import json from pathlib import Path import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import MaxNLocator from matplotlib.patches import Patch output_path = (Path(__file__).parent / 'out_files').resolve() # File paths for the three JSON files file1 = output_path / 'base_case_buildings_data.json' file2 = output_path / 'air_to_air_hp_buildings_data.json' file3 = output_path / 'air_to_water_hp_buildings_data.json' # Opening and reading all three JSON files at the same time with open(file1) as f1, open(file2) as f2, open(file3) as f3: base_case = json.load(f1) air = json.load(f2) water = json.load(f3) month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] x = np.arange(len(month_names)) # the label locations # Scenario labels and color palette scenarios = ['Scenario 1', 'Scenario 2'] colors = ['#66B2FF', '#e74c3c'] # Blue for Scenario 1, Red for Scenario 2 width = 0.25 # Width for each bar # Creating the grid for peak load comparisons across buildings fig, axes = plt.subplots(2, 5, figsize=(20, 10), dpi=96) fig.suptitle('Yearly Heating and Cooling Peak Load Comparison Across Buildings', fontsize=16, weight='bold', alpha=0.8) axes = axes.flatten() for idx, building_name in enumerate(base_case.keys()): # Extracting heating and cooling peak loads for each scenario heating_peak_load = [ air[building_name]["heating_peak_load_kW"], water[building_name]["heating_peak_load_kW"] ] cooling_peak_load = [ air[building_name]["cooling_peak_load_kW"], water[building_name]["cooling_peak_load_kW"] ] ax = axes[idx] x = np.arange(2) # X locations for the "Heating" and "Cooling" groups # Plotting each scenario for heating and cooling for i in range(len(scenarios)): ax.bar(x[0] - width + i * width, heating_peak_load[i], width, color=colors[i], zorder=2) ax.bar(x[1] - width + i * width, cooling_peak_load[i], width, color=colors[i], zorder=2) # Grid and styling ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1) ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1) # Axis and title settings ax.set_title(building_name, fontsize=14, weight='bold', alpha=0.8, pad=10) ax.set_xticks(x) ax.set_xticklabels(['Heating Peak Load', 'Cooling Peak Load']) ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) if idx % 5 == 0: ax.set_ylabel('Peak Load (kW)', fontsize=12, labelpad=10) # Custom legend handles to ensure color match with scenarios legend_handles = [Patch(color=colors[i], label=scenarios[i]) for i in range(len(scenarios))] # Global legend and layout adjustments fig.legend(handles=legend_handles, loc='upper right', ncol=1) plt.tight_layout(rect=[0, 0.03, 1, 0.95]) plt.savefig(output_path / 'peak_loads.png')