptitle('Monthly DHW Consumption Comparison Across Buildings', fontsize=16, weight='bold', alpha=0.8)
+axes = axes.flatten()
+
+for idx, building_name in enumerate(base_case.keys()):
+ heating_data = [list(data["monthly_dhw_consumption_kWh"].values()) for data in
+ [base_case[building_name], water[building_name]]]
+
+ ax = axes[idx]
+ for i, data in enumerate(heating_data):
+ ax.bar(x + (i - 1) * width, data, width, label=f'Scenario {i+1}', color=colors[i], zorder=2)
+
+ # Grid settings
+ ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
+ ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
+
+ # Axis labels and title
+ ax.set_title(building_name, fontsize=14, weight='bold', alpha=0.8, pad=10)
+ ax.set_xticks(x)
+ ax.set_xticklabels(month_names, rotation=45, ha='right')
+ ax.xaxis.set_major_locator(MaxNLocator(integer=True))
+ ax.yaxis.set_major_locator(MaxNLocator(integer=True))
+ if idx % 5 == 0:
+ ax.set_ylabel('DHW Consumption (kWh)', fontsize=12, labelpad=10)
+
+fig.legend(['Base Case', 'Scenario 1&2'], loc='upper right', ncol=3)
+plt.tight_layout(rect=[0, 0.03, 1, 0.95])
+plt.savefig(output_path / 'monthly_dhw.png')
diff --git a/monthly_hvac_plots.py b/monthly_hvac_plots.py
new file mode 100644
index 00000000..869430bc
--- /dev/null
+++ b/monthly_hvac_plots.py
@@ -0,0 +1,87 @@
+import json
+from pathlib import Path
+import matplotlib.pyplot as plt
+import numpy as np
+from matplotlib.ticker import MaxNLocator
+
+output_path = (Path(__file__).parent / 'out_files').resolve()
+
+# File paths for the three JSON files
+file1 = output_path / 'base_case_buildings_data.json'
+file2 = output_path / 'air_to_air_hp_buildings_data.json'
+file3 = output_path / 'air_to_water_hp_buildings_data.json'
+
+# Opening and reading all three JSON files at the same time
+with open(file1) as f1, open(file2) as f2, open(file3) as f3:
+ base_case = json.load(f1)
+ air = json.load(f2)
+ water = json.load(f3)
+
+month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
+x = np.arange(len(month_names)) # the label locations
+width = 0.25 # the width of the bars
+
+# Prettier colors for each scenario
+colors = ['#66B2FF', '#e74c3c', '#2ecc71'] # Blue, Red, Green
+
+
+# Plotting heating data for all buildings in a 2x5 grid
+fig, axes = plt.subplots(2, 5, figsize=(20, 10), dpi=96)
+fig.suptitle('Monthly Heating Consumption Comparison Across Buildings', fontsize=16, weight='bold', alpha=0.8)
+axes = axes.flatten()
+
+for idx, building_name in enumerate(base_case.keys()):
+ heating_data = [list(data["monthly_heating_consumption_kWh"].values()) for data in
+ [base_case[building_name], air[building_name], water[building_name]]]
+
+ ax = axes[idx]
+ for i, data in enumerate(heating_data):
+ ax.bar(x + (i - 1) * width, data, width, label=f'Scenario {i+1}', color=colors[i], zorder=2)
+
+ # Grid settings
+ ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
+ ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
+
+ # Axis labels and title
+ ax.set_title(building_name, fontsize=14, weight='bold', alpha=0.8, pad=10)
+ ax.set_xticks(x)
+ ax.set_xticklabels(month_names, rotation=45, ha='right')
+ ax.xaxis.set_major_locator(MaxNLocator(integer=True))
+ ax.yaxis.set_major_locator(MaxNLocator(integer=True))
+ if idx % 5 == 0:
+ ax.set_ylabel('Heating Consumption (kWh)', fontsize=12, labelpad=10)
+
+fig.legend(['Base Case', 'Scenario 1', 'Scenario 2'], loc='upper right', ncol=3)
+plt.tight_layout(rect=[0, 0.03, 1, 0.95])
+plt.savefig(output_path / 'monthly_heating.png')
+
+# Plotting cooling data for all buildings in a 2x5 grid
+# Plotting cooling data for all buildings in a 2x5 grid
+fig, axes = plt.subplots(2, 5, figsize=(20, 10), dpi=96)
+fig.suptitle('Monthly Cooling Consumption Comparison Across Buildings', fontsize=16, weight='bold', alpha=0.8)
+axes = axes.flatten()
+
+for idx, building_name in enumerate(base_case.keys()):
+ cooling_data = [list(data["monthly_cooling_consumption_kWh"].values()) for data in
+ [base_case[building_name], air[building_name], water[building_name]]]
+
+ ax = axes[idx]
+ for i, data in enumerate(cooling_data):
+ ax.bar(x + (i - 1) * width, data, width, label=f'Scenario {i+1}', color=colors[i], zorder=2)
+
+ # Grid settings
+ ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
+ ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
+
+ # Axis labels and title
+ ax.set_title(building_name, fontsize=14, weight='bold', alpha=0.8, pad=10)
+ ax.set_xticks(x)
+ ax.set_xticklabels(month_names, rotation=45, ha='right')
+ ax.xaxis.set_major_locator(MaxNLocator(integer=True))
+ ax.yaxis.set_major_locator(MaxNLocator(integer=True))
+ if idx % 5 == 0:
+ ax.set_ylabel('Cooling Consumption (kWh)', fontsize=12, labelpad=10)
+
+fig.legend(['Base Case', 'Scenario 1', 'Scenario 2'], loc='upper right', ncol=3)
+plt.tight_layout(rect=[0, 0.03, 1, 0.95])
+plt.savefig(output_path / 'monthly_cooling.png')
\ No newline at end of file
diff --git a/peak_load.py b/peak_load.py
new file mode 100644
index 00000000..b7e38d4a
--- /dev/null
+++ b/peak_load.py
@@ -0,0 +1,73 @@
+import json
+from pathlib import Path
+import matplotlib.pyplot as plt
+import numpy as np
+from matplotlib.ticker import MaxNLocator
+from matplotlib.patches import Patch
+
+output_path = (Path(__file__).parent / 'out_files').resolve()
+
+# File paths for the three JSON files
+file1 = output_path / 'base_case_buildings_data.json'
+file2 = output_path / 'air_to_air_hp_buildings_data.json'
+file3 = output_path / 'air_to_water_hp_buildings_data.json'
+
+# Opening and reading all three JSON files at the same time
+with open(file1) as f1, open(file2) as f2, open(file3) as f3:
+ base_case = json.load(f1)
+ air = json.load(f2)
+ water = json.load(f3)
+
+month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
+x = np.arange(len(month_names)) # the label locations
+
+
+# Scenario labels and color palette
+scenarios = ['Scenario 1', 'Scenario 2']
+colors = ['#66B2FF', '#e74c3c'] # Blue for Scenario 1, Red for Scenario 2
+width = 0.25 # Width for each bar
+
+# Creating the grid for peak load comparisons across buildings
+fig, axes = plt.subplots(2, 5, figsize=(20, 10), dpi=96)
+fig.suptitle('Yearly Heating and Cooling Peak Load Comparison Across Buildings', fontsize=16, weight='bold', alpha=0.8)
+axes = axes.flatten()
+
+for idx, building_name in enumerate(base_case.keys()):
+ # Extracting heating and cooling peak loads for each scenario
+ heating_peak_load = [
+ air[building_name]["heating_peak_load_kW"],
+ water[building_name]["heating_peak_load_kW"]
+ ]
+ cooling_peak_load = [
+ air[building_name]["cooling_peak_load_kW"],
+ water[building_name]["cooling_peak_load_kW"]
+ ]
+
+ ax = axes[idx]
+ x = np.arange(2) # X locations for the "Heating" and "Cooling" groups
+
+ # Plotting each scenario for heating and cooling
+ for i in range(len(scenarios)):
+ ax.bar(x[0] - width + i * width, heating_peak_load[i], width, color=colors[i], zorder=2)
+ ax.bar(x[1] - width + i * width, cooling_peak_load[i], width, color=colors[i], zorder=2)
+
+ # Grid and styling
+ ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
+ ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
+
+ # Axis and title settings
+ ax.set_title(building_name, fontsize=14, weight='bold', alpha=0.8, pad=10)
+ ax.set_xticks(x)
+ ax.set_xticklabels(['Heating Peak Load', 'Cooling Peak Load'])
+ ax.xaxis.set_major_locator(MaxNLocator(integer=True))
+ ax.yaxis.set_major_locator(MaxNLocator(integer=True))
+ if idx % 5 == 0:
+ ax.set_ylabel('Peak Load (kW)', fontsize=12, labelpad=10)
+
+# Custom legend handles to ensure color match with scenarios
+legend_handles = [Patch(color=colors[i], label=scenarios[i]) for i in range(len(scenarios))]
+
+# Global legend and layout adjustments
+fig.legend(handles=legend_handles, loc='upper right', ncol=1)
+plt.tight_layout(rect=[0, 0.03, 1, 0.95])
+plt.savefig(output_path / 'peak_loads.png')
\ No newline at end of file
diff --git a/scripts/energy_system_sizing_and_simulation_factory.py b/scripts/energy_system_sizing_and_simulation_factory.py
new file mode 100644
index 00000000..86f0c5ad
--- /dev/null
+++ b/scripts/energy_system_sizing_and_simulation_factory.py
@@ -0,0 +1,35 @@
+"""
+EnergySystemSizingSimulationFactory retrieve the energy system archetype sizing and simulation module
+SPDX - License - Identifier: LGPL - 3.0 - or -later
+Copyright © 2022 Concordia CERC group
+Project Coder Saeed Ranjbar saeed.ranjbar@mail.concordia.ca
+"""
+
+from scripts.system_simulation_models.archetype13 import Archetype13
+
+
+
+class EnergySystemsSimulationFactory:
+ """
+ EnergySystemsFactory class
+ """
+
+ def __init__(self, handler, building, output_path):
+ self._output_path = output_path
+ self._handler = '_' + handler.lower()
+ self._building = building
+
+ def _archetype13(self):
+ """
+ Enrich the city by using the sizing and simulation model developed for archetype13 of montreal_future_systems
+ """
+ Archetype13(self._building, self._output_path).enrich_buildings()
+ self._building.level_of_detail.energy_systems = 2
+ self._building.level_of_detail.energy_systems = 2
+
+ def enrich(self):
+ """
+ Enrich the city given to the class using the class given handler
+ :return: None
+ """
+ getattr(self, self._handler, lambda: None)()
diff --git a/scripts/system_simulation_models/archetype13.py b/scripts/system_simulation_models/archetype13.py
new file mode 100644
index 00000000..75c04f4d
--- /dev/null
+++ b/scripts/system_simulation_models/archetype13.py
@@ -0,0 +1,391 @@
+import math
+import hub.helpers.constants as cte
+import csv
+from hub.helpers.monthly_values import MonthlyValues
+
+
+class Archetype13:
+ def __init__(self, building, output_path):
+ self._building = building
+ self._name = building.name
+ self._pv_system = building.energy_systems[0]
+ self._hvac_system = building.energy_systems[1]
+ self._dhw_system = building.energy_systems[-1]
+ self._dhw_peak_flow_rate = (building.thermal_zones_from_internal_zones[0].total_floor_area *
+ building.thermal_zones_from_internal_zones[0].domestic_hot_water.peak_flow *
+ cte.WATER_DENSITY)
+ self._heating_peak_load = building.heating_peak_load[cte.YEAR][0]
+ self._cooling_peak_load = building.cooling_peak_load[cte.YEAR][0]
+ self._domestic_hot_water_peak_load = building.domestic_hot_water_peak_load[cte.YEAR][0]
+ self._hourly_heating_demand = [demand / cte.HOUR_TO_SECONDS for demand in building.heating_demand[cte.HOUR]]
+ self._hourly_cooling_demand = [demand / cte.HOUR_TO_SECONDS for demand in building.cooling_demand[cte.HOUR]]
+ self._hourly_dhw_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in
+ building.domestic_hot_water_heat_demand[cte.HOUR]]
+ self._output_path = output_path
+ self._t_out = building.external_temperature[cte.HOUR]
+ self.results = {}
+ self.dt = 900
+
+ def hvac_sizing(self):
+ storage_factor = 1.5
+ heat_pump = self._hvac_system.generation_systems[1]
+ boiler = self._hvac_system.generation_systems[0]
+ thermal_storage = boiler.energy_storage_systems[0]
+ heat_pump.nominal_heat_output = round(self._heating_peak_load)
+ heat_pump.nominal_cooling_output = round(self._cooling_peak_load)
+ boiler.nominal_heat_output = 0
+ thermal_storage.volume = round(
+ (self._heating_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
+ (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
+ return heat_pump, boiler, thermal_storage
+
+ def dhw_sizing(self):
+ storage_factor = 3
+ dhw_hp = self._dhw_system.generation_systems[0]
+ dhw_hp.nominal_heat_output = 0.7 * self._domestic_hot_water_peak_load
+ dhw_hp.source_temperature = self._t_out
+ dhw_tes = dhw_hp.energy_storage_systems[0]
+ dhw_tes.volume = round(
+ (self._domestic_hot_water_peak_load * storage_factor * 3600) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 10))
+ if dhw_tes.volume == 0:
+ dhw_tes.volume = 1
+ return dhw_hp, dhw_tes
+
+ def heating_system_simulation(self):
+ hp, boiler, tes = self.hvac_sizing()
+ heat_efficiency = float(hp.heat_efficiency)
+ cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
+ number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
+ demand = [0] + [x for x in self._hourly_heating_demand for _ in range(number_of_ts)]
+ t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
+ hp.source_temperature = self._t_out
+ variable_names = ["t_sup_hp", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "q_boiler", "hp_cop",
+ "hp_electricity", "boiler_gas_consumption", "t_sup_boiler", "boiler_energy_consumption",
+ "heating_consumption"]
+ num_hours = len(demand)
+ variables = {name: [0] * num_hours for name in variable_names}
+ (t_sup_hp, t_tank, t_ret, m_ch, m_dis, q_hp, q_boiler, hp_cop,
+ hp_electricity, boiler_gas_consumption, t_sup_boiler, boiler_energy_consumption, heating_consumption) = \
+ [variables[name] for name in variable_names]
+ t_tank[0] = 55
+ hp_heating_cap = hp.nominal_heat_output
+ boiler_heating_cap = boiler.nominal_heat_output
+ hp_delta_t = 7
+ boiler_efficiency = float(boiler.heat_efficiency)
+ v, h = float(tes.volume), float(tes.height)
+ r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
+ tes.layers)
+ u_tot = 1 / r_tot
+ d = math.sqrt((4 * v) / (math.pi * h))
+ a_side = math.pi * d * h
+ a_top = math.pi * d ** 2 / 4
+ ua = u_tot * (2 * a_top + a_side)
+ # storage temperature prediction
+ for i in range(len(demand) - 1):
+ t_tank[i + 1] = (t_tank[i] +
+ (m_ch[i] * (t_sup_boiler[i] - t_tank[i]) +
+ (ua * (t_out[i] - t_tank[i])) / cte.WATER_HEAT_CAPACITY -
+ m_dis[i] * (t_tank[i] - t_ret[i])) * (self.dt / (cte.WATER_DENSITY * v)))
+ # hp operation
+ if t_tank[i + 1] < 40:
+ q_hp[i + 1] = hp_heating_cap
+ m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
+ t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
+ elif 40 <= t_tank[i + 1] < 55 and q_hp[i] == 0:
+ q_hp[i + 1] = 0
+ m_ch[i + 1] = 0
+ t_sup_hp[i + 1] = t_tank[i + 1]
+ elif 40 <= t_tank[i + 1] < 55 and q_hp[i] > 0:
+ q_hp[i + 1] = hp_heating_cap
+ m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
+ t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
+ else:
+ q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
+ t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i + 1] + 32
+ t_out_fahrenheit = 1.8 * t_out[i + 1] + 32
+ if q_hp[i + 1] > 0:
+ hp_cop[i + 1] = (cop_curve_coefficients[0] +
+ cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
+ cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
+ cop_curve_coefficients[3] * t_out_fahrenheit +
+ cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
+ cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
+ hp_electricity[i + 1] = q_hp[i + 1] / heat_efficiency
+ else:
+ hp_cop[i + 1] = 0
+ hp_electricity[i + 1] = 0
+ # boiler operation
+ if q_hp[i + 1] > 0:
+ if t_sup_hp[i + 1] < 45:
+ q_boiler[i + 1] = boiler_heating_cap
+ elif demand[i + 1] > 0.5 * self._heating_peak_load / self.dt:
+ q_boiler[i + 1] = 0.5 * boiler_heating_cap
+ boiler_energy_consumption[i + 1] = q_boiler[i + 1] / boiler_efficiency
+ # boiler_gas_consumption[i + 1] = (q_boiler[i + 1] * self.dt) / (boiler_efficiency * cte.NATURAL_GAS_LHV)
+ t_sup_boiler[i + 1] = t_sup_hp[i + 1] + (q_boiler[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY))
+ # storage discharging
+ if demand[i + 1] == 0:
+ m_dis[i + 1] = 0
+ t_ret[i + 1] = t_tank[i + 1]
+ else:
+ if demand[i + 1] > 0.5 * self._heating_peak_load / cte.HOUR_TO_SECONDS:
+ factor = 8
+ else:
+ factor = 4
+ m_dis[i + 1] = self._heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor * cte.HOUR_TO_SECONDS)
+ t_ret[i + 1] = t_tank[i + 1] - demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
+ tes.temperature = []
+ hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
+ boiler_consumption_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in boiler_energy_consumption]
+ hp_hourly = []
+ boiler_hourly = []
+ boiler_sum = 0
+ hp_sum = 0
+ for i in range(1, len(demand)):
+ hp_sum += hp_electricity_j[i]
+ boiler_sum += boiler_consumption_j[i]
+ if (i - 1) % number_of_ts == 0:
+ tes.temperature.append(t_tank[i])
+ hp_hourly.append(hp_sum)
+ boiler_hourly.append(boiler_sum)
+ hp_sum = 0
+ boiler_sum = 0
+ hp.energy_consumption[cte.HEATING] = {}
+ hp.energy_consumption[cte.HEATING][cte.HOUR] = hp_hourly
+ hp.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
+ hp.energy_consumption[cte.HEATING][cte.HOUR])
+ hp.energy_consumption[cte.HEATING][cte.YEAR] = [
+ sum(hp.energy_consumption[cte.HEATING][cte.MONTH])]
+ boiler.energy_consumption[cte.HEATING] = {}
+ boiler.energy_consumption[cte.HEATING][cte.HOUR] = boiler_hourly
+ boiler.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
+ boiler.energy_consumption[cte.HEATING][cte.HOUR])
+ boiler.energy_consumption[cte.HEATING][cte.YEAR] = [
+ sum(boiler.energy_consumption[cte.HEATING][cte.MONTH])]
+
+ self.results['Heating Demand (W)'] = demand
+ self.results['HP Heat Output (W)'] = q_hp
+ self.results['HP Source Temperature'] = t_out
+ self.results['HP Supply Temperature'] = t_sup_hp
+ self.results['HP COP'] = hp_cop
+ self.results['HP Electricity Consumption (W)'] = hp_electricity
+ self.results['Boiler Heat Output (W)'] = q_boiler
+ self.results['Boiler Supply Temperature'] = t_sup_boiler
+ self.results['Boiler Gas Consumption'] = boiler_gas_consumption
+ self.results['TES Temperature'] = t_tank
+ self.results['TES Charging Flow Rate (kg/s)'] = m_ch
+ self.results['TES Discharge Flow Rate (kg/s)'] = m_dis
+ self.results['Heating Loop Return Temperature'] = t_ret
+ return hp_hourly, boiler_hourly
+
+ def cooling_system_simulation(self):
+ hp = self.hvac_sizing()[0]
+ eer_curve_coefficients = [float(coefficient) for coefficient in hp.cooling_efficiency_curve.coefficients]
+ cooling_efficiency = float(hp.cooling_efficiency)
+ number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
+ demand = [0] + [x for x in self._hourly_cooling_demand for _ in range(number_of_ts)]
+ t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
+ hp.source_temperature = self._t_out
+ variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_eer"]
+ num_hours = len(demand)
+ variables = {name: [0] * num_hours for name in variable_names}
+ (t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_eer) = [variables[name] for name in variable_names]
+ t_ret[0] = 13
+
+ for i in range(1, len(demand)):
+ if demand[i] > 0:
+ m[i] = self._cooling_peak_load / (cte.WATER_HEAT_CAPACITY * 5 * cte.HOUR_TO_SECONDS)
+ if t_ret[i - 1] >= 13:
+ if demand[i] < 0.25 * self._cooling_peak_load / cte.HOUR_TO_SECONDS:
+ q_hp[i] = 0.25 * hp.nominal_cooling_output
+ elif demand[i] < 0.5 * self._cooling_peak_load / cte.HOUR_TO_SECONDS:
+ q_hp[i] = 0.5 * hp.nominal_cooling_output
+ else:
+ q_hp[i] = hp.nominal_cooling_output
+ t_sup_hp[i] = t_ret[i - 1] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
+ else:
+ q_hp[i] = 0
+ t_sup_hp[i] = t_ret[i - 1]
+ if m[i] == 0:
+ t_ret[i] = t_sup_hp[i]
+ else:
+ t_ret[i] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
+ else:
+ m[i] = 0
+ q_hp[i] = 0
+ t_sup_hp[i] = t_ret[i -1]
+ t_ret[i] = t_ret[i - 1]
+ t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
+ t_out_fahrenheit = 1.8 * t_out[i] + 32
+ if q_hp[i] > 0:
+ hp_eer[i] = (eer_curve_coefficients[0] +
+ eer_curve_coefficients[1] * t_sup_hp_fahrenheit +
+ eer_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
+ eer_curve_coefficients[3] * t_out_fahrenheit +
+ eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
+ eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
+ hp_electricity[i] = q_hp[i] / cooling_efficiency
+ else:
+ hp_eer[i] = 0
+ hp_electricity[i] = 0
+ hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
+ hp_hourly = []
+ hp_sum = 0
+ for i in range(1, len(demand)):
+ hp_sum += hp_electricity_j[i]
+ if (i - 1) % number_of_ts == 0:
+ hp_hourly.append(hp_sum)
+ hp_sum = 0
+ hp.energy_consumption[cte.COOLING] = {}
+ hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_hourly
+ hp.energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
+ hp.energy_consumption[cte.COOLING][cte.HOUR])
+ hp.energy_consumption[cte.COOLING][cte.YEAR] = [
+ sum(hp.energy_consumption[cte.COOLING][cte.MONTH])]
+ self.results['Cooling Demand (W)'] = demand
+ self.results['HP Cooling Output (W)'] = q_hp
+ self.results['HP Cooling Supply Temperature'] = t_sup_hp
+ self.results['HP Cooling COP'] = hp_eer
+ self.results['HP Electricity Consumption'] = hp_electricity
+ self.results['Cooling Loop Flow Rate (kg/s)'] = m
+ self.results['Cooling Loop Return Temperature'] = t_ret
+ return hp_hourly
+
+ def dhw_system_simulation(self):
+ hp, tes = self.dhw_sizing()
+ heat_efficiency = float(hp.heat_efficiency)
+ cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
+ number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
+ demand = [0] + [x for x in self._hourly_dhw_demand for _ in range(number_of_ts)]
+ t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
+ variable_names = ["t_sup_hp", "t_tank", "m_ch", "m_dis", "q_hp", "q_coil", "hp_cop",
+ "hp_electricity", "available hot water (m3)", "refill flow rate (kg/s)"]
+ num_hours = len(demand)
+ variables = {name: [0] * num_hours for name in variable_names}
+ (t_sup_hp, t_tank, m_ch, m_dis, m_refill, q_hp, q_coil, hp_cop, hp_electricity, v_dhw) = \
+ [variables[name] for name in variable_names]
+ t_tank[0] = 70
+ v_dhw[0] = tes.volume
+
+ hp_heating_cap = hp.nominal_heat_output
+ hp_delta_t = 8
+ v, h = float(tes.volume), float(tes.height)
+ r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
+ tes.layers)
+ u_tot = 1 / r_tot
+ d = math.sqrt((4 * v) / (math.pi * h))
+ a_side = math.pi * d * h
+ a_top = math.pi * d ** 2 / 4
+ ua = u_tot * (2 * a_top + a_side)
+ freshwater_temperature = 18
+ for i in range(len(demand) - 1):
+ delta_t_demand = demand[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
+ if t_tank[i] < 65:
+ q_hp[i] = hp_heating_cap
+ delta_t_hp = q_hp[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
+ if demand[i] > 0:
+ dhw_needed = (demand[i] * cte.HOUR_TO_SECONDS) / (cte.WATER_HEAT_CAPACITY * t_tank[i] * cte.WATER_DENSITY)
+ m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
+ m_refill[i] = m_dis[i]
+ delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (self.dt / (v * cte.WATER_DENSITY))
+ diff = delta_t_freshwater + delta_t_demand - delta_t_hp
+ if diff > 0:
+ if diff > 0:
+ power = diff * (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v) / self.dt
+ if power <= float(tes.heating_coil_capacity):
+ q_coil[i] = power
+ else:
+ q_coil[i] = float(tes.heating_coil_capacity)
+ delta_t_coil = q_coil[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
+
+ if q_hp[i] > 0:
+ m_ch[i] = q_hp[i] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
+ t_sup_hp[i] = (q_hp[i] / (m_ch[i] * cte.WATER_HEAT_CAPACITY)) + t_tank[i]
+ else:
+ m_ch[i] = 0
+ t_sup_hp[i] = t_tank[i]
+ t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
+ t_out_fahrenheit = 1.8 * t_out[i] + 32
+ if q_hp[i] > 0:
+ hp_cop[i] = (cop_curve_coefficients[0] +
+ cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
+ cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
+ cop_curve_coefficients[3] * t_out_fahrenheit +
+ cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
+ cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
+ hp_electricity[i] = q_hp[i] / heat_efficiency
+ else:
+ hp_cop[i] = 0
+ hp_electricity[i] = 0
+
+ t_tank[i + 1] = t_tank[i] + (delta_t_hp - delta_t_freshwater - delta_t_demand + delta_t_coil)
+ tes.temperature = []
+ hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
+ heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
+ hp_hourly = []
+ coil_hourly = []
+ coil_sum = 0
+ hp_sum = 0
+ for i in range(1, len(demand)):
+ hp_sum += hp_electricity_j[i]
+ coil_sum += heating_coil_j[i]
+ if (i - 1) % number_of_ts == 0:
+ tes.temperature.append(t_tank[i])
+ hp_hourly.append(hp_sum)
+ coil_hourly.append(coil_sum)
+ hp_sum = 0
+ coil_sum = 0
+
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_hourly
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
+ sum(hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
+ tes.heating_coil_energy_consumption = {}
+ tes.heating_coil_energy_consumption[cte.HOUR] = coil_hourly
+ tes.heating_coil_energy_consumption[cte.MONTH] = MonthlyValues.get_total_month(
+ tes.heating_coil_energy_consumption[cte.HOUR])
+ tes.heating_coil_energy_consumption[cte.YEAR] = [
+ sum(tes.heating_coil_energy_consumption[cte.MONTH])]
+ tes.temperature = t_tank
+
+ self.results['DHW Demand (W)'] = demand
+ self.results['DHW HP Heat Output (W)'] = q_hp
+ self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
+ self.results['DHW HP Source Temperature'] = t_out
+ self.results['DHW HP Supply Temperature'] = t_sup_hp
+ self.results['DHW HP COP'] = hp_cop
+ self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
+ self.results['DHW TES Temperature'] = t_tank
+ self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
+ self.results['DHW Flow Rate (kg/s)'] = m_dis
+ self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
+ self.results['Available Water in Tank (m3)'] = v_dhw
+ return hp_hourly, coil_hourly
+
+ def enrich_buildings(self):
+ hp_heating, boiler_consumption = self.heating_system_simulation()
+ hp_cooling = self.cooling_system_simulation()
+ hp_dhw, heating_coil = self.dhw_system_simulation()
+ heating_consumption = [hp_heating[i] + boiler_consumption[i] for i in range(len(hp_heating))]
+ dhw_consumption = [hp_dhw[i] + heating_coil[i] for i in range(len(hp_dhw))]
+ self._building.heating_consumption[cte.HOUR] = heating_consumption
+ self._building.heating_consumption[cte.MONTH] = (
+ MonthlyValues.get_total_month(self._building.heating_consumption[cte.HOUR]))
+ self._building.heating_consumption[cte.YEAR] = [sum(self._building.heating_consumption[cte.MONTH])]
+ self._building.cooling_consumption[cte.HOUR] = hp_cooling
+ self._building.cooling_consumption[cte.MONTH] = (
+ MonthlyValues.get_total_month(self._building.cooling_consumption[cte.HOUR]))
+ self._building.cooling_consumption[cte.YEAR] = [sum(self._building.cooling_consumption[cte.MONTH])]
+ self._building.domestic_hot_water_consumption[cte.HOUR] = dhw_consumption
+ self._building.domestic_hot_water_consumption[cte.MONTH] = (
+ MonthlyValues.get_total_month(self._building.domestic_hot_water_consumption[cte.HOUR]))
+ self._building.domestic_hot_water_consumption[cte.YEAR] = [sum(self._building.domestic_hot_water_consumption[cte.MONTH])]
+ file_name = f'energy_system_simulation_results_{self._name}.csv'
+ with open(self._output_path / file_name, 'w', newline='') as csvfile:
+ output_file = csv.writer(csvfile)
+ # Write header
+ output_file.writerow(self.results.keys())
+ # Write data
+ output_file.writerows(zip(*self.results.values()))