2024-05-30 17:26:50 -04:00
|
|
|
import pandas as pd
|
2024-05-28 11:25:18 -04:00
|
|
|
from scripts.geojson_creator import process_geojson
|
|
|
|
from pathlib import Path
|
|
|
|
import subprocess
|
|
|
|
from hub.imports.geometry_factory import GeometryFactory
|
|
|
|
from hub.helpers.dictionaries import Dictionaries
|
|
|
|
from hub.imports.construction_factory import ConstructionFactory
|
|
|
|
from hub.imports.usage_factory import UsageFactory
|
|
|
|
from hub.imports.weather_factory import WeatherFactory
|
|
|
|
from hub.imports.results_factory import ResultFactory
|
|
|
|
from scripts.solar_angles import CitySolarAngles
|
2024-05-30 17:26:50 -04:00
|
|
|
from scripts.ep_run_enrich import energy_plus_workflow
|
2024-05-28 11:25:18 -04:00
|
|
|
import hub.helpers.constants as cte
|
|
|
|
from hub.exports.exports_factory import ExportsFactory
|
2024-05-30 17:26:50 -04:00
|
|
|
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
2024-05-28 11:25:18 -04:00
|
|
|
# Specify the GeoJSON file path
|
2024-07-31 11:28:44 -04:00
|
|
|
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.0001)
|
2024-05-28 11:25:18 -04:00
|
|
|
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
|
|
|
|
# Specify the output path for the PDF file
|
|
|
|
output_path = (Path(__file__).parent / 'out_files').resolve()
|
|
|
|
# Create city object from GeoJSON file
|
|
|
|
city = GeometryFactory('geojson',
|
|
|
|
path=file_path,
|
|
|
|
height_field='height',
|
|
|
|
year_of_construction_field='year_of_construction',
|
|
|
|
function_field='function',
|
|
|
|
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
|
|
|
# Enrich city data
|
|
|
|
ConstructionFactory('nrcan', city).enrich()
|
|
|
|
|
|
|
|
UsageFactory('nrcan', city).enrich()
|
|
|
|
WeatherFactory('epw', city).enrich()
|
|
|
|
ExportsFactory('sra', city, output_path).export()
|
|
|
|
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
|
|
|
|
subprocess.run(['sra', str(sra_path)])
|
|
|
|
ResultFactory('sra', city, output_path).enrich()
|
2024-07-31 11:28:44 -04:00
|
|
|
energy_plus_workflow(city, output_path=output_path)
|
2024-05-30 17:26:50 -04:00
|
|
|
solar_angles = CitySolarAngles(city.name,
|
|
|
|
city.latitude,
|
|
|
|
city.longitude,
|
|
|
|
tilt_angle=45,
|
|
|
|
surface_azimuth_angle=180).calculate
|
|
|
|
df = pd.DataFrame()
|
|
|
|
df.index = ['yearly lighting (kWh)', 'yearly appliance (kWh)', 'yearly heating (kWh)', 'yearly cooling (kWh)',
|
|
|
|
'yearly dhw (kWh)', 'roof area (m2)', 'used area for pv (m2)', 'number of panels', 'pv production (kWh)']
|
2024-05-28 11:25:18 -04:00
|
|
|
for building in city.buildings:
|
2024-05-30 17:26:50 -04:00
|
|
|
ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
|
|
|
|
pv_sizing_simulation = PVSizingSimulation(building,
|
|
|
|
solar_angles,
|
|
|
|
tilt_angle=45,
|
|
|
|
module_height=1,
|
|
|
|
module_width=2,
|
|
|
|
ghi=ghi)
|
|
|
|
pv_sizing_simulation.pv_output()
|
|
|
|
yearly_lighting = building.lighting_electrical_demand[cte.YEAR][0] / 1000
|
|
|
|
yearly_appliance = building.appliances_electrical_demand[cte.YEAR][0] / 1000
|
|
|
|
yearly_heating = building.heating_demand[cte.YEAR][0] / (3.6e6 * 3)
|
|
|
|
yearly_cooling = building.cooling_demand[cte.YEAR][0] / (3.6e6 * 4.5)
|
|
|
|
yearly_dhw = building.domestic_hot_water_heat_demand[cte.YEAR][0] / 1000
|
|
|
|
roof_area = building.roofs[0].perimeter_area
|
|
|
|
used_roof = pv_sizing_simulation.available_space()
|
|
|
|
number_of_pv_panels = pv_sizing_simulation.total_number_of_panels
|
|
|
|
yearly_pv = building.onsite_electrical_production[cte.YEAR][0] / 1000
|
|
|
|
df[f'{building.name}'] = [yearly_lighting, yearly_appliance, yearly_heating, yearly_cooling, yearly_dhw, roof_area,
|
|
|
|
used_roof, number_of_pv_panels, yearly_pv]
|
|
|
|
|
|
|
|
df.to_csv(output_path / 'pv.csv')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|