energy_system_modelling_wor.../scripts/system_simulation.py

136 lines
7.5 KiB
Python
Raw Permalink Normal View History

2024-03-29 13:56:49 -04:00
import csv
import math
from typing import List
from pathlib import Path
import hub.helpers.constants as cte
from hub.helpers.monthly_values import MonthlyValues
class SystemSimulation:
def __init__(self, building, out_path):
2024-03-29 13:56:49 -04:00
self.building = building
self.energy_systems = building.energy_systems
self.heating_demand = [0] + building.heating_demand[cte.HOUR]
2024-03-29 13:56:49 -04:00
self.cooling_demand = building.cooling_demand
self.dhw_demand = building.domestic_hot_water_heat_demand
self.T_out = building.external_temperature[cte.HOUR]
self.maximum_heating_demand = building.heating_peak_load[cte.YEAR][0]
self.maximum_cooling_demand = building.cooling_peak_load[cte.YEAR][0]
self.name = building.name
self.energy_system_archetype = building.energy_systems_archetype_name
self.out_path = out_path
2024-03-29 13:56:49 -04:00
def archetype1(self):
out_path = self.out_path
2024-03-29 13:56:49 -04:00
T, T_sup, T_ret, m_ch, m_dis, q_hp, q_aux = [0] * len(self.heating_demand), [0] * len(
self.heating_demand), [0] * len(self.heating_demand), [0] * len(self.heating_demand), [0] * len(
self.heating_demand), [0] * len(self.heating_demand), [0] * len(self.heating_demand)
hp_electricity: List[float] = [0.0] * len(self.heating_demand)
aux_fuel: List[float] = [0.0] * len(self.heating_demand)
heating_consumption: List[float] = [0.0] * len(self.heating_demand)
boiler_consumption: List[float] = [0.0] * len(self.heating_demand)
T[0], dt = 25, 3600 # Assuming dt is defined somewhere
ua, v, hp_cap, hp_efficiency, boiler_efficiency = 0, 0, 0, 0, 0
for energy_system in self.energy_systems:
if cte.ELECTRICITY not in energy_system.demand_types:
generation_systems = energy_system.generation_systems
for generation_system in generation_systems:
if generation_system.system_type == cte.HEAT_PUMP and cte.HEATING in energy_system.demand_types:
2024-03-29 13:56:49 -04:00
hp_cap = generation_system.nominal_heat_output
hp_efficiency = float(generation_system.heat_efficiency)
for storage in generation_system.energy_storage_systems:
if storage.type_energy_stored == 'thermal':
v, h = float(storage.volume), float(storage.height)
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
storage.layers)
u_tot = 1 / r_tot
d = math.sqrt((4 * v) / (math.pi * h))
a_side = math.pi * d * h
a_top = math.pi * d ** 2 / 4
ua = u_tot * (2 * a_top + a_side)
elif generation_system.system_type == cte.BOILER:
boiler_cap = generation_system.nominal_heat_output
boiler_efficiency = float(generation_system.heat_efficiency)
for i in range(len(self.heating_demand) - 1):
T[i + 1] = T[i] + ((m_ch[i] * (T_sup[i] - T[i])) + (
ua * (self.T_out[i] - T[i])) / cte.WATER_HEAT_CAPACITY - m_dis[i] * (T[i] - T_ret[i])) * (dt / (cte.WATER_DENSITY * v))
if T[i + 1] < 35:
q_hp[i + 1] = hp_cap * 1000
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * 7)
T_sup[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + T[i + 1]
elif 35 <= T[i + 1] < 45 and q_hp[i] == 0:
q_hp[i + 1] = 0
m_ch[i + 1] = 0
T_sup[i + 1] = T[i + 1]
elif 35 <= T[i + 1] < 45 and q_hp[i] > 0:
q_hp[i + 1] = hp_cap * 1000
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * 3)
T_sup[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + T[i + 1]
else:
q_hp[i + 1], m_ch[i + 1], T_sup[i + 1] = 0, 0, T[i + 1]
hp_electricity[i + 1] = q_hp[i + 1] / hp_efficiency
if self.heating_demand[i + 1] == 0:
m_dis[i + 1], t_return, T_ret[i + 1] = 0, T[i + 1], T[i + 1]
else:
if self.heating_demand[i + 1] > 0.5 * self.maximum_heating_demand:
factor = 8
else:
factor = 4
m_dis[i + 1] = self.maximum_heating_demand / (cte.WATER_HEAT_CAPACITY * factor * 3600)
t_return = T[i + 1] - self.heating_demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY * 3600)
2024-03-29 13:56:49 -04:00
if m_dis[i + 1] == 0 or (m_dis[i + 1] > 0 and t_return < 25):
T_ret[i + 1] = max(25, T[i + 1])
else:
T_ret[i + 1] = T[i + 1] - self.heating_demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY * 3600)
2024-03-29 13:56:49 -04:00
tes_output = m_dis[i + 1] * cte.WATER_HEAT_CAPACITY * (T[i + 1] - T_ret[i + 1])
if tes_output < (self.heating_demand[i + 1] / 3600):
q_aux[i + 1] = (self.heating_demand[i + 1] / 3600) - tes_output
aux_fuel[i + 1] = (q_aux[i + 1] * dt) / 35.8e6
2024-03-29 13:56:49 -04:00
boiler_consumption[i + 1] = q_aux[i + 1] / boiler_efficiency
heating_consumption[i + 1] = boiler_consumption[i + 1] + hp_electricity[i + 1]
data = list(zip(T, T_sup, T_ret, m_ch, m_dis, q_hp, hp_electricity, aux_fuel, q_aux, self.heating_demand))
file_name = f'simulation_results_{self.name}.csv'
with open(out_path / file_name, 'w', newline='') as csvfile:
output_file = csv.writer(csvfile)
# Write header
output_file.writerow(['T', 'T_sup', 'T_ret', 'm_ch', 'm_dis', 'q_hp', 'hp_electricity', 'aux_fuel', 'q_aux', 'heating_demand'])
# Write data
output_file.writerows(data)
return heating_consumption, hp_electricity, boiler_consumption, T_sup
2024-03-29 13:56:49 -04:00
def enrich(self):
if self.energy_system_archetype == 'PV+ASHP+GasBoiler+TES' or 'PV+4Pipe+DHW':
building_new_heating_consumption, building_heating_electricity_consumption, building_heating_gas_consumption, supply_temperature = (
2024-03-29 13:56:49 -04:00
self.archetype1())
self.building.heating_consumption[cte.HOUR] = building_new_heating_consumption
self.building.heating_consumption[cte.MONTH] = MonthlyValues.get_total_month(self.building.heating_consumption[cte.HOUR])
self.building.heating_consumption[cte.YEAR] = [sum(self.building.heating_consumption[cte.MONTH])]
disaggregated_consumption = {}
for energy_system in self.building.energy_systems:
if cte.HEATING in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
if generation_system.system_type == cte.HEAT_PUMP:
generation_system.heat_supply_temperature = supply_temperature
2024-03-29 13:56:49 -04:00
disaggregated_consumption[generation_system.fuel_type] = {}
if generation_system.fuel_type == cte.ELECTRICITY:
disaggregated_consumption[generation_system.fuel_type][
cte.HOUR] = building_heating_electricity_consumption
disaggregated_consumption[generation_system.fuel_type][cte.MONTH] = MonthlyValues.get_total_month(
disaggregated_consumption[generation_system.fuel_type][cte.HOUR])
disaggregated_consumption[generation_system.fuel_type][cte.YEAR] = [
sum(disaggregated_consumption[generation_system.fuel_type][cte.MONTH])]
else:
disaggregated_consumption[generation_system.fuel_type][cte.HOUR] = building_heating_gas_consumption
disaggregated_consumption[generation_system.fuel_type][cte.MONTH] = MonthlyValues.get_total_month(
disaggregated_consumption[generation_system.fuel_type][cte.HOUR])
disaggregated_consumption[generation_system.fuel_type][cte.YEAR] = [
sum(disaggregated_consumption[generation_system.fuel_type][cte.MONTH])]
self.building.heating_fuel_consumption_disaggregated = disaggregated_consumption
2024-03-29 13:56:49 -04:00
return self.building