""" Capital costs module SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2023 Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca Code contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca """ import math import pandas as pd import numpy_financial as npf from hub.city_model_structure.building import Building import hub.helpers.constants as cte from costing_package.configuration import Configuration from costing_package.constants import (SKIN_RETROFIT, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS, PV, SYSTEM_RETROFIT) from costing_package.cost_base import CostBase class CapitalCosts(CostBase): """ Capital costs class """ def __init__(self, building: Building, configuration: Configuration): super().__init__(building, configuration) self._yearly_capital_costs = pd.DataFrame( index=self._rng, columns=[ 'B2010_opaque_walls', 'B2020_transparent', 'B3010_opaque_roof', 'B1010_superstructure', 'D2010_photovoltaic_system', 'D3020_simultaneous_heat_and_cooling_generating_systems', 'D3030_heating_systems', 'D3040_cooling_systems', 'D3050_distribution_systems', 'D3060_other_hvac_ahu', 'D3070_storage_systems', 'D40_dhw', ], dtype='float' ) self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = 0 self._yearly_capital_costs.loc[0, 'B2020_transparent'] = 0 self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = 0 self._yearly_capital_costs.loc[0, 'B1010_superstructure'] = 0 self._yearly_capital_costs.loc[0, 'D2010_photovoltaic_system'] = 0 self._yearly_capital_costs.loc[0, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = 0 self._yearly_capital_costs.loc[0, 'D3030_heating_systems'] = 0 self._yearly_capital_costs.loc[0, 'D3040_cooling_systems'] = 0 self._yearly_capital_costs.loc[0, 'D3050_distribution_systems'] = 0 self._yearly_capital_costs.loc[0, 'D3060_other_hvac_ahu'] = 0 self._yearly_capital_costs.loc[0, 'D3070_storage_systems'] = 0 self._yearly_capital_costs.loc[0, 'D40_dhw'] = 0 self._yearly_capital_incomes = pd.DataFrame( index=self._rng, columns=[ 'Subsidies construction', 'Subsidies HVAC', 'Subsidies PV' ], dtype='float' ) self._yearly_capital_incomes.loc[0, 'Subsidies construction'] = 0 self._yearly_capital_incomes.loc[0, 'Subsidies HVAC'] = 0 self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = 0 self._yearly_capital_costs.fillna(0, inplace=True) self._own_capital = 1 - self._configuration.percentage_credit self._surface_pv = 0 for roof in self._building.roofs: self._surface_pv += roof.solid_polygon.area * roof.solar_collectors_area_reduction_factor for roof in self._building.roofs: if roof.installed_solar_collector_area is not None: self._surface_pv += roof.installed_solar_collector_area else: self._surface_pv += roof.solid_polygon.area * roof.solar_collectors_area_reduction_factor def calculate(self) -> tuple[pd.DataFrame, pd.DataFrame]: self.skin_capital_cost() self.energy_system_capital_cost() self.skin_yearly_capital_costs() self.yearly_energy_system_costs() self.yearly_incomes() return self._yearly_capital_costs, self._yearly_capital_incomes def skin_capital_cost(self): """ calculating skin costs :return: """ surface_opaque = 0 surface_transparent = 0 surface_roof = 0 surface_ground = 0 for thermal_zone in self._building.thermal_zones_from_internal_zones: for thermal_boundary in thermal_zone.thermal_boundaries: if thermal_boundary.type == 'Ground': surface_ground += thermal_boundary.opaque_area elif thermal_boundary.type == 'Roof': surface_roof += thermal_boundary.opaque_area elif thermal_boundary.type == 'Wall': surface_opaque += thermal_boundary.opaque_area * (1 - thermal_boundary.window_ratio) surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio chapter = self._capital_costs_chapter.chapter('B_shell') capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0] capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0] capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0] capital_cost_ground = surface_ground * chapter.item('B1010_superstructure').refurbishment[0] if self._configuration.retrofit_scenario not in (SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS, PV, SYSTEM_RETROFIT): self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = capital_cost_opaque * self._own_capital self._yearly_capital_costs.loc[0, 'B2020_transparent'] = capital_cost_transparent * self._own_capital self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = capital_cost_roof * self._own_capital self._yearly_capital_costs.loc[0, 'B1010_superstructure'] = capital_cost_ground * self._own_capital capital_cost_skin = capital_cost_opaque + capital_cost_ground + capital_cost_transparent + capital_cost_roof return capital_cost_opaque, capital_cost_transparent, capital_cost_roof, capital_cost_ground, capital_cost_skin def skin_yearly_capital_costs(self): skin_capital_cost = self.skin_capital_cost() for year in range(1, self._configuration.number_of_years): self._yearly_capital_costs.loc[year, 'B2010_opaque_walls'] = ( -npf.pmt( self._configuration.interest_rate, self._configuration.credit_years, skin_capital_cost[0] * self._configuration.percentage_credit ) ) self._yearly_capital_costs.loc[year, 'B2020_transparent'] = ( -npf.pmt( self._configuration.interest_rate, self._configuration.credit_years, skin_capital_cost[1] * self._configuration.percentage_credit ) ) self._yearly_capital_costs.loc[year, 'B3010_opaque_roof'] = ( -npf.pmt( self._configuration.interest_rate, self._configuration.credit_years, skin_capital_cost[2] * self._configuration.percentage_credit ) ) self._yearly_capital_costs.loc[year, 'B1010_superstructure'] = ( -npf.pmt( self._configuration.interest_rate, self._configuration.credit_years, skin_capital_cost[3] * self._configuration.percentage_credit ) ) def energy_system_capital_cost(self): chapter = self._capital_costs_chapter.chapter('D_services') system_components, component_categories, component_sizes = self.system_components() capital_cost_heating_and_cooling_equipment = 0 capital_cost_heating_equipment = 0 capital_cost_cooling_equipment = 0 capital_cost_domestic_hot_water_equipment = 0 capital_cost_energy_storage_equipment = 0 capital_cost_distribution_equipment = 0 capital_cost_lighting = 0 capital_cost_pv = self._surface_pv * chapter.item('D2010_photovoltaic_system').initial_investment[0] for (i, component) in enumerate(system_components): if component_categories[i] == 'multi_generation': capital_cost_heating_and_cooling_equipment += chapter.item(component).initial_investment[0] * component_sizes[i] elif component_categories[i] == 'heating': capital_cost_heating_equipment += chapter.item(component).initial_investment[0] * component_sizes[i] elif component_categories[i] == 'cooling': capital_cost_cooling_equipment += chapter.item(component).initial_investment[0] * component_sizes[i] elif component_categories[i] == 'dhw': capital_cost_domestic_hot_water_equipment += chapter.item(component).initial_investment[0] * \ component_sizes[i] elif component_categories[i] == 'distribution': capital_cost_distribution_equipment += chapter.item(component).initial_investment[0] * \ component_sizes[i] else: capital_cost_energy_storage_equipment += chapter.item(component).initial_investment[0] * component_sizes[i] if self._configuration.retrofit_scenario in (SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, PV): self._yearly_capital_costs.loc[0, 'D2010_photovoltaic_system'] = capital_cost_pv if (self._configuration.retrofit_scenario in (SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT)): self._yearly_capital_costs.loc[0, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = ( capital_cost_heating_and_cooling_equipment * self._own_capital) self._yearly_capital_costs.loc[0, 'D3030_heating_systems'] = ( capital_cost_heating_equipment * self._own_capital) self._yearly_capital_costs.loc[0, 'D3040_cooling_systems'] = ( capital_cost_cooling_equipment * self._own_capital) self._yearly_capital_costs.loc[0, 'D3050_distribution_systems'] = ( capital_cost_distribution_equipment * self._own_capital) self._yearly_capital_costs.loc[0, 'D3070_storage_systems'] = ( capital_cost_energy_storage_equipment * self._own_capital) self._yearly_capital_costs.loc[0, 'D40_dhw'] = ( capital_cost_domestic_hot_water_equipment * self._own_capital) capital_cost_hvac = (capital_cost_heating_and_cooling_equipment + capital_cost_distribution_equipment + capital_cost_energy_storage_equipment + capital_cost_domestic_hot_water_equipment) return (capital_cost_pv, capital_cost_heating_and_cooling_equipment, capital_cost_heating_equipment, capital_cost_distribution_equipment, capital_cost_cooling_equipment, capital_cost_energy_storage_equipment, capital_cost_domestic_hot_water_equipment, capital_cost_lighting, capital_cost_hvac) def yearly_energy_system_costs(self): chapter = self._capital_costs_chapter.chapter('D_services') system_investment_costs = self.energy_system_capital_cost() system_components, component_categories, component_sizes = self.system_components() pv = False for energy_system in self._building.energy_systems: for generation_system in energy_system.generation_systems: if generation_system.system_type == cte.PHOTOVOLTAIC: pv = True for year in range(1, self._configuration.number_of_years): costs_increase = math.pow(1 + self._configuration.consumer_price_index, year) self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] = ( -npf.pmt( self._configuration.interest_rate, self._configuration.credit_years, system_investment_costs[0] * self._configuration.percentage_credit ) ) self._yearly_capital_costs.loc[year, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = ( -npf.pmt( self._configuration.interest_rate, self._configuration.credit_years, system_investment_costs[1] * self._configuration.percentage_credit ) ) self._yearly_capital_costs.loc[year, 'D3030_heating_systems'] = ( -npf.pmt( self._configuration.interest_rate, self._configuration.credit_years, system_investment_costs[2] * self._configuration.percentage_credit ) ) self._yearly_capital_costs.loc[year, 'D3040_cooling_systems'] = ( -npf.pmt( self._configuration.interest_rate, self._configuration.credit_years, system_investment_costs[3] * self._configuration.percentage_credit ) ) self._yearly_capital_costs.loc[year, 'D3050_distribution_systems'] = ( -npf.pmt( self._configuration.interest_rate, self._configuration.credit_years, system_investment_costs[4] * self._configuration.percentage_credit ) ) self._yearly_capital_costs.loc[year, 'D3070_storage_systems'] = ( -npf.pmt( self._configuration.interest_rate, self._configuration.credit_years, system_investment_costs[5] * self._configuration.percentage_credit ) ) self._yearly_capital_costs.loc[year, 'D40_dhw'] = ( -npf.pmt( self._configuration.interest_rate, self._configuration.credit_years, system_investment_costs[6] * self._configuration.percentage_credit ) ) if self._configuration.retrofit_scenario not in (SKIN_RETROFIT, PV): for (i, component) in enumerate(system_components): if (year % chapter.item(component).lifetime) == 0 and year != (self._configuration.number_of_years - 1): if component_categories[i] == 'multi_generation': reposition_cost_heating_and_cooling_equipment = (chapter.item(component).reposition[0] * component_sizes[i] * costs_increase) self._yearly_capital_costs.loc[year, 'D3020_simultaneous_heat_and_cooling_generating_systems'] += ( reposition_cost_heating_and_cooling_equipment) elif component_categories[i] == 'heating': reposition_cost_heating_equipment = (chapter.item(component).reposition[0] * component_sizes[i] * costs_increase) self._yearly_capital_costs.loc[year, 'D3030_heating_systems'] += ( reposition_cost_heating_equipment) elif component_categories[i] == 'cooling': reposition_cost_cooling_equipment = (chapter.item(component).reposition[0] * component_sizes[i] * costs_increase) self._yearly_capital_costs.loc[year, 'D3040_cooling_systems'] += ( reposition_cost_cooling_equipment) elif component_categories[i] == 'dhw': reposition_cost_domestic_hot_water_equipment = ( chapter.item(component).reposition[0] * component_sizes[i] * costs_increase) self._yearly_capital_costs.loc[year, 'D40_dhw'] += reposition_cost_domestic_hot_water_equipment elif component_categories[i] == 'distribution': reposition_cost_distribution_equipment = ( chapter.item(component).reposition[0] * component_sizes[i] * costs_increase) self._yearly_capital_costs.loc[year, 'D3050_distribution_systems'] += ( reposition_cost_distribution_equipment) else: reposition_cost_energy_storage_equipment = ( chapter.item(component).initial_investment[0] * component_sizes[i] * costs_increase) self._yearly_capital_costs.loc[year, 'D3070_storage_systems'] += reposition_cost_energy_storage_equipment if self._configuration.retrofit_scenario == CURRENT_STATUS and pv: if (year % chapter.item('D2010_photovoltaic_system').lifetime) == 0: self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] += ( self._surface_pv * chapter.item('D2010_photovoltaic_system').reposition[0] * costs_increase ) elif self._configuration.retrofit_scenario in (PV, SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV): if (year % chapter.item('D2010_photovoltaic_system').lifetime) == 0: self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] += ( self._surface_pv * chapter.item('D2010_photovoltaic_system').reposition[0] * costs_increase ) def system_components(self): system_components = [] component_categories = [] sizes = [] energy_systems = self._building.energy_systems for energy_system in energy_systems: demand_types = energy_system.demand_types generation_systems = energy_system.generation_systems distribution_systems = energy_system.distribution_systems for generation_system in generation_systems: if generation_system.system_type != cte.PHOTOVOLTAIC: heating_capacity = generation_system.nominal_heat_output or 0 cooling_capacity = generation_system.nominal_cooling_output or 0 installed_capacity = max(heating_capacity, cooling_capacity) / 1000 if cte.DOMESTIC_HOT_WATER in demand_types and cte.HEATING not in demand_types: component_categories.append('dhw') sizes.append(installed_capacity) if generation_system.system_type == cte.HEAT_PUMP: system_components.append(self.heat_pump_type(generation_system, domestic_how_water=True)) elif generation_system.system_type == cte.BOILER and generation_system.fuel_type == cte.ELECTRICITY: system_components.append(self.boiler_type(generation_system)) else: system_components.append('D302010_template_heat') elif cte.HEATING in demand_types: if cte.COOLING in demand_types and generation_system.fuel_type == cte.ELECTRICITY: component_categories.append('multi_generation') else: component_categories.append('heating') sizes.append(installed_capacity) if generation_system.system_type == cte.HEAT_PUMP: item_type = self.heat_pump_type(generation_system) system_components.append(item_type) elif generation_system.system_type == cte.BOILER: item_type = self.boiler_type(generation_system) system_components.append(item_type) else: if cooling_capacity > heating_capacity: system_components.append('D302090_template_cooling') else: system_components.append('D302010_template_heat') elif cte.COOLING in demand_types: component_categories.append('cooling') sizes.append(installed_capacity) if generation_system.system_type == cte.HEAT_PUMP: item_type = self.heat_pump_type(generation_system) system_components.append(item_type) else: system_components.append('D302090_template_cooling') if generation_system.energy_storage_systems is not None: energy_storage_systems = generation_system.energy_storage_systems for storage_system in energy_storage_systems: if storage_system.type_energy_stored == 'thermal': component_categories.append('thermal storage') sizes.append(storage_system.volume or 0) system_components.append('D306010_storage_tank') if distribution_systems is not None: for distribution_system in distribution_systems: component_categories.append('distribution') sizes.append(self._building.cooling_peak_load[cte.YEAR][0] / 1000) system_components.append('D3040_distribution_systems') return system_components, component_categories, sizes def yearly_incomes(self): capital_cost_skin = self.skin_capital_cost()[-1] system_investment_cost = self.energy_system_capital_cost() capital_cost_hvac = system_investment_cost[-1] capital_cost_pv = system_investment_cost[0] self._yearly_capital_incomes.loc[0, 'Subsidies construction'] = ( capital_cost_skin * self._archetype.income.construction_subsidy/100 ) self._yearly_capital_incomes.loc[0, 'Subsidies HVAC'] = capital_cost_hvac * self._archetype.income.hvac_subsidy/100 self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = capital_cost_pv * self._archetype.income.photovoltaic_subsidy/100 self._yearly_capital_incomes.fillna(0, inplace=True) @staticmethod def heat_pump_type(generation_system, domestic_how_water=False): source_medium = generation_system.source_medium supply_medium = generation_system.supply_medium if domestic_how_water: heat_pump_item = 'D4010_hot_water_heat_pump' else: if source_medium == cte.AIR and supply_medium == cte.WATER: heat_pump_item = 'D302020_air_to_water_heat_pump' elif source_medium == cte.AIR and supply_medium == cte.AIR: heat_pump_item = 'D302050_air_to_air_heat_pump' elif source_medium == cte.GROUND and supply_medium == cte.WATER: heat_pump_item = 'D302030_ground_to_water_heat_pump' elif source_medium == cte.GROUND and supply_medium == cte.AIR: heat_pump_item = 'D302100_ground_to_air_heat_pump' elif source_medium == cte.WATER and supply_medium == cte.WATER: heat_pump_item = 'D302040_water_to_water_heat_pump' elif source_medium == cte.WATER and supply_medium == cte.AIR: heat_pump_item = 'D302110_water_to_air_heat_pump' else: heat_pump_item = 'D302010_template_heat' return heat_pump_item @staticmethod def boiler_type(generation_system): fuel = generation_system.fuel_type if fuel == cte.ELECTRICITY: boiler_item = 'D302080_electrical_boiler' elif fuel == cte.GAS: boiler_item = 'D302070_natural_gas_boiler' else: boiler_item = 'D302010_template_heat' return boiler_item