71 lines
2.9 KiB
Python
71 lines
2.9 KiB
Python
|
import pandas as pd
|
||
|
import plotly.graph_objects as go
|
||
|
|
||
|
# Load the data
|
||
|
data = pd.read_csv('06-25_07-07.csv')
|
||
|
# Convert 'Date/Time (--4:0:0)' column to datetime
|
||
|
data['Date/Time (--4:0:0)'] = pd.to_datetime(data['Date/Time (--4:0:0)'])
|
||
|
|
||
|
# Set the datetime column as the index
|
||
|
data.set_index('Date/Time (--4:0:0)', inplace=True)
|
||
|
|
||
|
# Apply a smoothing function (moving average)
|
||
|
window_size = 10
|
||
|
data['Sewer Water In Smooth'] = data['Sewer Water In'].rolling(window=window_size, center=True).mean()
|
||
|
data['Sewer Water Out Smooth'] = data['Sewer Water Out'].rolling(window=window_size, center=True).mean()
|
||
|
data['Return Air Smooth'] = data['Return Air'].rolling(window=window_size, center=True).mean()
|
||
|
data['Supply Air Smooth'] = data['Supply Air'].rolling(window=window_size, center=True).mean()
|
||
|
|
||
|
# Create the plot
|
||
|
fig = go.Figure()
|
||
|
|
||
|
# Add traces for each line with spline smoothing and increased visibility
|
||
|
fig.add_trace(go.Scatter(x=data.index, y=data['Sewer Water In Smooth'], mode='lines', name='Sewer Water In',
|
||
|
line=dict(shape='spline', color='blue', width=4, dash='solid')))
|
||
|
fig.add_trace(go.Scatter(x=data.index, y=data['Sewer Water Out Smooth'], mode='lines', name='Sewer Water Out',
|
||
|
line=dict(shape='spline', color='red', width=4, dash='solid')))
|
||
|
fig.add_trace(go.Scatter(x=data.index, y=data['Return Air Smooth'], mode='lines', name='Return Air',
|
||
|
line=dict(shape='spline', color='orange', width=4, dash='solid')))
|
||
|
fig.add_trace(go.Scatter(x=data.index, y=data['Supply Air Smooth'], mode='lines', name='Supply Air',
|
||
|
line=dict(shape='spline', color='green', width=4, dash='solid')))
|
||
|
|
||
|
# Add shading to separate days
|
||
|
for i in range((data.index[-1] - data.index[0]).days + 1):
|
||
|
start = data.index[0] + pd.Timedelta(days=i)
|
||
|
end = start + pd.Timedelta(days=1)
|
||
|
fig.add_vrect(
|
||
|
x0=start, x1=end,
|
||
|
fillcolor='grey' if i % 2 == 0 else 'white',
|
||
|
opacity=0.1,
|
||
|
line_width=0
|
||
|
)
|
||
|
|
||
|
# Update layout for better styling and to set figure size
|
||
|
fig.update_layout(
|
||
|
title=dict(
|
||
|
text='Temperature Variations from 25/06/2024-07/07/2024',
|
||
|
font=dict(size=20, family='Arial', color='black', weight='bold')
|
||
|
),
|
||
|
xaxis_title=dict(
|
||
|
text='Date/Time',
|
||
|
font=dict(size=18, family='Arial', color='black', weight='bold')
|
||
|
),
|
||
|
yaxis_title=dict(
|
||
|
text='Temperature (F)',
|
||
|
font=dict(size=18, family='Arial', color='black', weight='bold')
|
||
|
),
|
||
|
legend=dict(
|
||
|
title=dict(font=dict(size=15, family='Arial', color='black', weight='bold')),
|
||
|
font=dict(size=14, family='Arial', color='black', weight='bold')
|
||
|
),
|
||
|
font=dict(size=14),
|
||
|
width=1400, # Set the width of the figure
|
||
|
height=800 # Set the height of the figure
|
||
|
)
|
||
|
|
||
|
# Save the plot (requires kaleido package)
|
||
|
fig.write_image('plotly_plot.png')
|
||
|
|
||
|
# Display the plot
|
||
|
fig.show()
|