Merge remote-tracking branch 'origin/main'
# Conflicts: # scripts/random_assignation.py
This commit is contained in:
commit
0ae92e77a1
@ -1,4 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="Black">
|
||||
<option name="sdkUUID" value="97386509-ec9b-4dd7-929b-7585219c0447" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="hub" project-jdk-type="Python SDK" />
|
||||
</project>
|
98
energy_system_retrofit.py
Normal file
98
energy_system_retrofit.py
Normal file
@ -0,0 +1,98 @@
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from scripts.energy_system_retrofit_report import EnergySystemRetrofitReport
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from scripts import random_assignation
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from scripts.energy_system_sizing import SystemSizing
|
||||
from scripts.solar_angles import CitySolarAngles
|
||||
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||
from scripts.energy_system_retrofit_results import consumption_data, cost_data
|
||||
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
|
||||
from scripts.costs.cost import Cost
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS
|
||||
import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.pv_feasibility import pv_feasibility
|
||||
|
||||
# Specify the GeoJSON file path
|
||||
input_files_path = (Path(__file__).parent / 'input_files')
|
||||
input_files_path.mkdir(parents=True, exist_ok=True)
|
||||
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.0001)
|
||||
geojson_file_path = input_files_path / 'output_buildings.geojson'
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
energy_plus_output_path = output_path / 'energy_plus_outputs'
|
||||
energy_plus_output_path.mkdir(parents=True, exist_ok=True)
|
||||
simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve()
|
||||
simulation_results_path.mkdir(parents=True, exist_ok=True)
|
||||
sra_output_path = output_path / 'sra_outputs'
|
||||
sra_output_path.mkdir(parents=True, exist_ok=True)
|
||||
cost_analysis_output_path = output_path / 'cost_analysis'
|
||||
cost_analysis_output_path.mkdir(parents=True, exist_ok=True)
|
||||
city = GeometryFactory(file_type='geojson',
|
||||
path=geojson_file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
ExportsFactory('sra', city, sra_output_path).export()
|
||||
sra_path = (sra_output_path / f'{city.name}_sra.xml').resolve()
|
||||
subprocess.run(['sra', str(sra_path)])
|
||||
ResultFactory('sra', city, sra_output_path).enrich()
|
||||
pv_feasibility(-73.5681295982132, 45.49218262677643, 0.0001, selected_buildings=city.buildings)
|
||||
energy_plus_workflow(city, energy_plus_output_path)
|
||||
solar_angles = CitySolarAngles(city.name,
|
||||
city.latitude,
|
||||
city.longitude,
|
||||
tilt_angle=45,
|
||||
surface_azimuth_angle=180).calculate
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_systems_percentage)
|
||||
EnergySystemsFactory('montreal_custom', city).enrich()
|
||||
SystemSizing(city.buildings).montreal_custom()
|
||||
current_status_energy_consumption = consumption_data(city)
|
||||
current_status_life_cycle_cost = {}
|
||||
for building in city.buildings:
|
||||
cost_retrofit_scenario = CURRENT_STATUS
|
||||
lcc_dataframe = Cost(building=building,
|
||||
retrofit_scenario=cost_retrofit_scenario,
|
||||
fuel_tariffs=['Electricity-D', 'Gas-Energir']).life_cycle
|
||||
lcc_dataframe.to_csv(cost_analysis_output_path / f'{building.name}_current_status_lcc.csv')
|
||||
current_status_life_cycle_cost[f'{building.name}'] = cost_data(building, lcc_dataframe, cost_retrofit_scenario)
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
|
||||
EnergySystemsFactory('montreal_future', city).enrich()
|
||||
for building in city.buildings:
|
||||
if 'PV' in building.energy_systems_archetype_name:
|
||||
ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
|
||||
pv_sizing_simulation = PVSizingSimulation(building,
|
||||
solar_angles,
|
||||
tilt_angle=45,
|
||||
module_height=1,
|
||||
module_width=2,
|
||||
ghi=ghi)
|
||||
pv_sizing_simulation.pv_output()
|
||||
if building.energy_systems_archetype_name == 'PV+4Pipe+DHW':
|
||||
EnergySystemsSimulationFactory('archetype13', building=building, output_path=simulation_results_path).enrich()
|
||||
retrofitted_energy_consumption = consumption_data(city)
|
||||
retrofitted_life_cycle_cost = {}
|
||||
for building in city.buildings:
|
||||
cost_retrofit_scenario = SYSTEM_RETROFIT_AND_PV
|
||||
lcc_dataframe = Cost(building=building,
|
||||
retrofit_scenario=cost_retrofit_scenario,
|
||||
fuel_tariffs=['Electricity-D', 'Gas-Energir']).life_cycle
|
||||
lcc_dataframe.to_csv(cost_analysis_output_path / f'{building.name}_retrofitted_lcc.csv')
|
||||
retrofitted_life_cycle_cost[f'{building.name}'] = cost_data(building, lcc_dataframe, cost_retrofit_scenario)
|
||||
(EnergySystemRetrofitReport(city, output_path, 'PV Implementation and System Retrofit',
|
||||
current_status_energy_consumption, retrofitted_energy_consumption,
|
||||
current_status_life_cycle_cost, retrofitted_life_cycle_cost).create_report())
|
||||
|
@ -6,6 +6,7 @@ Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
||||
"""
|
||||
|
||||
import xmltodict
|
||||
import json
|
||||
from hub.catalog_factories.catalog import Catalog
|
||||
from hub.catalog_factories.data_models.cost.archetype import Archetype
|
||||
from hub.catalog_factories.data_models.cost.content import Content
|
||||
@ -15,6 +16,7 @@ from hub.catalog_factories.data_models.cost.item_description import ItemDescript
|
||||
from hub.catalog_factories.data_models.cost.operational_cost import OperationalCost
|
||||
from hub.catalog_factories.data_models.cost.fuel import Fuel
|
||||
from hub.catalog_factories.data_models.cost.income import Income
|
||||
from hub.catalog_factories.data_models.cost.pricing_rate import PricingRate
|
||||
|
||||
|
||||
class MontrealNewCatalog(Catalog):
|
||||
@ -24,6 +26,7 @@ class MontrealNewCatalog(Catalog):
|
||||
|
||||
def __init__(self, path):
|
||||
path = (path / 'montreal_costs_completed.xml').resolve()
|
||||
self._fuel_rates_path = (path.parent / 'fuel_rates.json').resolve()
|
||||
with open(path, 'r', encoding='utf-8') as xml:
|
||||
self._archetypes = xmltodict.parse(xml.read(), force_list='archetype')
|
||||
|
||||
@ -45,7 +48,7 @@ class MontrealNewCatalog(Catalog):
|
||||
construction = float(archetype['incomes']['subsidies']['construction']['#text'])
|
||||
hvac = float(archetype['incomes']['subsidies']['hvac']['#text'])
|
||||
photovoltaic_system = float(archetype['incomes']['subsidies']['photovoltaic']['#text'])
|
||||
electricity_exports = float(archetype['incomes']['electricity_export']['#text']) / 1000 / 3600
|
||||
electricity_exports = float(archetype['incomes']['electricity_export']['#text'])
|
||||
reduction_tax = float(archetype['incomes']['tax_reduction']['#text']) / 100
|
||||
income = Income(construction_subsidy=construction,
|
||||
hvac_subsidy=hvac,
|
||||
@ -75,7 +78,22 @@ class MontrealNewCatalog(Catalog):
|
||||
refurbishment_unit=_refurbishment_unit,
|
||||
reposition=None,
|
||||
reposition_unit=None,
|
||||
lifetime=None)
|
||||
lifetime=None,
|
||||
maintenance=None,
|
||||
maintenance_unit=None)
|
||||
elif 'maintenance_cost' in item.keys():
|
||||
maintenance_cost = float(item['maintenance_cost']['#text'])
|
||||
maintenance_unit = item['maintenance_cost']['@cost_unit']
|
||||
_item_description = ItemDescription(item_type,
|
||||
initial_investment=None,
|
||||
initial_investment_unit=None,
|
||||
refurbishment=None,
|
||||
refurbishment_unit=None,
|
||||
reposition=None,
|
||||
reposition_unit=None,
|
||||
lifetime=None,
|
||||
maintenance=maintenance_cost,
|
||||
maintenance_unit=maintenance_unit)
|
||||
else:
|
||||
_reposition = float(item['reposition']['#text'])
|
||||
_reposition_unit = item['reposition']['@cost_unit']
|
||||
@ -89,7 +107,9 @@ class MontrealNewCatalog(Catalog):
|
||||
refurbishment_unit=None,
|
||||
reposition=_reposition,
|
||||
reposition_unit=_reposition_unit,
|
||||
lifetime=_lifetime)
|
||||
lifetime=_lifetime,
|
||||
maintenance=None,
|
||||
maintenance_unit=None)
|
||||
|
||||
return _item_description
|
||||
|
||||
@ -137,13 +157,35 @@ class MontrealNewCatalog(Catalog):
|
||||
|
||||
return capital_costs
|
||||
|
||||
@staticmethod
|
||||
def _get_operational_costs(entry):
|
||||
def load_fuel_rates(self):
|
||||
rates = []
|
||||
with open(self._fuel_rates_path, 'r') as f:
|
||||
fuel_rates = json.load(f)
|
||||
for rate in fuel_rates['rates']['fuels']['rate']:
|
||||
name = rate['name']
|
||||
rate_type = rate['rate_type']
|
||||
units = rate['units']
|
||||
values = rate['values']
|
||||
rates.append(PricingRate(name=name, rate_type=rate_type, units=units, values=values))
|
||||
return rates
|
||||
|
||||
|
||||
def search_fuel_rates(self, rates, name):
|
||||
variable = None
|
||||
for rate in rates:
|
||||
if rate.name == name:
|
||||
variable = rate
|
||||
return variable
|
||||
|
||||
|
||||
|
||||
def _get_operational_costs(self, entry):
|
||||
fuels = []
|
||||
rates = self.load_fuel_rates()
|
||||
for item in entry['fuels']['fuel']:
|
||||
fuel_type = item['@fuel_type']
|
||||
fuel_variable = float(item['variable']['#text'])
|
||||
fuel_variable_units = item['variable']['@cost_unit']
|
||||
fuel_variable = item['variable']
|
||||
variable = self.search_fuel_rates(rates, fuel_variable)
|
||||
fuel_fixed_monthly = None
|
||||
fuel_fixed_peak = None
|
||||
density = None
|
||||
@ -165,20 +207,22 @@ class MontrealNewCatalog(Catalog):
|
||||
fuel = Fuel(fuel_type,
|
||||
fixed_monthly=fuel_fixed_monthly,
|
||||
fixed_power=fuel_fixed_peak,
|
||||
variable=fuel_variable,
|
||||
variable_units=fuel_variable_units,
|
||||
variable=variable,
|
||||
density=density,
|
||||
density_unit=density_unit,
|
||||
lower_heating_value=lower_heating_value,
|
||||
lower_heating_value_unit=lower_heating_value_unit)
|
||||
fuels.append(fuel)
|
||||
heating_equipment_maintenance = float(entry['maintenance']['heating_equipment']['#text'])
|
||||
cooling_equipment_maintenance = float(entry['maintenance']['cooling_equipment']['#text'])
|
||||
hvac_equipment = entry['maintenance']['hvac_equipment']
|
||||
items = []
|
||||
for item in hvac_equipment:
|
||||
items.append(self.item_description(item, hvac_equipment[item]))
|
||||
|
||||
|
||||
photovoltaic_system_maintenance = float(entry['maintenance']['photovoltaic_system']['#text'])
|
||||
co2_emissions = float(entry['co2_cost']['#text'])
|
||||
_operational_cost = OperationalCost(fuels,
|
||||
heating_equipment_maintenance,
|
||||
cooling_equipment_maintenance,
|
||||
items,
|
||||
photovoltaic_system_maintenance,
|
||||
co2_emissions)
|
||||
return _operational_cost
|
||||
|
@ -6,7 +6,7 @@ Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
||||
"""
|
||||
|
||||
from typing import Union
|
||||
|
||||
from hub.catalog_factories.data_models.cost.pricing_rate import PricingRate
|
||||
|
||||
class Fuel:
|
||||
"""
|
||||
@ -16,7 +16,6 @@ class Fuel:
|
||||
fixed_monthly=None,
|
||||
fixed_power=None,
|
||||
variable=None,
|
||||
variable_units=None,
|
||||
density=None,
|
||||
density_unit=None,
|
||||
lower_heating_value=None,
|
||||
@ -26,7 +25,6 @@ class Fuel:
|
||||
self._fixed_monthly = fixed_monthly
|
||||
self._fixed_power = fixed_power
|
||||
self._variable = variable
|
||||
self._variable_units = variable_units
|
||||
self._density = density
|
||||
self._density_unit = density_unit
|
||||
self._lower_heating_value = lower_heating_value
|
||||
@ -59,12 +57,12 @@ class Fuel:
|
||||
return None
|
||||
|
||||
@property
|
||||
def variable(self) -> Union[tuple[None, None], tuple[float, str]]:
|
||||
def variable(self) -> Union[None, PricingRate]:
|
||||
"""
|
||||
Get variable costs in given units
|
||||
:return: None, None or float, str
|
||||
"""
|
||||
return self._variable, self._variable_units
|
||||
return self._variable
|
||||
|
||||
@property
|
||||
def density(self) -> Union[tuple[None, None], tuple[float, str]]:
|
||||
@ -84,11 +82,13 @@ class Fuel:
|
||||
|
||||
def to_dictionary(self):
|
||||
"""Class content to dictionary"""
|
||||
variable_price = None
|
||||
if self.variable is not None:
|
||||
variable_price = self.variable.to_dictionary()
|
||||
content = {'Fuel': {'fuel type': self.type,
|
||||
'fixed operational costs [currency/month]': self.fixed_monthly,
|
||||
'fixed operational costs depending on the peak power consumed [currency/month W]': self.fixed_power,
|
||||
'variable operational costs': self.variable[0],
|
||||
'units': self.variable[1],
|
||||
'variable operational costs': variable_price,
|
||||
'density': self.density[0],
|
||||
'density unit': self.density[1],
|
||||
'lower heating value': self.lower_heating_value[0],
|
||||
|
@ -19,7 +19,9 @@ class ItemDescription:
|
||||
refurbishment_unit=None,
|
||||
reposition=None,
|
||||
reposition_unit=None,
|
||||
lifetime=None):
|
||||
lifetime=None,
|
||||
maintenance=None,
|
||||
maintenance_unit=None):
|
||||
|
||||
self._item_type = item_type
|
||||
self._initial_investment = initial_investment
|
||||
@ -29,6 +31,8 @@ class ItemDescription:
|
||||
self._reposition = reposition
|
||||
self._reposition_unit = reposition_unit
|
||||
self._lifetime = lifetime
|
||||
self._maintenance = maintenance
|
||||
self._maintenance_unit = maintenance_unit
|
||||
|
||||
@property
|
||||
def type(self):
|
||||
@ -70,6 +74,14 @@ class ItemDescription:
|
||||
"""
|
||||
return self._lifetime
|
||||
|
||||
@property
|
||||
def maintenance(self) -> Union[tuple[None, None], tuple[float, str]]:
|
||||
"""
|
||||
Get reposition costs of the specific item in given units
|
||||
:return: None, None or float, str
|
||||
"""
|
||||
return self._maintenance, self._maintenance_unit
|
||||
|
||||
def to_dictionary(self):
|
||||
"""Class content to dictionary"""
|
||||
content = {'Item': {'type': self.type,
|
||||
@ -79,7 +91,9 @@ class ItemDescription:
|
||||
'refurbishment units': self.refurbishment[1],
|
||||
'reposition': self.reposition[0],
|
||||
'reposition units': self.reposition[1],
|
||||
'life time [years]': self.lifetime
|
||||
'life time [years]': self.lifetime,
|
||||
'maintenance': self.maintenance[0],
|
||||
'maintenance units': self.maintenance[1]
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -7,16 +7,15 @@ Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
||||
|
||||
from typing import List
|
||||
from hub.catalog_factories.data_models.cost.fuel import Fuel
|
||||
|
||||
from hub.catalog_factories.data_models.cost.item_description import ItemDescription
|
||||
|
||||
class OperationalCost:
|
||||
"""
|
||||
Operational cost class
|
||||
"""
|
||||
def __init__(self, fuels, maintenance_heating, maintenance_cooling, maintenance_pv, co2):
|
||||
def __init__(self, fuels, maintenance_hvac, maintenance_pv, co2):
|
||||
self._fuels = fuels
|
||||
self._maintenance_heating = maintenance_heating
|
||||
self._maintenance_cooling = maintenance_cooling
|
||||
self._maintenance_hvac = maintenance_hvac
|
||||
self._maintenance_pv = maintenance_pv
|
||||
self._co2 = co2
|
||||
|
||||
@ -30,20 +29,12 @@ class OperationalCost:
|
||||
return self._fuels
|
||||
|
||||
@property
|
||||
def maintenance_heating(self):
|
||||
def maintenance_hvac(self) -> List[ItemDescription]:
|
||||
"""
|
||||
Get cost of maintaining the heating system in currency/W
|
||||
Get cost of maintaining the hvac system in currency/W
|
||||
:return: float
|
||||
"""
|
||||
return self._maintenance_heating
|
||||
|
||||
@property
|
||||
def maintenance_cooling(self):
|
||||
"""
|
||||
Get cost of maintaining the cooling system in currency/W
|
||||
:return: float
|
||||
"""
|
||||
return self._maintenance_cooling
|
||||
return self._maintenance_hvac
|
||||
|
||||
@property
|
||||
def maintenance_pv(self):
|
||||
@ -64,11 +55,13 @@ class OperationalCost:
|
||||
def to_dictionary(self):
|
||||
"""Class content to dictionary"""
|
||||
_fuels = []
|
||||
_hvac_maintenance = []
|
||||
for _fuel in self.fuels:
|
||||
_fuels.append(_fuel.to_dictionary())
|
||||
for _hvac in self.maintenance_hvac:
|
||||
_hvac_maintenance.append(_hvac.to_dictionary())
|
||||
content = {'Maintenance': {'fuels': _fuels,
|
||||
'cost of maintaining the heating system [currency/W]': self.maintenance_heating,
|
||||
'cost of maintaining the cooling system [currency/W]': self.maintenance_cooling,
|
||||
'cost of maintaining the hvac system [currency/W]': _hvac_maintenance,
|
||||
'cost of maintaining the PV system [currency/W]': self.maintenance_pv,
|
||||
'cost of CO2 emissions [currency/kgCO2]': self.co2
|
||||
}
|
||||
|
62
hub/catalog_factories/data_models/cost/pricing_rate.py
Normal file
62
hub/catalog_factories/data_models/cost/pricing_rate.py
Normal file
@ -0,0 +1,62 @@
|
||||
from typing import Union
|
||||
|
||||
|
||||
class PricingRate:
|
||||
def __init__(self, name=None, rate_type=None, time_range=None, units=None, values=None):
|
||||
self._name = name
|
||||
self._rate_type = rate_type
|
||||
self._time_range = time_range
|
||||
self._units = units
|
||||
self._values = values
|
||||
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
"""
|
||||
name of the rate
|
||||
:return: str
|
||||
"""
|
||||
return self._name
|
||||
|
||||
@property
|
||||
def rate_type(self):
|
||||
"""
|
||||
type of rate between fixed and variable
|
||||
:return: str
|
||||
"""
|
||||
return self._rate_type
|
||||
|
||||
@property
|
||||
def time_range(self) -> Union[None, str]:
|
||||
"""
|
||||
Get schedule time range from:
|
||||
['minute', 'hour', 'day', 'week', 'month', 'year']
|
||||
:return: None or str
|
||||
"""
|
||||
return self._time_range
|
||||
|
||||
@property
|
||||
def units(self):
|
||||
"""
|
||||
get the consumption unit
|
||||
:return: str
|
||||
"""
|
||||
return self._units
|
||||
|
||||
@property
|
||||
def values(self):
|
||||
"""
|
||||
Get schedule values
|
||||
:return: [Any]
|
||||
"""
|
||||
return self._values
|
||||
|
||||
def to_dictionary(self):
|
||||
"""Class content to dictionary"""
|
||||
content = {'Pricing': {'name': self.name,
|
||||
'time range': self.time_range,
|
||||
'type': self.rate_type,
|
||||
'units': self.units,
|
||||
'values': self.values}
|
||||
}
|
||||
return content
|
@ -10,7 +10,7 @@ class EmissionSystem:
|
||||
"""
|
||||
Emission system class
|
||||
"""
|
||||
def __init__(self, system_id, model_name=None, system_type=None, parasitic_energy_consumption=None):
|
||||
def __init__(self, system_id, model_name=None, system_type=None, parasitic_energy_consumption=0):
|
||||
|
||||
self._system_id = system_id
|
||||
self._model_name = model_name
|
||||
|
@ -135,7 +135,7 @@ class MontrealCustomCatalog(Catalog):
|
||||
equipment_id = float(equipment['@id'])
|
||||
equipment_type = equipment['@type']
|
||||
model_name = equipment['name']
|
||||
parasitic_consumption = None
|
||||
parasitic_consumption = 0
|
||||
if 'parasitic_consumption' in equipment:
|
||||
parasitic_consumption = float(equipment['parasitic_consumption']['#text']) / 100
|
||||
|
||||
|
@ -262,7 +262,7 @@ class MontrealFutureSystemCatalogue(Catalog):
|
||||
system_id = None
|
||||
model_name = None
|
||||
system_type = None
|
||||
parasitic_energy_consumption = None
|
||||
parasitic_energy_consumption = 0
|
||||
emission_system = EmissionSystem(system_id=system_id,
|
||||
model_name=model_name,
|
||||
system_type=system_type,
|
||||
@ -298,7 +298,7 @@ class MontrealFutureSystemCatalogue(Catalog):
|
||||
layers = [insulation_layer, tank_layer]
|
||||
nominal_capacity = tes['nominal_capacity']
|
||||
losses_ratio = tes['losses_ratio']
|
||||
heating_coil_capacity = None
|
||||
heating_coil_capacity = tes['heating_coil_capacity']
|
||||
storage_component = ThermalStorageSystem(storage_id=storage_id,
|
||||
model_name=model_name,
|
||||
type_energy_stored=type_energy_stored,
|
||||
@ -338,7 +338,7 @@ class MontrealFutureSystemCatalogue(Catalog):
|
||||
nominal_capacity = template['nominal_capacity']
|
||||
losses_ratio = template['losses_ratio']
|
||||
volume = template['physical_characteristics']['volume']
|
||||
heating_coil_capacity = None
|
||||
heating_coil_capacity = template['heating_coil_capacity']
|
||||
storage_component = ThermalStorageSystem(storage_id=storage_id,
|
||||
model_name=model_name,
|
||||
type_energy_stored=type_energy_stored,
|
||||
|
@ -92,6 +92,7 @@ class Building(CityObject):
|
||||
logging.error('Building %s [%s] has an unexpected surface type %s.', self.name, self.aliases, surface.type)
|
||||
self._domestic_hot_water_peak_load = None
|
||||
self._fuel_consumption_breakdown = {}
|
||||
self._pv_generation = {}
|
||||
|
||||
@property
|
||||
def shell(self) -> Polyhedron:
|
||||
@ -450,8 +451,8 @@ class Building(CityObject):
|
||||
monthly_values = PeakLoads(self).heating_peak_loads_from_methodology
|
||||
if monthly_values is None:
|
||||
return None
|
||||
results[cte.MONTH] = [x * cte.WATTS_HOUR_TO_JULES for x in monthly_values]
|
||||
results[cte.YEAR] = [max(monthly_values)]
|
||||
results[cte.MONTH] = [x / cte.WATTS_HOUR_TO_JULES for x in monthly_values]
|
||||
results[cte.YEAR] = [max(monthly_values) / cte.WATTS_HOUR_TO_JULES]
|
||||
return results
|
||||
|
||||
@property
|
||||
@ -467,8 +468,8 @@ class Building(CityObject):
|
||||
monthly_values = PeakLoads(self).cooling_peak_loads_from_methodology
|
||||
if monthly_values is None:
|
||||
return None
|
||||
results[cte.MONTH] = [x * cte.WATTS_HOUR_TO_JULES for x in monthly_values]
|
||||
results[cte.YEAR] = [max(monthly_values)]
|
||||
results[cte.MONTH] = [x / cte.WATTS_HOUR_TO_JULES for x in monthly_values]
|
||||
results[cte.YEAR] = [max(monthly_values) / cte.WATTS_HOUR_TO_JULES]
|
||||
return results
|
||||
|
||||
@property
|
||||
@ -483,8 +484,8 @@ class Building(CityObject):
|
||||
monthly_values = PeakLoads().peak_loads_from_hourly(self.domestic_hot_water_heat_demand[cte.HOUR])
|
||||
if monthly_values is None:
|
||||
return None
|
||||
results[cte.MONTH] = [x for x in monthly_values]
|
||||
results[cte.YEAR] = [max(monthly_values)]
|
||||
results[cte.MONTH] = [x / cte.WATTS_HOUR_TO_JULES for x in monthly_values]
|
||||
results[cte.YEAR] = [max(monthly_values) / cte.WATTS_HOUR_TO_JULES]
|
||||
return results
|
||||
|
||||
@property
|
||||
@ -809,39 +810,16 @@ class Building(CityObject):
|
||||
Get total electricity produced onsite in J
|
||||
return: dict
|
||||
"""
|
||||
orientation_losses_factor = {cte.MONTH: {'north': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
'east': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
'south': [2.137931, 1.645503, 1.320946, 1.107817, 0.993213, 0.945175,
|
||||
0.967949, 1.065534, 1.24183, 1.486486, 1.918033, 2.210526],
|
||||
'west': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]},
|
||||
cte.YEAR: {'north': [0],
|
||||
'east': [0],
|
||||
'south': [1.212544],
|
||||
'west': [0]}
|
||||
}
|
||||
|
||||
# Add other systems whenever new ones appear
|
||||
if self.energy_systems is None:
|
||||
return self._onsite_electrical_production
|
||||
for energy_system in self.energy_systems:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.system_type == cte.PHOTOVOLTAIC:
|
||||
if generation_system.electricity_efficiency is not None:
|
||||
_efficiency = float(generation_system.electricity_efficiency)
|
||||
else:
|
||||
_efficiency = 0
|
||||
self._onsite_electrical_production = {}
|
||||
for _key in self.roofs[0].global_irradiance.keys():
|
||||
_results = [0 for _ in range(0, len(self.roofs[0].global_irradiance[_key]))]
|
||||
for surface in self.roofs:
|
||||
if _key in orientation_losses_factor:
|
||||
_results = [x + y * _efficiency * surface.perimeter_area
|
||||
* surface.solar_collectors_area_reduction_factor * z
|
||||
for x, y, z in zip(_results, surface.global_irradiance[_key],
|
||||
orientation_losses_factor[_key]['south'])]
|
||||
self._onsite_electrical_production[_key] = _results
|
||||
return self._onsite_electrical_production
|
||||
|
||||
@onsite_electrical_production.setter
|
||||
def onsite_electrical_production(self, value):
|
||||
"""
|
||||
set onsite electrical production from external pv simulations
|
||||
:return:
|
||||
"""
|
||||
self._onsite_electrical_production = value
|
||||
|
||||
@property
|
||||
def lower_corner(self):
|
||||
"""
|
||||
@ -876,37 +854,39 @@ class Building(CityObject):
|
||||
if demand_type in generation_system.energy_consumption:
|
||||
fuel_breakdown[f'{generation_system.fuel_type}'][f'{demand_type}'] = (
|
||||
generation_system.energy_consumption)[f'{demand_type}'][cte.YEAR][0]
|
||||
storage_systems = generation_system.energy_storage_systems
|
||||
if storage_systems:
|
||||
for storage_system in storage_systems:
|
||||
if storage_system.type_energy_stored == 'thermal' and storage_system.heating_coil_energy_consumption:
|
||||
fuel_breakdown[cte.ELECTRICITY][f'{demand_type}'] += storage_system.heating_coil_energy_consumption[cte.YEAR][0]
|
||||
#TODO: When simulation models of all energy system archetypes are created, this part can be removed
|
||||
heating = 0
|
||||
cooling = 0
|
||||
dhw = 0
|
||||
heating_fuels = []
|
||||
dhw_fuels = []
|
||||
for energy_system in self.energy_systems:
|
||||
if cte.HEATING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
heating_fuels.append(generation_system.fuel_type)
|
||||
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
dhw_fuels.append(generation_system.fuel_type)
|
||||
for key in fuel_breakdown:
|
||||
if cte.HEATING not in fuel_breakdown[key]:
|
||||
heating += 1
|
||||
if key == cte.ELECTRICITY and cte.COOLING not in fuel_breakdown[key]:
|
||||
cooling += 1
|
||||
if cte.DOMESTIC_HOT_WATER not in fuel_breakdown[key]:
|
||||
dhw += 1
|
||||
if heating > 0:
|
||||
for energy_system in energy_systems:
|
||||
if cte.HEATING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
fuel_breakdown[generation_system.fuel_type][cte.HEATING] = self.heating_consumption[cte.YEAR][0] / 3600
|
||||
if dhw > 0:
|
||||
for energy_system in energy_systems:
|
||||
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
fuel_breakdown[generation_system.fuel_type][cte.DOMESTIC_HOT_WATER] = \
|
||||
self.domestic_hot_water_consumption[cte.YEAR][0] / 3600
|
||||
if cooling > 0:
|
||||
for energy_system in energy_systems:
|
||||
if cte.COOLING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
fuel_breakdown[generation_system.fuel_type][cte.COOLING] = self.cooling_consumption[cte.YEAR][0] / 3600
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
for energy_system in energy_systems:
|
||||
if cte.COOLING in energy_system.demand_types and cte.COOLING not in fuel_breakdown[key]:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
fuel_breakdown[generation_system.fuel_type][cte.COOLING] = self.cooling_consumption[cte.YEAR][0]
|
||||
for fuel in heating_fuels:
|
||||
if cte.HEATING not in fuel_breakdown[fuel]:
|
||||
for energy_system in energy_systems:
|
||||
if cte.HEATING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
fuel_breakdown[generation_system.fuel_type][cte.HEATING] = self.heating_consumption[cte.YEAR][0]
|
||||
for fuel in dhw_fuels:
|
||||
if cte.DOMESTIC_HOT_WATER not in fuel_breakdown[fuel]:
|
||||
for energy_system in energy_systems:
|
||||
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
fuel_breakdown[generation_system.fuel_type][cte.DOMESTIC_HOT_WATER] = self.domestic_hot_water_consumption[cte.YEAR][0]
|
||||
self._fuel_consumption_breakdown = fuel_breakdown
|
||||
return self._fuel_consumption_breakdown
|
||||
|
||||
|
@ -46,6 +46,8 @@ class Surface:
|
||||
self._vegetation = None
|
||||
self._percentage_shared = None
|
||||
self._solar_collectors_area_reduction_factor = None
|
||||
self._global_irradiance_tilted = {}
|
||||
self._installed_solar_collector_area = None
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
@ -384,3 +386,35 @@ class Surface:
|
||||
:param value: float
|
||||
"""
|
||||
self._solar_collectors_area_reduction_factor = value
|
||||
|
||||
@property
|
||||
def global_irradiance_tilted(self) -> dict:
|
||||
"""
|
||||
Get global irradiance on a tilted surface in J/m2
|
||||
:return: dict
|
||||
"""
|
||||
return self._global_irradiance_tilted
|
||||
|
||||
@global_irradiance_tilted.setter
|
||||
def global_irradiance_tilted(self, value):
|
||||
"""
|
||||
Set global irradiance on a tilted surface in J/m2
|
||||
:param value: dict
|
||||
"""
|
||||
self._global_irradiance_tilted = value
|
||||
|
||||
@property
|
||||
def installed_solar_collector_area(self):
|
||||
"""
|
||||
Get installed solar collector area in m2
|
||||
:return: dict
|
||||
"""
|
||||
return self._installed_solar_collector_area
|
||||
|
||||
@installed_solar_collector_area.setter
|
||||
def installed_solar_collector_area(self, value):
|
||||
"""
|
||||
Set installed solar collector area in m2
|
||||
:return: dict
|
||||
"""
|
||||
self._installed_solar_collector_area = value
|
@ -41,9 +41,10 @@ class CityObject:
|
||||
self._ground_temperature = {}
|
||||
self._global_horizontal = {}
|
||||
self._diffuse = {}
|
||||
self._beam = {}
|
||||
self._direct_normal = {}
|
||||
self._sensors = []
|
||||
self._neighbours = None
|
||||
self._beam = {}
|
||||
|
||||
@property
|
||||
def level_of_detail(self) -> LevelOfDetail:
|
||||
@ -238,20 +239,20 @@ class CityObject:
|
||||
self._diffuse = value
|
||||
|
||||
@property
|
||||
def beam(self) -> dict:
|
||||
def direct_normal(self) -> dict:
|
||||
"""
|
||||
Get beam radiation surrounding the city object in J/m2
|
||||
:return: dict{dict{[float]}}
|
||||
"""
|
||||
return self._beam
|
||||
return self._direct_normal
|
||||
|
||||
@beam.setter
|
||||
def beam(self, value):
|
||||
@direct_normal.setter
|
||||
def direct_normal(self, value):
|
||||
"""
|
||||
Set beam radiation surrounding the city object in J/m2
|
||||
:param value: dict{dict{[float]}}
|
||||
"""
|
||||
self._beam = value
|
||||
self._direct_normal = value
|
||||
|
||||
@property
|
||||
def lower_corner(self):
|
||||
@ -302,3 +303,19 @@ class CityObject:
|
||||
Set the list of neighbour_objects and their properties associated to the current city_object
|
||||
"""
|
||||
self._neighbours = value
|
||||
|
||||
@property
|
||||
def beam(self) -> dict:
|
||||
"""
|
||||
Get beam radiation surrounding the city object in J/m2
|
||||
:return: dict{dict{[float]}}
|
||||
"""
|
||||
return self._beam
|
||||
|
||||
@beam.setter
|
||||
def beam(self, value):
|
||||
"""
|
||||
Set beam radiation surrounding the city object in J/m2
|
||||
:param value: dict{dict{[float]}}
|
||||
"""
|
||||
self._beam = value
|
||||
|
@ -13,7 +13,7 @@ class EmissionSystem:
|
||||
def __init__(self):
|
||||
self._model_name = None
|
||||
self._type = None
|
||||
self._parasitic_energy_consumption = None
|
||||
self._parasitic_energy_consumption = 0
|
||||
|
||||
@property
|
||||
def model_name(self):
|
||||
|
@ -26,6 +26,10 @@ class PvGenerationSystem(GenerationSystem):
|
||||
self._width = None
|
||||
self._height = None
|
||||
self._electricity_power = None
|
||||
self._tilt_angle = None
|
||||
self._surface_azimuth = None
|
||||
self._solar_altitude_angle = None
|
||||
self._solar_azimuth_angle = None
|
||||
|
||||
@property
|
||||
def nominal_electricity_output(self):
|
||||
@ -202,3 +206,35 @@ class PvGenerationSystem(GenerationSystem):
|
||||
:param value: float
|
||||
"""
|
||||
self._electricity_power = value
|
||||
|
||||
@property
|
||||
def tilt_angle(self):
|
||||
"""
|
||||
Get tilt angle of PV system in degrees
|
||||
:return: float
|
||||
"""
|
||||
return self._tilt_angle
|
||||
|
||||
@tilt_angle.setter
|
||||
def tilt_angle(self, value):
|
||||
"""
|
||||
Set PV system tilt angle in degrees
|
||||
:param value: float
|
||||
"""
|
||||
self._tilt_angle = value
|
||||
|
||||
@property
|
||||
def surface_azimuth(self):
|
||||
"""
|
||||
Get surface azimuth angle of PV system in degrees. 0 is North
|
||||
:return: float
|
||||
"""
|
||||
return self._surface_azimuth
|
||||
|
||||
@surface_azimuth.setter
|
||||
def surface_azimuth(self, value):
|
||||
"""
|
||||
Set PV system tilt angle in degrees
|
||||
:param value: float
|
||||
"""
|
||||
self._surface_azimuth = value
|
||||
|
@ -24,6 +24,7 @@ class ThermalStorageSystem(EnergyStorageSystem):
|
||||
self._maximum_operating_temperature = None
|
||||
self._heating_coil_capacity = None
|
||||
self._temperature = None
|
||||
self._heating_coil_energy_consumption = None
|
||||
|
||||
@property
|
||||
def volume(self):
|
||||
@ -95,7 +96,7 @@ class ThermalStorageSystem(EnergyStorageSystem):
|
||||
Get heating coil capacity in Watts
|
||||
:return: float
|
||||
"""
|
||||
return self._maximum_operating_temperature
|
||||
return self._heating_coil_capacity
|
||||
|
||||
@heating_coil_capacity.setter
|
||||
def heating_coil_capacity(self, value):
|
||||
@ -120,3 +121,19 @@ class ThermalStorageSystem(EnergyStorageSystem):
|
||||
:param value: dict{[float]}
|
||||
"""
|
||||
self._temperature = value
|
||||
|
||||
@property
|
||||
def heating_coil_energy_consumption(self) -> dict:
|
||||
"""
|
||||
Get fuel consumption in W, m3, or kg
|
||||
:return: dict{[float]}
|
||||
"""
|
||||
return self._heating_coil_energy_consumption
|
||||
|
||||
@heating_coil_energy_consumption.setter
|
||||
def heating_coil_energy_consumption(self, value):
|
||||
"""
|
||||
Set fuel consumption in W, m3, or kg
|
||||
:param value: dict{[float]}
|
||||
"""
|
||||
self._heating_coil_energy_consumption = value
|
||||
|
106
hub/data/costs/fuel_rates.json
Normal file
106
hub/data/costs/fuel_rates.json
Normal file
@ -0,0 +1,106 @@
|
||||
{
|
||||
"rates": {
|
||||
"fuels": {
|
||||
"rate": [
|
||||
{
|
||||
"name": "Electricity-D",
|
||||
"fuel_type": "Electricity",
|
||||
"rate_name": "D",
|
||||
"units": "CAD/kWh",
|
||||
"usage_type": "residential",
|
||||
"maximum_power_demand_kW": 65,
|
||||
"rate_type": "fixed",
|
||||
"notes": null,
|
||||
"start_date": null,
|
||||
"end_date": null,
|
||||
"values": [
|
||||
0.075
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "Electricity-Flex-D",
|
||||
"fuel_type": "Electricity",
|
||||
"rate_name": "Flex-D",
|
||||
"units": "CAD/kWh",
|
||||
"usage_type": "residential",
|
||||
"maximum_power_demand_kW": 65,
|
||||
"rate_type": "variable",
|
||||
"notes": null,
|
||||
"start_date": null,
|
||||
"end_date": null,
|
||||
"values": [
|
||||
0.075,
|
||||
0.075,
|
||||
0.075,
|
||||
0.075,
|
||||
0.075,
|
||||
0.075,
|
||||
0.551,
|
||||
0.551,
|
||||
0.551,
|
||||
0.075,
|
||||
0.075,
|
||||
0.075,
|
||||
0.075,
|
||||
0.075,
|
||||
0.075,
|
||||
0.075,
|
||||
0.551,
|
||||
0.551,
|
||||
0.551,
|
||||
0.551,
|
||||
0.075,
|
||||
0.075,
|
||||
0.075,
|
||||
0.075
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "Gas-Energir",
|
||||
"fuel_type": "Gas",
|
||||
"rate_name": null,
|
||||
"units": "CAD/m3",
|
||||
"usage_type": "residential",
|
||||
"maximum_power_demand_kW": null,
|
||||
"rate_type": "fixed",
|
||||
"notes": null,
|
||||
"start_date": null,
|
||||
"end_date": null,
|
||||
"values": [
|
||||
0.4
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "Diesel-Fixed",
|
||||
"fuel_type": "Diesel",
|
||||
"rate_name": null,
|
||||
"units": "CAD/l",
|
||||
"usage_type": "residential",
|
||||
"maximum_power_demand_kW": null,
|
||||
"rate_type": "fixed",
|
||||
"notes": null,
|
||||
"start_date": null,
|
||||
"end_date": null,
|
||||
"values": [
|
||||
1.2
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "Biomass-Fixed",
|
||||
"fuel_type": "Biomass",
|
||||
"rate_name": null,
|
||||
"units": "CAD/kg",
|
||||
"usage_type": "residential",
|
||||
"maximum_power_demand_kW": null,
|
||||
"rate_type": "fixed",
|
||||
"notes": null,
|
||||
"start_date": null,
|
||||
"end_date": null,
|
||||
"values": [
|
||||
0.04
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
@ -25,8 +25,8 @@
|
||||
<D_services>
|
||||
<D20_onsite_generation>
|
||||
<D2010_photovoltaic_system>
|
||||
<investment_cost cost_unit="currency/m2"> 0 </investment_cost>
|
||||
<reposition cost_unit="currency/m2"> 0 </reposition>
|
||||
<investment_cost cost_unit="currency/m2"> 300 </investment_cost>
|
||||
<reposition cost_unit="currency/m2"> 300 </reposition>
|
||||
<lifetime_equipment lifetime="years"> 25 </lifetime_equipment>
|
||||
</D2010_photovoltaic_system>
|
||||
</D20_onsite_generation>
|
||||
@ -124,34 +124,58 @@
|
||||
<operational_cost>
|
||||
<fuels>
|
||||
<fuel fuel_type="Electricity">
|
||||
<fixed_monthly cost_unit="currency/month">12.27</fixed_monthly>
|
||||
<fixed_power cost_unit="currency/month*kW">0</fixed_power>
|
||||
<variable cost_unit="currency/kWh">0.075</variable>
|
||||
<density/>
|
||||
<lower_heating_value/>
|
||||
<fixed_monthly cost_unit="currency/month"> 12.27 </fixed_monthly>
|
||||
<fixed_power cost_unit="currency/(month*kW)"> 0 </fixed_power>
|
||||
<variable>Electricity-D</variable>
|
||||
</fuel>
|
||||
<fuel fuel_type="Electricity">
|
||||
<fixed_monthly cost_unit="currency/month"> 12.27 </fixed_monthly>
|
||||
<fixed_power cost_unit="currency/(month*kW)"> 0 </fixed_power>
|
||||
<variable>Electricity-Flex-D</variable>
|
||||
</fuel>
|
||||
<fuel fuel_type="Gas">
|
||||
<fixed_monthly cost_unit="currency/month"> 17.71 </fixed_monthly>
|
||||
<variable cost_unit="currency/m3"> 0.4 </variable>
|
||||
<variable>Gas-Energir</variable>
|
||||
<density density_unit="kg/m3"> 0.777 </density>
|
||||
<lower_heating_value lhv_unit="MJ/kg"> 47.1 </lower_heating_value>
|
||||
</fuel>
|
||||
<fuel fuel_type="Diesel">
|
||||
<fixed_monthly/>
|
||||
<variable cost_unit="currency/l"> 1.2 </variable>
|
||||
<variable>Diesel-Fixed</variable>
|
||||
<density density_unit="kg/l"> 0.846 </density>
|
||||
<lower_heating_value lhv_unit="MJ/kg"> 42.6 </lower_heating_value>
|
||||
</fuel>
|
||||
<fuel fuel_type="Biomass">
|
||||
<fixed_monthly/>
|
||||
<variable cost_unit="currency/kg"> 0.04 </variable>
|
||||
<variable>Biomass-Fixed</variable>
|
||||
<density/>
|
||||
<lower_heating_value lhv_unit="MJ/kg"> 18 </lower_heating_value>
|
||||
</fuel>
|
||||
</fuels>
|
||||
<maintenance>
|
||||
<heating_equipment cost_unit="currency/kW">40</heating_equipment>
|
||||
<cooling_equipment cost_unit="currency/kW">40</cooling_equipment>
|
||||
<hvac_equipment>
|
||||
<air_source_heat_pump>
|
||||
<maintenance_cost cost_unit="cureency/kW">100</maintenance_cost>
|
||||
</air_source_heat_pump>
|
||||
<ground_source_heat_pump>
|
||||
<maintenance_cost cost_unit="cureency/kW">60</maintenance_cost>
|
||||
</ground_source_heat_pump>
|
||||
<water_source_heat_pump>
|
||||
<maintenance_cost cost_unit="cureency/kW">50</maintenance_cost>
|
||||
</water_source_heat_pump>
|
||||
<gas_boiler>
|
||||
<maintenance_cost cost_unit="cureency/kW">50</maintenance_cost>
|
||||
</gas_boiler>
|
||||
<electric_boiler>
|
||||
<maintenance_cost cost_unit="cureency/kW">100</maintenance_cost>
|
||||
</electric_boiler>
|
||||
<general_heating_equipment>
|
||||
<maintenance_cost cost_unit="cureency/kW">60</maintenance_cost>
|
||||
</general_heating_equipment>
|
||||
<general_cooling_equipment>
|
||||
<maintenance_cost cost_unit="cureency/kW">50</maintenance_cost>
|
||||
</general_cooling_equipment>
|
||||
</hvac_equipment>
|
||||
<photovoltaic_system cost_unit="currency/m2">1</photovoltaic_system>
|
||||
</maintenance>
|
||||
<co2_cost cost_unit="currency/kgCO2"> 30 </co2_cost>
|
||||
@ -163,7 +187,7 @@
|
||||
<hvac cost_unit="%">1.5</hvac>
|
||||
<photovoltaic cost_unit="%">3.6</photovoltaic>
|
||||
</subsidies>
|
||||
<electricity_export cost_unit="currency/kWh">0.07</electricity_export>
|
||||
<electricity_export cost_unit="currency/kWh">0.075</electricity_export>
|
||||
<tax_reduction cost_unit="%">5</tax_reduction>
|
||||
</incomes>
|
||||
</archetype>
|
||||
@ -294,31 +318,57 @@
|
||||
<fuel fuel_type="Electricity">
|
||||
<fixed_monthly cost_unit="currency/month"> 12.27 </fixed_monthly>
|
||||
<fixed_power cost_unit="currency/(month*kW)"> 0 </fixed_power>
|
||||
<variable cost_unit="currency/kWh"> 0.075 </variable>
|
||||
<variable>Electricity-D</variable>
|
||||
</fuel>
|
||||
<fuel fuel_type="Electricity">
|
||||
<fixed_monthly cost_unit="currency/month"> 12.27 </fixed_monthly>
|
||||
<fixed_power cost_unit="currency/(month*kW)"> 0 </fixed_power>
|
||||
<variable>Electricity-Flex-D</variable>
|
||||
</fuel>
|
||||
<fuel fuel_type="Gas">
|
||||
<fixed_monthly cost_unit="currency/month"> 17.71 </fixed_monthly>
|
||||
<variable cost_unit="currency/m3"> 0.0640 </variable>
|
||||
<variable>Gas-Energir</variable>
|
||||
<density density_unit="kg/m3"> 0.777 </density>
|
||||
<lower_heating_value lhv_unit="MJ/kg"> 47.1 </lower_heating_value>
|
||||
</fuel>
|
||||
<fuel fuel_type="Diesel">
|
||||
<fixed_monthly/>
|
||||
<variable cost_unit="currency/l"> 1.2 </variable>
|
||||
<variable>Diesel-Fixed</variable>
|
||||
<density density_unit="kg/l"> 0.846 </density>
|
||||
<lower_heating_value lhv_unit="MJ/kg"> 42.6 </lower_heating_value>
|
||||
</fuel>
|
||||
<fuel fuel_type="Biomass">
|
||||
<fixed_monthly/>
|
||||
<variable cost_unit="currency/kg"> 0.04 </variable>
|
||||
<variable>Biomass-Fixed</variable>
|
||||
<density/>
|
||||
<lower_heating_value lhv_unit="MJ/kg"> 18 </lower_heating_value>
|
||||
</fuel>
|
||||
</fuels>
|
||||
<maintenance>
|
||||
<heating_equipment cost_unit="currency/kW">40</heating_equipment>
|
||||
<cooling_equipment cost_unit="currency/kW">40</cooling_equipment>
|
||||
<photovoltaic_system cost_unit="currency/m2">0</photovoltaic_system>
|
||||
<hvac_equipment>
|
||||
<air_source_heat_pump>
|
||||
<maintenance_cost cost_unit="cureency/kW">100</maintenance_cost>
|
||||
</air_source_heat_pump>
|
||||
<ground_source_heat_pump>
|
||||
<maintenance_cost cost_unit="cureency/kW">60</maintenance_cost>
|
||||
</ground_source_heat_pump>
|
||||
<water_source_heat_pump>
|
||||
<maintenance_cost cost_unit="cureency/kW">50</maintenance_cost>
|
||||
</water_source_heat_pump>
|
||||
<gas_boiler>
|
||||
<maintenance_cost cost_unit="cureency/kW">50</maintenance_cost>
|
||||
</gas_boiler>
|
||||
<electric_boiler>
|
||||
<maintenance_cost cost_unit="cureency/kW">100</maintenance_cost>
|
||||
</electric_boiler>
|
||||
<general_heating_equipment>
|
||||
<maintenance_cost cost_unit="cureency/kW">60</maintenance_cost>
|
||||
</general_heating_equipment>
|
||||
<general_cooling_equipment>
|
||||
<maintenance_cost cost_unit="cureency/kW">50</maintenance_cost>
|
||||
</general_cooling_equipment>
|
||||
</hvac_equipment>
|
||||
<photovoltaic_system cost_unit="currency/m2">1</photovoltaic_system>
|
||||
</maintenance>
|
||||
<co2_cost cost_unit="currency/kgCO2"> 30 </co2_cost>
|
||||
</operational_cost>
|
||||
|
@ -911,7 +911,7 @@
|
||||
<nominal_cooling_output/>
|
||||
<minimum_cooling_output/>
|
||||
<maximum_cooling_output/>
|
||||
<cooling_efficiency/>
|
||||
<cooling_efficiency>4.5</cooling_efficiency>
|
||||
<electricity_efficiency/>
|
||||
<source_temperature/>
|
||||
<source_mass_flow/>
|
||||
@ -931,7 +931,13 @@
|
||||
</heat_efficiency_curve>
|
||||
<cooling_output_curve/>
|
||||
<cooling_fuel_consumption_curve/>
|
||||
<cooling_efficiency_curve/>
|
||||
<cooling_efficiency_curve>
|
||||
<curve_type>bi-quadratic</curve_type>
|
||||
<dependant_variable>COP</dependant_variable>
|
||||
<parameters>source_temperature</parameters>
|
||||
<parameters>supply_temperature</parameters>
|
||||
<coefficients a="0.951894" b="-0.010518" c="0.000126" d="-0.003399" e="0.000183" f="-0.000206"/>
|
||||
</cooling_efficiency_curve>
|
||||
<distribution_systems/>
|
||||
<energy_storage_systems/>
|
||||
<domestic_hot_water>True</domestic_hot_water>
|
||||
@ -1049,7 +1055,7 @@
|
||||
<heat_efficiency>3.5</heat_efficiency>
|
||||
<reversible/>
|
||||
<fuel_type>electricity</fuel_type>
|
||||
<source_medium>Water</source_medium>
|
||||
<source_medium>Air</source_medium>
|
||||
<supply_medium>Water</supply_medium>
|
||||
<nominal_cooling_output/>
|
||||
<minimum_cooling_output/>
|
||||
@ -1065,7 +1071,13 @@
|
||||
<minimum_cooling_supply_temperature/>
|
||||
<heat_output_curve/>
|
||||
<heat_fuel_consumption_curve/>
|
||||
<heat_efficiency_curve/>
|
||||
<heat_efficiency_curve>
|
||||
<curve_type>bi-quadratic</curve_type>
|
||||
<dependant_variable>COP</dependant_variable>
|
||||
<parameters>source_temperature</parameters>
|
||||
<parameters>supply_temperature</parameters>
|
||||
<coefficients a="1.990668" b="0" c="0" d="-0.027252" e="0.000131" f="0"/>
|
||||
</heat_efficiency_curve>
|
||||
<cooling_output_curve/>
|
||||
<cooling_fuel_consumption_curve/>
|
||||
<cooling_efficiency_curve/>
|
||||
@ -1259,7 +1271,7 @@
|
||||
<storage_type>sensible</storage_type>
|
||||
<nominal_capacity/>
|
||||
<losses_ratio/>
|
||||
<heating_coil_capacity/>
|
||||
<heating_coil_capacity>5000</heating_coil_capacity>
|
||||
</templateStorages>
|
||||
</energy_storage_components>
|
||||
<materials>
|
||||
@ -1426,6 +1438,29 @@
|
||||
<generation_id>27</generation_id>
|
||||
</components>
|
||||
</system>
|
||||
<system>
|
||||
<id>11</id>
|
||||
<name>Central Heating System َASHP Gas-Boiler TES</name>
|
||||
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
|
||||
<demands>
|
||||
<demand>heating</demand>
|
||||
</demands>
|
||||
<components>
|
||||
<generation_id>23</generation_id>
|
||||
<generation_id>16</generation_id>
|
||||
</components>
|
||||
</system>
|
||||
<system>
|
||||
<id>12</id>
|
||||
<name>Unitary ASHP Cooling System</name>
|
||||
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
|
||||
<demands>
|
||||
<demand>cooling</demand>
|
||||
</demands>
|
||||
<components>
|
||||
<generation_id>23</generation_id>
|
||||
</components>
|
||||
</system>
|
||||
</systems>
|
||||
|
||||
<system_archetypes>
|
||||
@ -1516,6 +1551,23 @@
|
||||
<system_id>10</system_id>
|
||||
</systems>
|
||||
</system_archetype>
|
||||
<system_archetype id="14">
|
||||
<name>Central Heating+Unitary Cooling+Unitary DHW</name>
|
||||
<systems>
|
||||
<system_id>10</system_id>
|
||||
<system_id>11</system_id>
|
||||
<system_id>12</system_id>
|
||||
</systems>
|
||||
</system_archetype>
|
||||
<system_archetype id="15">
|
||||
<name>Central Heating+Unitary Cooling+Unitary DHW+PV</name>
|
||||
<systems>
|
||||
<system_id>7</system_id>
|
||||
<system_id>10</system_id>
|
||||
<system_id>11</system_id>
|
||||
<system_id>12</system_id>
|
||||
</systems>
|
||||
</system_archetype>
|
||||
</system_archetypes>
|
||||
</EnergySystemCatalog>
|
||||
|
||||
|
BIN
hub/data/energy_systems/schemas/PV+4Pipe+DHW.jpg
Normal file
BIN
hub/data/energy_systems/schemas/PV+4Pipe+DHW.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 78 KiB |
@ -67,7 +67,7 @@ class SimplifiedRadiosityAlgorithm:
|
||||
i = (total_days + day - 1) * 24 + hour - 1
|
||||
representative_building = self._city.buildings[0]
|
||||
_global = representative_building.diffuse[cte.HOUR][i] / cte.WATTS_HOUR_TO_JULES
|
||||
_beam = representative_building.beam[cte.HOUR][i] / cte.WATTS_HOUR_TO_JULES
|
||||
_beam = representative_building.direct_normal[cte.HOUR][i] / cte.WATTS_HOUR_TO_JULES
|
||||
content += f'{day} {month} {hour} {_global} {_beam}\n'
|
||||
with open(file, 'w', encoding='utf-8') as file:
|
||||
file.write(content)
|
||||
|
@ -10,6 +10,7 @@ Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
||||
KELVIN = 273.15
|
||||
WATER_DENSITY = 1000 # kg/m3
|
||||
WATER_HEAT_CAPACITY = 4182 # J/kgK
|
||||
WATER_THERMAL_CONDUCTIVITY = 0.65 # W/mK
|
||||
NATURAL_GAS_LHV = 36.6e6 # J/m3
|
||||
AIR_DENSITY = 1.293 # kg/m3
|
||||
AIR_HEAT_CAPACITY = 1005.2 # J/kgK
|
||||
|
@ -32,10 +32,21 @@ class NrcanPhysicsParameters:
|
||||
city = self._city
|
||||
nrcan_catalog = ConstructionCatalogFactory('nrcan').catalog
|
||||
for building in city.buildings:
|
||||
if building.function not in Dictionaries().hub_function_to_nrcan_construction_function:
|
||||
logging.error('Building %s has an unknown building function %s', building.name, building.function)
|
||||
main_function = None
|
||||
functions = building.function.split('_')
|
||||
if len(functions) > 1:
|
||||
maximum_percentage = 0
|
||||
for function in functions:
|
||||
percentage_and_function = function.split('-')
|
||||
if float(percentage_and_function[0]) > maximum_percentage:
|
||||
maximum_percentage = float(percentage_and_function[0])
|
||||
main_function = percentage_and_function[-1]
|
||||
else:
|
||||
main_function = functions[-1]
|
||||
if main_function not in Dictionaries().hub_function_to_nrcan_construction_function:
|
||||
logging.error('Building %s has an unknown building function %s', building.name, main_function)
|
||||
continue
|
||||
function = Dictionaries().hub_function_to_nrcan_construction_function[building.function]
|
||||
function = Dictionaries().hub_function_to_nrcan_construction_function[main_function]
|
||||
try:
|
||||
archetype = self._search_archetype(nrcan_catalog, function, building.year_of_construction, self._climate_zone)
|
||||
|
||||
|
@ -136,10 +136,14 @@ class MontrealCustomEnergySystemParameters:
|
||||
_distribution_system.distribution_consumption_variable_flow = \
|
||||
archetype_distribution_system.distribution_consumption_variable_flow
|
||||
_distribution_system.heat_losses = archetype_distribution_system.heat_losses
|
||||
_emission_system = None
|
||||
_generic_emission_system = None
|
||||
if archetype_distribution_system.emission_systems is not None:
|
||||
_emission_system = EmissionSystem()
|
||||
_distribution_system.emission_systems = [_emission_system]
|
||||
_emission_systems = []
|
||||
for emission_system in archetype_distribution_system.emission_systems:
|
||||
_generic_emission_system = EmissionSystem()
|
||||
_generic_emission_system.parasitic_energy_consumption = emission_system.parasitic_energy_consumption
|
||||
_emission_systems.append(_generic_emission_system)
|
||||
_distribution_system.emission_systems = _emission_systems
|
||||
_distribution_systems.append(_distribution_system)
|
||||
return _distribution_systems
|
||||
|
||||
|
@ -82,8 +82,7 @@ class MontrealFutureEnergySystemParameters:
|
||||
|
||||
return _generic_energy_systems
|
||||
|
||||
@staticmethod
|
||||
def _create_generation_systems(archetype_system):
|
||||
def _create_generation_systems(self, archetype_system):
|
||||
_generation_systems = []
|
||||
archetype_generation_systems = archetype_system.generation_systems
|
||||
if archetype_generation_systems is not None:
|
||||
@ -107,6 +106,7 @@ class MontrealFutureEnergySystemParameters:
|
||||
_generation_system.cell_temperature_coefficient = archetype_generation_system.cell_temperature_coefficient
|
||||
_generation_system.width = archetype_generation_system.width
|
||||
_generation_system.height = archetype_generation_system.height
|
||||
_generation_system.tilt_angle = self._city.latitude
|
||||
_generic_storage_system = None
|
||||
if archetype_generation_system.energy_storage_systems is not None:
|
||||
_generic_storage_system = ElectricalStorageSystem()
|
||||
@ -160,6 +160,7 @@ class MontrealFutureEnergySystemParameters:
|
||||
_generic_storage_system.height = storage_system.height
|
||||
_generic_storage_system.layers = storage_system.layers
|
||||
_generic_storage_system.storage_medium = storage_system.storage_medium
|
||||
_generic_storage_system.heating_coil_capacity = storage_system.heating_coil_capacity
|
||||
_storage_systems.append(_generic_storage_system)
|
||||
_generation_system.energy_storage_systems = _storage_systems
|
||||
if archetype_generation_system.domestic_hot_water:
|
||||
@ -184,10 +185,14 @@ class MontrealFutureEnergySystemParameters:
|
||||
_distribution_system.distribution_consumption_variable_flow = \
|
||||
archetype_distribution_system.distribution_consumption_variable_flow
|
||||
_distribution_system.heat_losses = archetype_distribution_system.heat_losses
|
||||
_emission_system = None
|
||||
_generic_emission_system = None
|
||||
if archetype_distribution_system.emission_systems is not None:
|
||||
_emission_system = EmissionSystem()
|
||||
_distribution_system.emission_systems = [_emission_system]
|
||||
_emission_systems = []
|
||||
for emission_system in archetype_distribution_system.emission_systems:
|
||||
_generic_emission_system = EmissionSystem()
|
||||
_generic_emission_system.parasitic_energy_consumption = emission_system.parasitic_energy_consumption
|
||||
_emission_systems.append(_generic_emission_system)
|
||||
_distribution_system.emission_systems = _emission_systems
|
||||
_distribution_systems.append(_distribution_system)
|
||||
return _distribution_systems
|
||||
|
||||
|
@ -127,6 +127,19 @@ class Geojson:
|
||||
function = None
|
||||
if self._function_field is not None:
|
||||
function = str(feature['properties'][self._function_field])
|
||||
if function == 'Mixed use' or function == 'mixed use':
|
||||
function_parts = []
|
||||
for key, value in feature['properties'].items():
|
||||
if key.startswith("mixed_type_") and not key.endswith("_percentage"):
|
||||
type_key = key
|
||||
percentage_key = f"{key}_percentage"
|
||||
if percentage_key in feature['properties']:
|
||||
if self._function_to_hub is not None and feature['properties'][type_key] in self._function_to_hub:
|
||||
usage_function = self._function_to_hub[feature['properties'][type_key]]
|
||||
function_parts.append(f"{feature['properties'][percentage_key]}-{usage_function}")
|
||||
else:
|
||||
function_parts.append(f"{feature['properties'][percentage_key]}-{feature['properties'][type_key]}")
|
||||
function = "_".join(function_parts)
|
||||
if self._function_to_hub is not None:
|
||||
# use the transformation dictionary to retrieve the proper function
|
||||
if function in self._function_to_hub:
|
||||
|
@ -60,9 +60,12 @@ class EnergyPlusMultipleBuildings:
|
||||
for building in self._city.buildings:
|
||||
building.heating_demand[cte.HOUR] = building_energy_demands[f'Building {building.name} Heating Demand (J)']
|
||||
building.cooling_demand[cte.HOUR] = building_energy_demands[f'Building {building.name} Cooling Demand (J)']
|
||||
building.domestic_hot_water_heat_demand[cte.HOUR] = building_energy_demands[f'Building {building.name} DHW Demand (W)']
|
||||
building.appliances_electrical_demand[cte.HOUR] = building_energy_demands[f'Building {building.name} Appliances (W)']
|
||||
building.lighting_electrical_demand[cte.HOUR] = building_energy_demands[f'Building {building.name} Lighting (W)']
|
||||
building.domestic_hot_water_heat_demand[cte.HOUR] = \
|
||||
[x * cte.WATTS_HOUR_TO_JULES for x in building_energy_demands[f'Building {building.name} DHW Demand (W)']]
|
||||
building.appliances_electrical_demand[cte.HOUR] = \
|
||||
[x * cte.WATTS_HOUR_TO_JULES for x in building_energy_demands[f'Building {building.name} Appliances (W)']]
|
||||
building.lighting_electrical_demand[cte.HOUR] = \
|
||||
[x * cte.WATTS_HOUR_TO_JULES for x in building_energy_demands[f'Building {building.name} Lighting (W)']]
|
||||
building.heating_demand[cte.MONTH] = MonthlyValues.get_total_month(building.heating_demand[cte.HOUR])
|
||||
building.cooling_demand[cte.MONTH] = MonthlyValues.get_total_month(building.cooling_demand[cte.HOUR])
|
||||
building.domestic_hot_water_heat_demand[cte.MONTH] = (
|
||||
|
@ -34,7 +34,7 @@ class SimplifiedRadiosityAlgorithm:
|
||||
for key in self._results:
|
||||
_irradiance = {}
|
||||
header_name = key.split(':')
|
||||
result = [x for x in self._results[key]]
|
||||
result = [x * cte.WATTS_HOUR_TO_JULES for x in self._results[key]]
|
||||
city_object_name = header_name[1]
|
||||
building = self._city.city_object(city_object_name)
|
||||
surface_id = header_name[2]
|
||||
|
@ -35,29 +35,60 @@ class ComnetUsageParameters:
|
||||
city = self._city
|
||||
comnet_catalog = UsageCatalogFactory('comnet').catalog
|
||||
for building in city.buildings:
|
||||
usage_name = Dictionaries().hub_usage_to_comnet_usage[building.function]
|
||||
try:
|
||||
archetype_usage = self._search_archetypes(comnet_catalog, usage_name)
|
||||
except KeyError:
|
||||
logging.error('Building %s has unknown usage archetype for usage %s', building.name, usage_name)
|
||||
continue
|
||||
|
||||
for internal_zone in building.internal_zones:
|
||||
if internal_zone.area is None:
|
||||
raise TypeError('Internal zone area not defined, ACH cannot be calculated')
|
||||
if internal_zone.volume is None:
|
||||
raise TypeError('Internal zone volume not defined, ACH cannot be calculated')
|
||||
if internal_zone.area <= 0:
|
||||
raise TypeError('Internal zone area is zero, ACH cannot be calculated')
|
||||
volume_per_area = internal_zone.volume / internal_zone.area
|
||||
usage = Usage()
|
||||
usage.name = usage_name
|
||||
self._assign_values(usage, archetype_usage, volume_per_area, building.cold_water_temperature)
|
||||
usage.percentage = 1
|
||||
self._calculate_reduced_values_from_extended_library(usage, archetype_usage)
|
||||
|
||||
internal_zone.usages = [usage]
|
||||
usages = []
|
||||
comnet_archetype_usages = []
|
||||
building_functions = building.function.split('_')
|
||||
for function in building_functions:
|
||||
usages.append(function.split('-'))
|
||||
for usage in usages:
|
||||
comnet_usage_name = Dictionaries().hub_usage_to_comnet_usage[usage[-1]]
|
||||
try:
|
||||
comnet_archetype_usage = self._search_archetypes(comnet_catalog, comnet_usage_name)
|
||||
comnet_archetype_usages.append(comnet_archetype_usage)
|
||||
except KeyError:
|
||||
logging.error('Building %s has unknown usage archetype for usage %s', building.name, comnet_usage_name)
|
||||
continue
|
||||
for (i, internal_zone) in enumerate(building.internal_zones):
|
||||
internal_zone_usages = []
|
||||
if len(building.internal_zones) > 1:
|
||||
volume_per_area = 0
|
||||
if internal_zone.area is None:
|
||||
logging.error('Building %s has internal zone area not defined, ACH cannot be calculated for usage %s',
|
||||
building.name, usages[i][-1])
|
||||
continue
|
||||
if internal_zone.volume is None:
|
||||
logging.error('Building %s has internal zone volume not defined, ACH cannot be calculated for usage %s',
|
||||
building.name, usages[i][-1])
|
||||
continue
|
||||
if internal_zone.area <= 0:
|
||||
logging.error('Building %s has internal zone area equal to 0, ACH cannot be calculated for usage %s',
|
||||
building.name, usages[i][-1])
|
||||
continue
|
||||
volume_per_area += internal_zone.volume / internal_zone.area
|
||||
usage = Usage()
|
||||
usage.name = usages[i][-1]
|
||||
self._assign_values(usage, comnet_archetype_usages[i], volume_per_area, building.cold_water_temperature)
|
||||
usage.percentage = 1
|
||||
self._calculate_reduced_values_from_extended_library(usage, comnet_archetype_usages[i])
|
||||
internal_zone_usages.append(usage)
|
||||
else:
|
||||
if building.storeys_above_ground is None:
|
||||
logging.error('Building %s no number of storeys assigned, ACH cannot be calculated for usage %s',
|
||||
building.name, usages)
|
||||
continue
|
||||
volume_per_area = building.volume / building.floor_area / building.storeys_above_ground
|
||||
for (j, mixed_usage) in enumerate(usages):
|
||||
usage = Usage()
|
||||
usage.name = mixed_usage[-1]
|
||||
if len(usages) > 1:
|
||||
usage.percentage = float(mixed_usage[0]) / 100
|
||||
else:
|
||||
usage.percentage = 1
|
||||
self._assign_values(usage, comnet_archetype_usages[j], volume_per_area, building.cold_water_temperature)
|
||||
self._calculate_reduced_values_from_extended_library(usage, comnet_archetype_usages[j])
|
||||
internal_zone_usages.append(usage)
|
||||
|
||||
internal_zone.usages = internal_zone_usages
|
||||
@staticmethod
|
||||
def _search_archetypes(comnet_catalog, usage_name):
|
||||
comnet_archetypes = comnet_catalog.entries('archetypes').usages
|
||||
|
@ -33,53 +33,72 @@ class NrcanUsageParameters:
|
||||
city = self._city
|
||||
nrcan_catalog = UsageCatalogFactory('nrcan').catalog
|
||||
comnet_catalog = UsageCatalogFactory('comnet').catalog
|
||||
|
||||
for building in city.buildings:
|
||||
usage_name = Dictionaries().hub_usage_to_nrcan_usage[building.function]
|
||||
try:
|
||||
archetype_usage = self._search_archetypes(nrcan_catalog, usage_name)
|
||||
except KeyError:
|
||||
logging.error('Building %s has unknown usage archetype for usage %s', building.name, usage_name)
|
||||
continue
|
||||
usages = []
|
||||
nrcan_archetype_usages = []
|
||||
comnet_archetype_usages = []
|
||||
building_functions = building.function.split('_')
|
||||
for function in building_functions:
|
||||
usages.append(function.split('-'))
|
||||
for usage in usages:
|
||||
usage_name = Dictionaries().hub_usage_to_nrcan_usage[usage[-1]]
|
||||
try:
|
||||
archetype_usage = self._search_archetypes(nrcan_catalog, usage_name)
|
||||
nrcan_archetype_usages.append(archetype_usage)
|
||||
except KeyError:
|
||||
logging.error('Building %s has unknown usage archetype for usage %s', building.name, usage_name)
|
||||
continue
|
||||
comnet_usage_name = Dictionaries().hub_usage_to_comnet_usage[usage[-1]]
|
||||
try:
|
||||
comnet_archetype_usage = self._search_archetypes(comnet_catalog, comnet_usage_name)
|
||||
comnet_archetype_usages.append(comnet_archetype_usage)
|
||||
except KeyError:
|
||||
logging.error('Building %s has unknown usage archetype for usage %s', building.name, comnet_usage_name)
|
||||
continue
|
||||
|
||||
comnet_usage_name = Dictionaries().hub_usage_to_comnet_usage[building.function]
|
||||
try:
|
||||
comnet_archetype_usage = self._search_archetypes(comnet_catalog, comnet_usage_name)
|
||||
except KeyError:
|
||||
logging.error('Building %s has unknown usage archetype for usage %s', building.name, comnet_usage_name)
|
||||
continue
|
||||
|
||||
for internal_zone in building.internal_zones:
|
||||
for (i, internal_zone) in enumerate(building.internal_zones):
|
||||
internal_zone_usages = []
|
||||
if len(building.internal_zones) > 1:
|
||||
volume_per_area = 0
|
||||
if internal_zone.area is None:
|
||||
logging.error('Building %s has internal zone area not defined, ACH cannot be calculated for usage %s',
|
||||
building.name, usage_name)
|
||||
building.name, usages[i][-1])
|
||||
continue
|
||||
if internal_zone.volume is None:
|
||||
logging.error('Building %s has internal zone volume not defined, ACH cannot be calculated for usage %s',
|
||||
building.name, usage_name)
|
||||
building.name, usages[i][-1])
|
||||
continue
|
||||
if internal_zone.area <= 0:
|
||||
logging.error('Building %s has internal zone area equal to 0, ACH cannot be calculated for usage %s',
|
||||
building.name, usage_name)
|
||||
building.name, usages[i][-1])
|
||||
continue
|
||||
volume_per_area += internal_zone.volume / internal_zone.area
|
||||
usage = Usage()
|
||||
usage.name = usages[i][-1]
|
||||
self._assign_values(usage, nrcan_archetype_usages[i], volume_per_area, building.cold_water_temperature)
|
||||
self._assign_comnet_extra_values(usage, comnet_archetype_usages[i], nrcan_archetype_usages[i].occupancy.occupancy_density)
|
||||
usage.percentage = 1
|
||||
self._calculate_reduced_values_from_extended_library(usage, nrcan_archetype_usages[i])
|
||||
internal_zone_usages.append(usage)
|
||||
else:
|
||||
if building.storeys_above_ground is None:
|
||||
logging.error('Building %s no number of storeys assigned, ACH cannot be calculated for usage %s',
|
||||
building.name, usage_name)
|
||||
building.name, usages)
|
||||
continue
|
||||
volume_per_area = building.volume / building.floor_area / building.storeys_above_ground
|
||||
for (j, mixed_usage) in enumerate(usages):
|
||||
usage = Usage()
|
||||
usage.name = mixed_usage[-1]
|
||||
if len(usages) > 1:
|
||||
usage.percentage = float(mixed_usage[0]) / 100
|
||||
else:
|
||||
usage.percentage = 1
|
||||
self._assign_values(usage, nrcan_archetype_usages[j], volume_per_area, building.cold_water_temperature)
|
||||
self._assign_comnet_extra_values(usage, comnet_archetype_usages[j], nrcan_archetype_usages[j].occupancy.occupancy_density)
|
||||
self._calculate_reduced_values_from_extended_library(usage, nrcan_archetype_usages[j])
|
||||
internal_zone_usages.append(usage)
|
||||
|
||||
usage = Usage()
|
||||
usage.name = usage_name
|
||||
self._assign_values(usage, archetype_usage, volume_per_area, building.cold_water_temperature)
|
||||
self._assign_comnet_extra_values(usage, comnet_archetype_usage, archetype_usage.occupancy.occupancy_density)
|
||||
usage.percentage = 1
|
||||
self._calculate_reduced_values_from_extended_library(usage, archetype_usage)
|
||||
|
||||
internal_zone.usages = [usage]
|
||||
internal_zone.usages = internal_zone_usages
|
||||
|
||||
@staticmethod
|
||||
def _search_archetypes(catalog, usage_name):
|
||||
|
@ -114,18 +114,22 @@ class EpwWeatherParameters:
|
||||
for x in self._weather_values['global_horizontal_radiation_wh_m2']]
|
||||
building.diffuse[cte.HOUR] = [x * cte.WATTS_HOUR_TO_JULES
|
||||
for x in self._weather_values['diffuse_horizontal_radiation_wh_m2']]
|
||||
building.beam[cte.HOUR] = [x * cte.WATTS_HOUR_TO_JULES
|
||||
for x in self._weather_values['direct_normal_radiation_wh_m2']]
|
||||
building.direct_normal[cte.HOUR] = [x * cte.WATTS_HOUR_TO_JULES
|
||||
for x in self._weather_values['direct_normal_radiation_wh_m2']]
|
||||
building.beam[cte.HOUR] = [building.global_horizontal[cte.HOUR][i] -
|
||||
building.diffuse[cte.HOUR][i]
|
||||
for i in range(len(building.global_horizontal[cte.HOUR]))]
|
||||
building.cold_water_temperature[cte.HOUR] = wh().cold_water_temperature(building.external_temperature[cte.HOUR])
|
||||
|
||||
|
||||
# create the monthly and yearly values out of the hourly
|
||||
for building in self._city.buildings:
|
||||
building.external_temperature[cte.MONTH] = \
|
||||
MonthlyValues().get_mean_values(building.external_temperature[cte.HOUR])
|
||||
building.external_temperature[cte.YEAR] = [sum(building.external_temperature[cte.HOUR]) / 9870]
|
||||
building.external_temperature[cte.YEAR] = [sum(building.external_temperature[cte.HOUR]) / 8760]
|
||||
building.cold_water_temperature[cte.MONTH] = \
|
||||
MonthlyValues().get_mean_values(building.cold_water_temperature[cte.HOUR])
|
||||
building.cold_water_temperature[cte.YEAR] = [sum(building.cold_water_temperature[cte.HOUR]) / 9870]
|
||||
building.cold_water_temperature[cte.YEAR] = [sum(building.cold_water_temperature[cte.HOUR]) / 8760]
|
||||
|
||||
# If the usage has already being imported, the domestic hot water missing values must be calculated here that
|
||||
# the cold water temperature is finally known
|
||||
|
@ -8,7 +8,7 @@ Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
||||
import logging
|
||||
import math
|
||||
import hub.helpers.constants as cte
|
||||
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
class Weather:
|
||||
"""
|
||||
@ -55,25 +55,19 @@ class Weather:
|
||||
# and Craig Christensen, National Renewable Energy Laboratory
|
||||
# ambient temperatures( in °C)
|
||||
# cold water temperatures( in °C)
|
||||
ambient_temperature_fahrenheit = []
|
||||
average_temperature = 0
|
||||
maximum_temperature = -1000
|
||||
minimum_temperature = 1000
|
||||
for temperature in ambient_temperature:
|
||||
value = temperature * 9 / 5 + 32
|
||||
ambient_temperature_fahrenheit.append(value)
|
||||
average_temperature += value / 8760
|
||||
if value > maximum_temperature:
|
||||
maximum_temperature = value
|
||||
if value < minimum_temperature:
|
||||
minimum_temperature = value
|
||||
delta_temperature = maximum_temperature - minimum_temperature
|
||||
ratio = 0.4 + 0.01 * (average_temperature - 44)
|
||||
lag = 35 - 1 * (average_temperature - 44)
|
||||
t_out_fahrenheit = [1.8 * t_out + 32 for t_out in ambient_temperature]
|
||||
t_out_average = sum(t_out_fahrenheit) / len(t_out_fahrenheit)
|
||||
max_difference = max(t_out_fahrenheit) - min(t_out_fahrenheit)
|
||||
ratio = 0.4 + 0.01 * (t_out_average - 44)
|
||||
lag = 35 - (t_out_average - 35)
|
||||
number_of_day = [a for a in range(1, 366)]
|
||||
day_of_year = [day for day in number_of_day for _ in range(24)]
|
||||
cold_temperature_fahrenheit = []
|
||||
cold_temperature = []
|
||||
for temperature in ambient_temperature_fahrenheit:
|
||||
radians = (0.986 * (temperature-15-lag) - 90) * math.pi / 180
|
||||
cold_temperature.append((average_temperature + 6 + ratio * (delta_temperature/2) * math.sin(radians) - 32) * 5/9)
|
||||
for i in range(len(ambient_temperature)):
|
||||
cold_temperature_fahrenheit.append(t_out_average + 6 + ratio * (max_difference / 2) *
|
||||
math.sin(math.radians(0.986 * (day_of_year[i] - 15 - lag) - 90)))
|
||||
cold_temperature.append((cold_temperature_fahrenheit[i] - 32) / 1.8)
|
||||
return cold_temperature
|
||||
|
||||
def epw_file(self, region_code):
|
||||
|
863
input_files/output_buildings_expanded.geojson
Normal file
863
input_files/output_buildings_expanded.geojson
Normal file
@ -0,0 +1,863 @@
|
||||
{
|
||||
"type": "FeatureCollection",
|
||||
"features": [
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56769087843276,
|
||||
45.49251875903776
|
||||
],
|
||||
[
|
||||
-73.56765050367694,
|
||||
45.492560280202284
|
||||
],
|
||||
[
|
||||
-73.5677794213865,
|
||||
45.49262188364245
|
||||
],
|
||||
[
|
||||
-73.56781916241786,
|
||||
45.49258006136105
|
||||
],
|
||||
[
|
||||
-73.56769087843276,
|
||||
45.49251875903776
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 173347,
|
||||
"properties": {
|
||||
"name": "01044617",
|
||||
"address": "rue Victor-Hugo (MTL) 1666",
|
||||
"function": "1000",
|
||||
"height": 9,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56765050367694,
|
||||
45.492560280202284
|
||||
],
|
||||
[
|
||||
-73.56761436875776,
|
||||
45.49259744179384
|
||||
],
|
||||
[
|
||||
-73.5676075694645,
|
||||
45.49260454199484
|
||||
],
|
||||
[
|
||||
-73.56773226889548,
|
||||
45.49266394156485
|
||||
],
|
||||
[
|
||||
-73.56773726906921,
|
||||
45.49266624130272
|
||||
],
|
||||
[
|
||||
-73.5677794213865,
|
||||
45.49262188364245
|
||||
],
|
||||
[
|
||||
-73.56765050367694,
|
||||
45.492560280202284
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 173348,
|
||||
"properties": {
|
||||
"name": "01044619",
|
||||
"address": "rue Victor-Hugo (MTL) 1670",
|
||||
"function": "1000",
|
||||
"height": 9,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56829026835214,
|
||||
45.492524742569145
|
||||
],
|
||||
[
|
||||
-73.56849646900322,
|
||||
45.49262354174874
|
||||
],
|
||||
[
|
||||
-73.56861067001111,
|
||||
45.492505541343576
|
||||
],
|
||||
[
|
||||
-73.56864076915663,
|
||||
45.492519941474434
|
||||
],
|
||||
[
|
||||
-73.56866246900178,
|
||||
45.49249754209202
|
||||
],
|
||||
[
|
||||
-73.56867696946317,
|
||||
45.49250454136644
|
||||
],
|
||||
[
|
||||
-73.56867726964143,
|
||||
45.49250414255471
|
||||
],
|
||||
[
|
||||
-73.56881486931461,
|
||||
45.492362042624144
|
||||
],
|
||||
[
|
||||
-73.56881686903772,
|
||||
45.492359941181455
|
||||
],
|
||||
[
|
||||
-73.5688004699483,
|
||||
45.49235084193039
|
||||
],
|
||||
[
|
||||
-73.56882097012145,
|
||||
45.4923320417195
|
||||
],
|
||||
[
|
||||
-73.56879846891101,
|
||||
45.49232034109352
|
||||
],
|
||||
[
|
||||
-73.56883736970825,
|
||||
45.492284841271946
|
||||
],
|
||||
[
|
||||
-73.56886806888434,
|
||||
45.492256240993704
|
||||
],
|
||||
[
|
||||
-73.56885337003277,
|
||||
45.49224914198001
|
||||
],
|
||||
[
|
||||
-73.56890226932418,
|
||||
45.49219894164121
|
||||
],
|
||||
[
|
||||
-73.56851866897392,
|
||||
45.49201434154299
|
||||
],
|
||||
[
|
||||
-73.56837326884313,
|
||||
45.492163841620254
|
||||
],
|
||||
[
|
||||
-73.56864696910176,
|
||||
45.49229554163243
|
||||
],
|
||||
[
|
||||
-73.5685268682051,
|
||||
45.49241904187041
|
||||
],
|
||||
[
|
||||
-73.56825396962694,
|
||||
45.49228824183907
|
||||
],
|
||||
[
|
||||
-73.56810906858335,
|
||||
45.49243794104013
|
||||
],
|
||||
[
|
||||
-73.56829026835214,
|
||||
45.492524742569145
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 173403,
|
||||
"properties": {
|
||||
"name": "01044334",
|
||||
"address": "rue Saint-Jacques (MTL) 1460",
|
||||
"function": "1000",
|
||||
"height": 15,
|
||||
"year_of_construction": 1985
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.5683896684674,
|
||||
45.491800342137736
|
||||
],
|
||||
[
|
||||
-73.56838616878639,
|
||||
45.49180414157881
|
||||
],
|
||||
[
|
||||
-73.56850686988925,
|
||||
45.49185994152571
|
||||
],
|
||||
[
|
||||
-73.56851286844197,
|
||||
45.4918626410622
|
||||
],
|
||||
[
|
||||
-73.56855549071014,
|
||||
45.49181750806087
|
||||
],
|
||||
[
|
||||
-73.56842962331187,
|
||||
45.49175738300567
|
||||
],
|
||||
[
|
||||
-73.5683896684674,
|
||||
45.491800342137736
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 174898,
|
||||
"properties": {
|
||||
"name": "01044590",
|
||||
"address": "rue Victor-Hugo (MTL) 1600",
|
||||
"function": "1000",
|
||||
"height": 9,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.5680637695714,
|
||||
45.49212884162544
|
||||
],
|
||||
[
|
||||
-73.56802228176146,
|
||||
45.49217205619571
|
||||
],
|
||||
[
|
||||
-73.56815668696326,
|
||||
45.49223626189717
|
||||
],
|
||||
[
|
||||
-73.56815766959974,
|
||||
45.49223524178655
|
||||
],
|
||||
[
|
||||
-73.56818746886172,
|
||||
45.49224944155107
|
||||
],
|
||||
[
|
||||
-73.56822816806918,
|
||||
45.49220694186927
|
||||
],
|
||||
[
|
||||
-73.5680637695714,
|
||||
45.49212884162544
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 175785,
|
||||
"properties": {
|
||||
"name": "01044602",
|
||||
"address": "rue Victor-Hugo (MTL) 1630",
|
||||
"function": "1000",
|
||||
"height": 12,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56850793693103,
|
||||
45.49167318076048
|
||||
],
|
||||
[
|
||||
-73.56846877951091,
|
||||
45.4917152818903
|
||||
],
|
||||
[
|
||||
-73.56859506290321,
|
||||
45.491775605518725
|
||||
],
|
||||
[
|
||||
-73.56863463503653,
|
||||
45.491733702062774
|
||||
],
|
||||
[
|
||||
-73.56850793693103,
|
||||
45.49167318076048
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 175910,
|
||||
"properties": {
|
||||
"name": "01044586",
|
||||
"address": "rue Victor-Hugo (MTL) 1590",
|
||||
"function": "1000",
|
||||
"height": 9,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56817543449134,
|
||||
45.49201384773851
|
||||
],
|
||||
[
|
||||
-73.56813497596143,
|
||||
45.49205532773507
|
||||
],
|
||||
[
|
||||
-73.56826745951075,
|
||||
45.492118613912375
|
||||
],
|
||||
[
|
||||
-73.56830763251781,
|
||||
45.49207699906335
|
||||
],
|
||||
[
|
||||
-73.56817543449134,
|
||||
45.49201384773851
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 176056,
|
||||
"properties": {
|
||||
"name": "01044599",
|
||||
"address": "rue Victor-Hugo (MTL) 1620",
|
||||
"function": "1000",
|
||||
"height": 8,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56772876855176,
|
||||
45.49247194194522
|
||||
],
|
||||
[
|
||||
-73.56773406949068,
|
||||
45.492474341387755
|
||||
],
|
||||
[
|
||||
-73.56773125185198,
|
||||
45.492477239659124
|
||||
],
|
||||
[
|
||||
-73.56785890467093,
|
||||
45.492538239964624
|
||||
],
|
||||
[
|
||||
-73.56789966910456,
|
||||
45.49249534173201
|
||||
],
|
||||
[
|
||||
-73.56776616865103,
|
||||
45.49243264153464
|
||||
],
|
||||
[
|
||||
-73.56772876855176,
|
||||
45.49247194194522
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 176261,
|
||||
"properties": {
|
||||
"name": "01044613",
|
||||
"address": "rue Victor-Hugo (MTL) 1656",
|
||||
"function": "1000",
|
||||
"height": 10,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56802228176146,
|
||||
45.49217205619571
|
||||
],
|
||||
[
|
||||
-73.56798225825526,
|
||||
45.492213743742184
|
||||
],
|
||||
[
|
||||
-73.56811660206223,
|
||||
45.49227791893211
|
||||
],
|
||||
[
|
||||
-73.56815668696326,
|
||||
45.49223626189717
|
||||
],
|
||||
[
|
||||
-73.56802228176146,
|
||||
45.49217205619571
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 176293,
|
||||
"properties": {
|
||||
"name": "01044604",
|
||||
"address": "rue Victor-Hugo (MTL) 1636",
|
||||
"function": "1000",
|
||||
"height": 12,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56790222258577,
|
||||
45.49229712328457
|
||||
],
|
||||
[
|
||||
-73.56785996900595,
|
||||
45.49234104192853
|
||||
],
|
||||
[
|
||||
-73.56799446861396,
|
||||
45.49240484193282
|
||||
],
|
||||
[
|
||||
-73.56803643080562,
|
||||
45.49236123475947
|
||||
],
|
||||
[
|
||||
-73.56790222258577,
|
||||
45.49229712328457
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 176296,
|
||||
"properties": {
|
||||
"name": "01044611",
|
||||
"address": "rue Victor-Hugo (MTL) 1650",
|
||||
"function": "1000",
|
||||
"height": 10,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56798225825526,
|
||||
45.492213743742184
|
||||
],
|
||||
[
|
||||
-73.56794223597048,
|
||||
45.4922554321734
|
||||
],
|
||||
[
|
||||
-73.56807651582375,
|
||||
45.49231957685336
|
||||
],
|
||||
[
|
||||
-73.56811660206223,
|
||||
45.49227791893211
|
||||
],
|
||||
[
|
||||
-73.56798225825526,
|
||||
45.492213743742184
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 176298,
|
||||
"properties": {
|
||||
"name": "01044607",
|
||||
"address": "rue Victor-Hugo (MTL) 1640",
|
||||
"function": "1000",
|
||||
"height": 12,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56742736898599,
|
||||
45.49184704208998
|
||||
],
|
||||
[
|
||||
-73.56761256873325,
|
||||
45.491896142437554
|
||||
],
|
||||
[
|
||||
-73.56766926915839,
|
||||
45.4917902412014
|
||||
],
|
||||
[
|
||||
-73.56766956853903,
|
||||
45.49179024192391
|
||||
],
|
||||
[
|
||||
-73.56792966911675,
|
||||
45.49183254222432
|
||||
],
|
||||
[
|
||||
-73.56793006788594,
|
||||
45.491831141828406
|
||||
],
|
||||
[
|
||||
-73.56794526884076,
|
||||
45.49174634219527
|
||||
],
|
||||
[
|
||||
-73.56794516904765,
|
||||
45.49174634225465
|
||||
],
|
||||
[
|
||||
-73.56753896905731,
|
||||
45.491638642248425
|
||||
],
|
||||
[
|
||||
-73.56742736898599,
|
||||
45.49184704208998
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 176918,
|
||||
"properties": {
|
||||
"name": "01097185",
|
||||
"address": "rue Victor-Hugo (MTL) 1591",
|
||||
"function": "1000",
|
||||
"height": 10,
|
||||
"year_of_construction": 1987
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56773125185198,
|
||||
45.492477239659124
|
||||
],
|
||||
[
|
||||
-73.56769087843276,
|
||||
45.49251875903776
|
||||
],
|
||||
[
|
||||
-73.56781916241786,
|
||||
45.49258006136105
|
||||
],
|
||||
[
|
||||
-73.56785890467093,
|
||||
45.492538239964624
|
||||
],
|
||||
[
|
||||
-73.56773125185198,
|
||||
45.492477239659124
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 178164,
|
||||
"properties": {
|
||||
"name": "01044615",
|
||||
"address": "rue Victor-Hugo (MTL) 1660",
|
||||
"function": "1000",
|
||||
"height": 9,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56846877951091,
|
||||
45.4917152818903
|
||||
],
|
||||
[
|
||||
-73.56842962331187,
|
||||
45.49175738300567
|
||||
],
|
||||
[
|
||||
-73.56855549071014,
|
||||
45.49181750806087
|
||||
],
|
||||
[
|
||||
-73.56859506290321,
|
||||
45.491775605518725
|
||||
],
|
||||
[
|
||||
-73.56846877951091,
|
||||
45.4917152818903
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 179679,
|
||||
"properties": {
|
||||
"name": "01044588",
|
||||
"address": "rue Victor-Hugo (MTL) 1596",
|
||||
"function": "1000",
|
||||
"height": 9,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56825635009473,
|
||||
45.49193088860213
|
||||
],
|
||||
[
|
||||
-73.56821589168355,
|
||||
45.491972368627906
|
||||
],
|
||||
[
|
||||
-73.5683477837006,
|
||||
45.4920353716151
|
||||
],
|
||||
[
|
||||
-73.56838787594006,
|
||||
45.49199371809223
|
||||
],
|
||||
[
|
||||
-73.56825635009473,
|
||||
45.49193088860213
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 179789,
|
||||
"properties": {
|
||||
"name": "01044595",
|
||||
"address": "rue Victor-Hugo (MTL) 1610",
|
||||
"function": "1000",
|
||||
"height": 8,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56821589168355,
|
||||
45.491972368627906
|
||||
],
|
||||
[
|
||||
-73.56817543449134,
|
||||
45.49201384773851
|
||||
],
|
||||
[
|
||||
-73.56830763251781,
|
||||
45.49207699906335
|
||||
],
|
||||
[
|
||||
-73.5683477837006,
|
||||
45.4920353716151
|
||||
],
|
||||
[
|
||||
-73.56821589168355,
|
||||
45.491972368627906
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 181310,
|
||||
"properties": {
|
||||
"name": "01044597",
|
||||
"address": "rue Victor-Hugo (MTL) 1616",
|
||||
"function": "1000",
|
||||
"height": 8,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56809506939487,
|
||||
45.49209624228538
|
||||
],
|
||||
[
|
||||
-73.56809246893268,
|
||||
45.4920988416879
|
||||
],
|
||||
[
|
||||
-73.56821287000538,
|
||||
45.49216124158406
|
||||
],
|
||||
[
|
||||
-73.56822186852654,
|
||||
45.49216584161625
|
||||
],
|
||||
[
|
||||
-73.56826745951075,
|
||||
45.492118613912375
|
||||
],
|
||||
[
|
||||
-73.56813497596143,
|
||||
45.49205532773507
|
||||
],
|
||||
[
|
||||
-73.56809506939487,
|
||||
45.49209624228538
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 182393,
|
||||
"properties": {
|
||||
"name": "01044601",
|
||||
"address": "rue Victor-Hugo (MTL) 1626",
|
||||
"function": "1000",
|
||||
"height": 8,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56790756893894,
|
||||
45.492291541967774
|
||||
],
|
||||
[
|
||||
-73.56790222258577,
|
||||
45.49229712328457
|
||||
],
|
||||
[
|
||||
-73.56803643080562,
|
||||
45.49236123475947
|
||||
],
|
||||
[
|
||||
-73.56807651582375,
|
||||
45.49231957685336
|
||||
],
|
||||
[
|
||||
-73.56794223597048,
|
||||
45.4922554321734
|
||||
],
|
||||
[
|
||||
-73.56790756893894,
|
||||
45.492291541967774
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 182442,
|
||||
"properties": {
|
||||
"name": "01044609",
|
||||
"address": "rue Victor-Hugo (MTL) 1646",
|
||||
"function": "1000",
|
||||
"height": 11,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56829706912258,
|
||||
45.49188914205178
|
||||
],
|
||||
[
|
||||
-73.56825635009473,
|
||||
45.49193088860213
|
||||
],
|
||||
[
|
||||
-73.56838787594006,
|
||||
45.49199371809223
|
||||
],
|
||||
[
|
||||
-73.56842846901456,
|
||||
45.49195154234486
|
||||
],
|
||||
[
|
||||
-73.56829706912258,
|
||||
45.49188914205178
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 182546,
|
||||
"properties": {
|
||||
"name": "01044592",
|
||||
"address": "rue Victor-Hugo (MTL) 1606",
|
||||
"function": "1000",
|
||||
"height": 8,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
55
input_files/test_geojson.geojson
Normal file
55
input_files/test_geojson.geojson
Normal file
@ -0,0 +1,55 @@
|
||||
{
|
||||
"type": "FeatureCollection",
|
||||
"features": [
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.58000127109773,
|
||||
45.49613461675315
|
||||
],
|
||||
[
|
||||
-73.57962787855432,
|
||||
45.496524875557746
|
||||
],
|
||||
[
|
||||
-73.57996357265695,
|
||||
45.49668114195629
|
||||
],
|
||||
[
|
||||
-73.57996427397713,
|
||||
45.496680342403664
|
||||
],
|
||||
[
|
||||
-73.58034707390021,
|
||||
45.49625804233725
|
||||
],
|
||||
[
|
||||
-73.58034697395713,
|
||||
45.496257942524835
|
||||
],
|
||||
[
|
||||
-73.58000127109773,
|
||||
45.49613461675315
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 179764,
|
||||
"properties": {
|
||||
"name": "01119274",
|
||||
"address": "rue Guy (MTL) 2157",
|
||||
"function": "Mixed use",
|
||||
"mixed_type_1": "commercial",
|
||||
"mixed_type_1_percentage": 50,
|
||||
"mixed_type_2": "6000",
|
||||
"mixed_type_2_percentage": 50,
|
||||
"height": 62,
|
||||
"year_of_construction": 1954
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
101
main.py
101
main.py
@ -1,4 +1,3 @@
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
@ -8,58 +7,80 @@ from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from scripts.energy_system_analysis_report import EnergySystemAnalysisReport
|
||||
from scripts.energy_system_retrofit_report import EnergySystemRetrofitReport
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from scripts import random_assignation
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from scripts.energy_system_sizing import SystemSizing
|
||||
from scripts.energy_system_retrofit_results import system_results, new_system_results
|
||||
from scripts.solar_angles import CitySolarAngles
|
||||
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||
from scripts.energy_system_retrofit_results import consumption_data, cost_data
|
||||
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
|
||||
from scripts.costs.cost import Cost
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS
|
||||
import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.pv_feasibility import pv_feasibility
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
# Specify the GeoJSON file path
|
||||
# geojson_file = process_geojson(x=-73.5953602192335, y=45.492414530022515, diff=0.001)
|
||||
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
|
||||
# Specify the output path for the PDF file
|
||||
data = {}
|
||||
input_files_path = (Path(__file__).parent / 'input_files')
|
||||
input_files_path.mkdir(parents=True, exist_ok=True)
|
||||
# geojson_file = process_geojson(x=-73.58001358793511, y=45.496445294438715, diff=0.0001)
|
||||
geojson_file_path = input_files_path / 'test_geojson.geojson'
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
# Create city object from GeoJSON file
|
||||
city = GeometryFactory('geojson',
|
||||
path=file_path,
|
||||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
energy_plus_output_path = output_path / 'energy_plus_outputs'
|
||||
energy_plus_output_path.mkdir(parents=True, exist_ok=True)
|
||||
simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve()
|
||||
simulation_results_path.mkdir(parents=True, exist_ok=True)
|
||||
sra_output_path = output_path / 'sra_outputs'
|
||||
sra_output_path.mkdir(parents=True, exist_ok=True)
|
||||
cost_analysis_output_path = output_path / 'cost_analysis'
|
||||
cost_analysis_output_path.mkdir(parents=True, exist_ok=True)
|
||||
city = GeometryFactory(file_type='geojson',
|
||||
path=geojson_file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
# Enrich city data
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
energy_plus_workflow(city)
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_systems_percentage)
|
||||
EnergySystemsFactory('montreal_custom', city).enrich()
|
||||
SystemSizing(city.buildings).montreal_custom()
|
||||
current_system = new_system_results(city.buildings)
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
|
||||
EnergySystemsFactory('montreal_future', city).enrich()
|
||||
for building in city.buildings:
|
||||
EnergySystemsSimulationFactory('archetype1', building=building, output_path=output_path).enrich()
|
||||
print(building.energy_consumption_breakdown[cte.ELECTRICITY][cte.COOLING] +
|
||||
building.energy_consumption_breakdown[cte.ELECTRICITY][cte.HEATING] +
|
||||
building.energy_consumption_breakdown[cte.ELECTRICITY][cte.DOMESTIC_HOT_WATER])
|
||||
new_system = new_system_results(city.buildings)
|
||||
# EnergySystemAnalysisReport(city, output_path).create_report(current_system, new_system)
|
||||
for building in city.buildings:
|
||||
costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle
|
||||
costs.to_csv(output_path / f'{building.name}_lcc.csv')
|
||||
(costs.loc['global_operational_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].
|
||||
to_csv(output_path / f'{building.name}_op.csv'))
|
||||
costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
output_path / f'{building.name}_cc.csv')
|
||||
costs.loc['global_maintenance_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
output_path / f'{building.name}_m.csv')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
energy_plus_workflow(city, energy_plus_output_path)
|
||||
data[f'{city.buildings[0].function}'] = city.buildings[0].heating_demand[cte.YEAR][0] / 3.6e9
|
||||
city.buildings[0].function = cte.COMMERCIAL
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
energy_plus_workflow(city, energy_plus_output_path)
|
||||
data[f'{city.buildings[0].function}'] = city.buildings[0].heating_demand[cte.YEAR][0] / 3.6e9
|
||||
city.buildings[0].function = cte.MEDIUM_OFFICE
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
energy_plus_workflow(city, energy_plus_output_path)
|
||||
data[f'{city.buildings[0].function}'] = city.buildings[0].heating_demand[cte.YEAR][0] / 3.6e9
|
||||
categories = list(data.keys())
|
||||
values = list(data.values())
|
||||
# Plotting
|
||||
fig, ax = plt.subplots(figsize=(10, 6), dpi=96)
|
||||
fig.suptitle('Impact of different usages on yearly heating demand', fontsize=16, weight='bold', alpha=.8)
|
||||
ax.bar(categories, values, color=['#2196f3', '#ff5a5f', '#4caf50'], width=0.6, zorder=2)
|
||||
ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.set_xlabel('Building Type', fontsize=12, labelpad=10)
|
||||
ax.set_ylabel('Energy Consumption (MWh)', fontsize=14, labelpad=10)
|
||||
ax.yaxis.set_major_locator(plt.MaxNLocator(integer=True))
|
||||
ax.set_xticks(np.arange(len(categories)))
|
||||
ax.set_xticklabels(categories, rotation=45, ha='right')
|
||||
ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=0)
|
||||
ax.spines[['top', 'left', 'bottom']].set_visible(False)
|
||||
ax.spines['right'].set_linewidth(1.1)
|
||||
# Set a white background
|
||||
fig.patch.set_facecolor('white')
|
||||
# Adjust the margins around the plot area
|
||||
plt.subplots_adjust(left=0.1, right=0.9, top=0.85, bottom=0.25)
|
||||
# Save the plot
|
||||
plt.savefig('plot_nrcan.png', bbox_inches='tight')
|
||||
plt.close()
|
||||
print('test')
|
BIN
plot_nrcan.png
Normal file
BIN
plot_nrcan.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 46 KiB |
73
pv_assessment.py
Normal file
73
pv_assessment.py
Normal file
@ -0,0 +1,73 @@
|
||||
import pandas as pd
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from scripts.solar_angles import CitySolarAngles
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||
# Specify the GeoJSON file path
|
||||
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.0005)
|
||||
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
|
||||
# Specify the output path for the PDF file
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
# Create city object from GeoJSON file
|
||||
city = GeometryFactory('geojson',
|
||||
path=file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
# Enrich city data
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
ExportsFactory('sra', city, output_path).export()
|
||||
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
|
||||
subprocess.run(['sra', str(sra_path)])
|
||||
ResultFactory('sra', city, output_path).enrich()
|
||||
energy_plus_workflow(city)
|
||||
solar_angles = CitySolarAngles(city.name,
|
||||
city.latitude,
|
||||
city.longitude,
|
||||
tilt_angle=45,
|
||||
surface_azimuth_angle=180).calculate
|
||||
df = pd.DataFrame()
|
||||
df.index = ['yearly lighting (kWh)', 'yearly appliance (kWh)', 'yearly heating (kWh)', 'yearly cooling (kWh)',
|
||||
'yearly dhw (kWh)', 'roof area (m2)', 'used area for pv (m2)', 'number of panels', 'pv production (kWh)']
|
||||
for building in city.buildings:
|
||||
ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
|
||||
pv_sizing_simulation = PVSizingSimulation(building,
|
||||
solar_angles,
|
||||
tilt_angle=45,
|
||||
module_height=1,
|
||||
module_width=2,
|
||||
ghi=ghi)
|
||||
pv_sizing_simulation.pv_output()
|
||||
yearly_lighting = building.lighting_electrical_demand[cte.YEAR][0] / 1000
|
||||
yearly_appliance = building.appliances_electrical_demand[cte.YEAR][0] / 1000
|
||||
yearly_heating = building.heating_demand[cte.YEAR][0] / (3.6e6 * 3)
|
||||
yearly_cooling = building.cooling_demand[cte.YEAR][0] / (3.6e6 * 4.5)
|
||||
yearly_dhw = building.domestic_hot_water_heat_demand[cte.YEAR][0] / 1000
|
||||
roof_area = building.roofs[0].perimeter_area
|
||||
used_roof = pv_sizing_simulation.available_space()
|
||||
number_of_pv_panels = pv_sizing_simulation.total_number_of_panels
|
||||
yearly_pv = building.onsite_electrical_production[cte.YEAR][0] / 1000
|
||||
df[f'{building.name}'] = [yearly_lighting, yearly_appliance, yearly_heating, yearly_cooling, yearly_dhw, roof_area,
|
||||
used_roof, number_of_pv_panels, yearly_pv]
|
||||
|
||||
df.to_csv(output_path / 'pv.csv')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -12,7 +12,8 @@ import numpy_financial as npf
|
||||
from hub.city_model_structure.building import Building
|
||||
import hub.helpers.constants as cte
|
||||
from scripts.costs.configuration import Configuration
|
||||
from scripts.costs.constants import SKIN_RETROFIT, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV
|
||||
from scripts.costs.constants import (SKIN_RETROFIT, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV,
|
||||
SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS, PV, SYSTEM_RETROFIT)
|
||||
from scripts.costs.cost_base import CostBase
|
||||
|
||||
|
||||
@ -31,12 +32,13 @@ class CapitalCosts(CostBase):
|
||||
'B3010_opaque_roof',
|
||||
'B1010_superstructure',
|
||||
'D2010_photovoltaic_system',
|
||||
'D3020_heat_and_cooling_generating_systems',
|
||||
'D3040_distribution_systems',
|
||||
'D3050_other_hvac_ahu',
|
||||
'D3060_storage_systems',
|
||||
'D3020_simultaneous_heat_and_cooling_generating_systems',
|
||||
'D3030_heating_systems',
|
||||
'D3040_cooling_systems',
|
||||
'D3050_distribution_systems',
|
||||
'D3060_other_hvac_ahu',
|
||||
'D3070_storage_systems',
|
||||
'D40_dhw',
|
||||
'D5020_lighting_and_branch_wiring'
|
||||
],
|
||||
dtype='float'
|
||||
)
|
||||
@ -45,12 +47,13 @@ class CapitalCosts(CostBase):
|
||||
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'B1010_superstructure'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D2010_photovoltaic_system'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3020_heat_and_cooling_generating_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3060_storage_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3030_heating_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3040_cooling_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3050_distribution_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3060_other_hvac_ahu'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3070_storage_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D40_dhw'] = 0
|
||||
# self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] = 0
|
||||
|
||||
self._yearly_capital_incomes = pd.DataFrame(
|
||||
index=self._rng,
|
||||
@ -70,12 +73,14 @@ class CapitalCosts(CostBase):
|
||||
for roof in self._building.roofs:
|
||||
self._surface_pv += roof.solid_polygon.area * roof.solar_collectors_area_reduction_factor
|
||||
|
||||
for roof in self._building.roofs:
|
||||
if roof.installed_solar_collector_area is not None:
|
||||
self._surface_pv += roof.installed_solar_collector_area
|
||||
else:
|
||||
self._surface_pv += roof.solid_polygon.area * roof.solar_collectors_area_reduction_factor
|
||||
def calculate(self) -> tuple[pd.DataFrame, pd.DataFrame]:
|
||||
if self._configuration.retrofit_scenario in (SKIN_RETROFIT, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
||||
self.skin_capital_cost()
|
||||
if self._configuration.retrofit_scenario in (SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
||||
self.energy_system_capital_cost()
|
||||
|
||||
self.skin_capital_cost()
|
||||
self.energy_system_capital_cost()
|
||||
self.skin_yearly_capital_costs()
|
||||
self.yearly_energy_system_costs()
|
||||
self.yearly_incomes()
|
||||
@ -106,10 +111,11 @@ class CapitalCosts(CostBase):
|
||||
capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0]
|
||||
capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0]
|
||||
capital_cost_ground = surface_ground * chapter.item('B1010_superstructure').refurbishment[0]
|
||||
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = capital_cost_opaque * self._own_capital
|
||||
self._yearly_capital_costs.loc[0, 'B2020_transparent'] = capital_cost_transparent * self._own_capital
|
||||
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = capital_cost_roof * self._own_capital
|
||||
self._yearly_capital_costs.loc[0, 'B1010_superstructure'] = capital_cost_ground * self._own_capital
|
||||
if self._configuration.retrofit_scenario not in (SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS, PV, SYSTEM_RETROFIT):
|
||||
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = capital_cost_opaque * self._own_capital
|
||||
self._yearly_capital_costs.loc[0, 'B2020_transparent'] = capital_cost_transparent * self._own_capital
|
||||
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = capital_cost_roof * self._own_capital
|
||||
self._yearly_capital_costs.loc[0, 'B1010_superstructure'] = capital_cost_ground * self._own_capital
|
||||
capital_cost_skin = capital_cost_opaque + capital_cost_ground + capital_cost_transparent + capital_cost_roof
|
||||
return capital_cost_opaque, capital_cost_transparent, capital_cost_roof, capital_cost_ground, capital_cost_skin
|
||||
|
||||
@ -147,21 +153,22 @@ class CapitalCosts(CostBase):
|
||||
|
||||
def energy_system_capital_cost(self):
|
||||
chapter = self._capital_costs_chapter.chapter('D_services')
|
||||
energy_system_components = self.system_components()
|
||||
system_components = energy_system_components[0]
|
||||
component_categories = energy_system_components[1]
|
||||
component_sizes = energy_system_components[-1]
|
||||
system_components, component_categories, component_sizes = self.system_components()
|
||||
capital_cost_heating_and_cooling_equipment = 0
|
||||
capital_cost_heating_equipment = 0
|
||||
capital_cost_cooling_equipment = 0
|
||||
capital_cost_domestic_hot_water_equipment = 0
|
||||
capital_cost_energy_storage_equipment = 0
|
||||
capital_cost_distribution_equipment = 0
|
||||
capital_cost_lighting = 0
|
||||
capital_cost_pv = self._surface_pv * chapter.item('D2010_photovoltaic_system').initial_investment[0]
|
||||
# capital_cost_lighting = self._total_floor_area * \
|
||||
# chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
|
||||
for (i, component) in enumerate(system_components):
|
||||
if component_categories[i] == 'generation':
|
||||
if component_categories[i] == 'multi_generation':
|
||||
capital_cost_heating_and_cooling_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
|
||||
elif component_categories[i] == 'heating':
|
||||
capital_cost_heating_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
|
||||
elif component_categories[i] == 'cooling':
|
||||
capital_cost_cooling_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
|
||||
elif component_categories[i] == 'dhw':
|
||||
capital_cost_domestic_hot_water_equipment += chapter.item(component).initial_investment[0] * \
|
||||
component_sizes[i]
|
||||
@ -171,26 +178,37 @@ class CapitalCosts(CostBase):
|
||||
else:
|
||||
capital_cost_energy_storage_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
|
||||
|
||||
self._yearly_capital_costs.loc[0, 'D2010_photovoltaic_system'] = capital_cost_pv
|
||||
self._yearly_capital_costs.loc[0, 'D3020_heat_and_cooling_generating_systems'] = (
|
||||
capital_cost_heating_and_cooling_equipment * self._own_capital)
|
||||
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'] = (
|
||||
capital_cost_distribution_equipment * self._own_capital)
|
||||
self._yearly_capital_costs.loc[0, 'D3060_storage_systems'] = (
|
||||
capital_cost_energy_storage_equipment * self._own_capital)
|
||||
self._yearly_capital_costs.loc[0, 'D40_dhw'] = (
|
||||
capital_cost_domestic_hot_water_equipment * self._own_capital)
|
||||
# self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] = capital_cost_lighting * self._own_capital
|
||||
capital_cost_hvac = capital_cost_heating_and_cooling_equipment + capital_cost_distribution_equipment + capital_cost_energy_storage_equipment + capital_cost_domestic_hot_water_equipment
|
||||
return (capital_cost_pv, capital_cost_heating_and_cooling_equipment, capital_cost_distribution_equipment,
|
||||
capital_cost_energy_storage_equipment, capital_cost_domestic_hot_water_equipment, capital_cost_lighting, capital_cost_hvac)
|
||||
if self._configuration.retrofit_scenario in (SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, PV):
|
||||
self._yearly_capital_costs.loc[0, 'D2010_photovoltaic_system'] = capital_cost_pv
|
||||
if (self._configuration.retrofit_scenario in
|
||||
(SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT)):
|
||||
self._yearly_capital_costs.loc[0, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = (
|
||||
capital_cost_heating_and_cooling_equipment * self._own_capital)
|
||||
self._yearly_capital_costs.loc[0, 'D3030_heating_systems'] = (
|
||||
capital_cost_heating_equipment * self._own_capital)
|
||||
self._yearly_capital_costs.loc[0, 'D3040_cooling_systems'] = (
|
||||
capital_cost_cooling_equipment * self._own_capital)
|
||||
self._yearly_capital_costs.loc[0, 'D3050_distribution_systems'] = (
|
||||
capital_cost_distribution_equipment * self._own_capital)
|
||||
self._yearly_capital_costs.loc[0, 'D3070_storage_systems'] = (
|
||||
capital_cost_energy_storage_equipment * self._own_capital)
|
||||
self._yearly_capital_costs.loc[0, 'D40_dhw'] = (
|
||||
capital_cost_domestic_hot_water_equipment * self._own_capital)
|
||||
capital_cost_hvac = (capital_cost_heating_and_cooling_equipment + capital_cost_distribution_equipment +
|
||||
capital_cost_energy_storage_equipment + capital_cost_domestic_hot_water_equipment)
|
||||
return (capital_cost_pv, capital_cost_heating_and_cooling_equipment, capital_cost_heating_equipment,
|
||||
capital_cost_distribution_equipment, capital_cost_cooling_equipment, capital_cost_energy_storage_equipment,
|
||||
capital_cost_domestic_hot_water_equipment, capital_cost_lighting, capital_cost_hvac)
|
||||
|
||||
def yearly_energy_system_costs(self):
|
||||
chapter = self._capital_costs_chapter.chapter('D_services')
|
||||
system_investment_costs = self.energy_system_capital_cost()
|
||||
system_components = self.system_components()[0]
|
||||
component_categories = self.system_components()[1]
|
||||
component_sizes = self.system_components()[2]
|
||||
system_components, component_categories, component_sizes = self.system_components()
|
||||
pv = False
|
||||
for energy_system in self._building.energy_systems:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.system_type == cte.PHOTOVOLTAIC:
|
||||
pv = True
|
||||
for year in range(1, self._configuration.number_of_years):
|
||||
costs_increase = math.pow(1 + self._configuration.consumer_price_index, year)
|
||||
self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] = (
|
||||
@ -200,65 +218,90 @@ class CapitalCosts(CostBase):
|
||||
system_investment_costs[0] * self._configuration.percentage_credit
|
||||
)
|
||||
)
|
||||
self._yearly_capital_costs.loc[year, 'D3020_heat_and_cooling_generating_systems'] = (
|
||||
self._yearly_capital_costs.loc[year, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = (
|
||||
-npf.pmt(
|
||||
self._configuration.interest_rate,
|
||||
self._configuration.credit_years,
|
||||
system_investment_costs[1] * self._configuration.percentage_credit
|
||||
)
|
||||
)
|
||||
self._yearly_capital_costs.loc[year, 'D3040_distribution_systems'] = (
|
||||
self._yearly_capital_costs.loc[year, 'D3030_heating_systems'] = (
|
||||
-npf.pmt(
|
||||
self._configuration.interest_rate,
|
||||
self._configuration.credit_years,
|
||||
system_investment_costs[2] * self._configuration.percentage_credit
|
||||
)
|
||||
)
|
||||
self._yearly_capital_costs.loc[year, 'D3060_storage_systems'] = (
|
||||
self._yearly_capital_costs.loc[year, 'D3040_cooling_systems'] = (
|
||||
-npf.pmt(
|
||||
self._configuration.interest_rate,
|
||||
self._configuration.credit_years,
|
||||
system_investment_costs[3] * self._configuration.percentage_credit
|
||||
)
|
||||
)
|
||||
self._yearly_capital_costs.loc[year, 'D40_dhw'] = (
|
||||
self._yearly_capital_costs.loc[year, 'D3050_distribution_systems'] = (
|
||||
-npf.pmt(
|
||||
self._configuration.interest_rate,
|
||||
self._configuration.credit_years,
|
||||
system_investment_costs[4] * self._configuration.percentage_credit
|
||||
)
|
||||
)
|
||||
# self._yearly_capital_costs.loc[year, 'D5020_lighting_and_branch_wiring'] = (
|
||||
# -npf.pmt(
|
||||
# self._configuration.interest_rate,
|
||||
# self._configuration.credit_years,
|
||||
# system_investment_costs[5] * self._configuration.percentage_credit
|
||||
# )
|
||||
# )
|
||||
# if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0:
|
||||
# reposition_cost_lighting = (
|
||||
# self._total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] * costs_increase
|
||||
# )
|
||||
# self._yearly_capital_costs.loc[year, 'D5020_lighting_and_branch_wiring'] += reposition_cost_lighting
|
||||
if self._configuration.retrofit_scenario in (SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
||||
self._yearly_capital_costs.loc[year, 'D3070_storage_systems'] = (
|
||||
-npf.pmt(
|
||||
self._configuration.interest_rate,
|
||||
self._configuration.credit_years,
|
||||
system_investment_costs[5] * self._configuration.percentage_credit
|
||||
)
|
||||
)
|
||||
self._yearly_capital_costs.loc[year, 'D40_dhw'] = (
|
||||
-npf.pmt(
|
||||
self._configuration.interest_rate,
|
||||
self._configuration.credit_years,
|
||||
system_investment_costs[6] * self._configuration.percentage_credit
|
||||
)
|
||||
)
|
||||
if self._configuration.retrofit_scenario not in (SKIN_RETROFIT, PV):
|
||||
for (i, component) in enumerate(system_components):
|
||||
if (year % chapter.item(component).lifetime) == 0 and year != (self._configuration.number_of_years - 1):
|
||||
if component_categories[i] == 'multi_generation':
|
||||
reposition_cost_heating_and_cooling_equipment = (chapter.item(component).reposition[0] *
|
||||
component_sizes[i] * costs_increase)
|
||||
self._yearly_capital_costs.loc[year, 'D3020_simultaneous_heat_and_cooling_generating_systems'] += (
|
||||
reposition_cost_heating_and_cooling_equipment)
|
||||
elif component_categories[i] == 'heating':
|
||||
reposition_cost_heating_equipment = (chapter.item(component).reposition[0] *
|
||||
component_sizes[i] * costs_increase)
|
||||
self._yearly_capital_costs.loc[year, 'D3030_heating_systems'] += (
|
||||
reposition_cost_heating_equipment)
|
||||
elif component_categories[i] == 'cooling':
|
||||
reposition_cost_cooling_equipment = (chapter.item(component).reposition[0] *
|
||||
component_sizes[i] * costs_increase)
|
||||
self._yearly_capital_costs.loc[year, 'D3040_cooling_systems'] += (
|
||||
reposition_cost_cooling_equipment)
|
||||
elif component_categories[i] == 'dhw':
|
||||
reposition_cost_domestic_hot_water_equipment = (
|
||||
chapter.item(component).reposition[0] * component_sizes[i] * costs_increase)
|
||||
self._yearly_capital_costs.loc[year, 'D40_dhw'] += reposition_cost_domestic_hot_water_equipment
|
||||
elif component_categories[i] == 'distribution':
|
||||
reposition_cost_distribution_equipment = (
|
||||
chapter.item(component).reposition[0] * component_sizes[i] * costs_increase)
|
||||
self._yearly_capital_costs.loc[year, 'D3050_distribution_systems'] += (
|
||||
reposition_cost_distribution_equipment)
|
||||
else:
|
||||
reposition_cost_energy_storage_equipment = (
|
||||
chapter.item(component).initial_investment[0] * component_sizes[i] * costs_increase)
|
||||
self._yearly_capital_costs.loc[year, 'D3070_storage_systems'] += reposition_cost_energy_storage_equipment
|
||||
if self._configuration.retrofit_scenario == CURRENT_STATUS and pv:
|
||||
if (year % chapter.item('D2010_photovoltaic_system').lifetime) == 0:
|
||||
self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] += (
|
||||
self._surface_pv * chapter.item('D2010_photovoltaic_system').reposition[0] * costs_increase
|
||||
)
|
||||
elif self._configuration.retrofit_scenario in (PV, SYSTEM_RETROFIT_AND_PV,
|
||||
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
||||
if (year % chapter.item('D2010_photovoltaic_system').lifetime) == 0:
|
||||
self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] += (
|
||||
self._surface_pv * chapter.item('D2010_photovoltaic_system').reposition[0] * costs_increase
|
||||
)
|
||||
for (i, component) in enumerate(system_components):
|
||||
if (year % chapter.item(component).lifetime) == 0 and year != (self._configuration.number_of_years - 1):
|
||||
if component_categories[i] == 'generation':
|
||||
reposition_cost_heating_and_cooling_equipment = chapter.item(component).reposition[0] * component_sizes[i] * costs_increase
|
||||
self._yearly_capital_costs.loc[year, 'D3020_heat_and_cooling_generating_systems'] += reposition_cost_heating_and_cooling_equipment
|
||||
elif component_categories[i] == 'dhw':
|
||||
reposition_cost_domestic_hot_water_equipment = chapter.item(component).reposition[0] * component_sizes[i] * costs_increase
|
||||
self._yearly_capital_costs.loc[year, 'D40_dhw'] += reposition_cost_domestic_hot_water_equipment
|
||||
elif component_categories[i] == 'distribution':
|
||||
reposition_cost_distribution_equipment = chapter.item(component).reposition[0] * component_sizes[i] * costs_increase
|
||||
self._yearly_capital_costs.loc[year, 'D3040_distribution_systems'] += reposition_cost_distribution_equipment
|
||||
else:
|
||||
reposition_cost_energy_storage_equipment = chapter.item(component).initial_investment[0] * component_sizes[i] * costs_increase
|
||||
self._yearly_capital_costs.loc[year, 'D3060_storage_systems'] += reposition_cost_energy_storage_equipment
|
||||
|
||||
def system_components(self):
|
||||
system_components = []
|
||||
@ -283,8 +326,11 @@ class CapitalCosts(CostBase):
|
||||
system_components.append(self.boiler_type(generation_system))
|
||||
else:
|
||||
system_components.append('D302010_template_heat')
|
||||
elif cte.HEATING or cte.COOLING in demand_types:
|
||||
component_categories.append('generation')
|
||||
elif cte.HEATING in demand_types:
|
||||
if cte.COOLING in demand_types and generation_system.fuel_type == cte.ELECTRICITY:
|
||||
component_categories.append('multi_generation')
|
||||
else:
|
||||
component_categories.append('heating')
|
||||
sizes.append(installed_capacity)
|
||||
if generation_system.system_type == cte.HEAT_PUMP:
|
||||
item_type = self.heat_pump_type(generation_system)
|
||||
@ -293,11 +339,18 @@ class CapitalCosts(CostBase):
|
||||
item_type = self.boiler_type(generation_system)
|
||||
system_components.append(item_type)
|
||||
else:
|
||||
if cte.COOLING in demand_types and cte.HEATING not in demand_types:
|
||||
if cooling_capacity > heating_capacity:
|
||||
system_components.append('D302090_template_cooling')
|
||||
else:
|
||||
system_components.append('D302010_template_heat')
|
||||
|
||||
elif cte.COOLING in demand_types:
|
||||
component_categories.append('cooling')
|
||||
sizes.append(installed_capacity)
|
||||
if generation_system.system_type == cte.HEAT_PUMP:
|
||||
item_type = self.heat_pump_type(generation_system)
|
||||
system_components.append(item_type)
|
||||
else:
|
||||
system_components.append('D302090_template_cooling')
|
||||
if generation_system.energy_storage_systems is not None:
|
||||
energy_storage_systems = generation_system.energy_storage_systems
|
||||
for storage_system in energy_storage_systems:
|
||||
@ -308,7 +361,7 @@ class CapitalCosts(CostBase):
|
||||
if distribution_systems is not None:
|
||||
for distribution_system in distribution_systems:
|
||||
component_categories.append('distribution')
|
||||
sizes.append(self._building.cooling_peak_load[cte.YEAR][0] / 3.6e6)
|
||||
sizes.append(self._building.cooling_peak_load[cte.YEAR][0] / 1000)
|
||||
system_components.append('D3040_distribution_systems')
|
||||
return system_components, component_categories, sizes
|
||||
|
||||
|
@ -28,7 +28,8 @@ class Configuration:
|
||||
factories_handler,
|
||||
retrofit_scenario,
|
||||
fuel_type,
|
||||
dictionary
|
||||
dictionary,
|
||||
fuel_tariffs
|
||||
):
|
||||
self._number_of_years = number_of_years
|
||||
self._percentage_credit = percentage_credit
|
||||
@ -45,6 +46,7 @@ class Configuration:
|
||||
self._retrofit_scenario = retrofit_scenario
|
||||
self._fuel_type = fuel_type
|
||||
self._dictionary = dictionary
|
||||
self._fuel_tariffs = fuel_tariffs
|
||||
|
||||
@property
|
||||
def number_of_years(self):
|
||||
@ -227,3 +229,10 @@ class Configuration:
|
||||
Get hub function to cost function dictionary
|
||||
"""
|
||||
return self._dictionary
|
||||
|
||||
@property
|
||||
def fuel_tariffs(self):
|
||||
"""
|
||||
Get fuel tariffs
|
||||
"""
|
||||
return self._fuel_tariffs
|
||||
|
@ -11,9 +11,13 @@ CURRENT_STATUS = 0
|
||||
SKIN_RETROFIT = 1
|
||||
SYSTEM_RETROFIT_AND_PV = 2
|
||||
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV = 3
|
||||
PV = 4
|
||||
SYSTEM_RETROFIT = 5
|
||||
RETROFITTING_SCENARIOS = [
|
||||
CURRENT_STATUS,
|
||||
SKIN_RETROFIT,
|
||||
SYSTEM_RETROFIT_AND_PV,
|
||||
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV
|
||||
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV,
|
||||
PV,
|
||||
SYSTEM_RETROFIT
|
||||
]
|
||||
|
@ -40,7 +40,10 @@ class Cost:
|
||||
retrofitting_year_construction=2020,
|
||||
factories_handler='montreal_new',
|
||||
retrofit_scenario=CURRENT_STATUS,
|
||||
dictionary=None):
|
||||
dictionary=None,
|
||||
fuel_tariffs=None):
|
||||
if fuel_tariffs is None:
|
||||
fuel_tariffs = ['Electricity-D', 'Gas-Energir']
|
||||
if dictionary is None:
|
||||
dictionary = Dictionaries().hub_function_to_montreal_custom_costs_function
|
||||
self._building = building
|
||||
@ -57,7 +60,8 @@ class Cost:
|
||||
factories_handler,
|
||||
retrofit_scenario,
|
||||
fuel_type,
|
||||
dictionary)
|
||||
dictionary,
|
||||
fuel_tariffs)
|
||||
|
||||
@property
|
||||
def building(self) -> Building:
|
||||
@ -89,12 +93,13 @@ class Cost:
|
||||
global_capital_costs['B1010_superstructure']
|
||||
)
|
||||
df_capital_costs_systems = (
|
||||
global_capital_costs['D3020_heat_and_cooling_generating_systems'] +
|
||||
global_capital_costs['D3040_distribution_systems'] +
|
||||
global_capital_costs['D3050_other_hvac_ahu'] +
|
||||
global_capital_costs['D3060_storage_systems'] +
|
||||
global_capital_costs['D3020_simultaneous_heat_and_cooling_generating_systems'] +
|
||||
global_capital_costs['D3030_heating_systems'] +
|
||||
global_capital_costs['D3040_cooling_systems'] +
|
||||
global_capital_costs['D3050_distribution_systems'] +
|
||||
global_capital_costs['D3060_other_hvac_ahu'] +
|
||||
global_capital_costs['D3070_storage_systems'] +
|
||||
global_capital_costs['D40_dhw'] +
|
||||
global_capital_costs['D5020_lighting_and_branch_wiring'] +
|
||||
global_capital_costs['D2010_photovoltaic_system']
|
||||
)
|
||||
|
||||
|
@ -45,7 +45,7 @@ class PeakLoad:
|
||||
conditioning_peak[i] = self._building.heating_peak_load[cte.MONTH][i] * heating
|
||||
else:
|
||||
conditioning_peak[i] = self._building.cooling_peak_load[cte.MONTH][i] * cooling
|
||||
monthly_electricity_peak[i] += 0.8 * conditioning_peak[i] / 3600
|
||||
monthly_electricity_peak[i] += 0.8 * conditioning_peak[i]
|
||||
|
||||
electricity_peak_load_results = pd.DataFrame(
|
||||
monthly_electricity_peak,
|
||||
|
@ -25,6 +25,7 @@ class TotalMaintenanceCosts(CostBase):
|
||||
columns=[
|
||||
'Heating_maintenance',
|
||||
'Cooling_maintenance',
|
||||
'DHW_maintenance',
|
||||
'PV_maintenance'
|
||||
],
|
||||
dtype='float'
|
||||
@ -39,15 +40,77 @@ class TotalMaintenanceCosts(CostBase):
|
||||
archetype = self._archetype
|
||||
# todo: change area pv when the variable exists
|
||||
roof_area = 0
|
||||
for roof in building.roofs:
|
||||
roof_area += roof.solid_polygon.area
|
||||
surface_pv = roof_area * 0.5
|
||||
surface_pv = 0
|
||||
for roof in self._building.roofs:
|
||||
if roof.installed_solar_collector_area is not None:
|
||||
surface_pv += roof.installed_solar_collector_area
|
||||
else:
|
||||
surface_pv = roof_area * 0.5
|
||||
|
||||
peak_heating = building.heating_peak_load[cte.YEAR][0] / 3.6e6
|
||||
peak_cooling = building.cooling_peak_load[cte.YEAR][0] / 3.6e6
|
||||
energy_systems = building.energy_systems
|
||||
maintenance_heating_0 = 0
|
||||
maintenance_cooling_0 = 0
|
||||
maintenance_dhw_0 = 0
|
||||
heating_equipments = {}
|
||||
cooling_equipments = {}
|
||||
dhw_equipments = {}
|
||||
for energy_system in energy_systems:
|
||||
if cte.COOLING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR:
|
||||
cooling_equipments['air_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.GROUND:
|
||||
cooling_equipments['ground_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.WATER:
|
||||
cooling_equipments['water_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
else:
|
||||
cooling_equipments['general_cooling_equipment'] = generation_system.nominal_cooling_output / 1000
|
||||
if cte.HEATING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR:
|
||||
heating_equipments['air_source_heat_pump'] = generation_system.nominal_heat_output / 1000
|
||||
elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.GROUND:
|
||||
heating_equipments['ground_source_heat_pump'] = generation_system.nominal_heat_output / 1000
|
||||
elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.WATER:
|
||||
heating_equipments['water_source_heat_pump'] = generation_system.nominal_heat_output / 1000
|
||||
elif generation_system.system_type == cte.BOILER and generation_system.fuel_type == cte.GAS:
|
||||
heating_equipments['gas_boiler'] = generation_system.nominal_heat_output / 1000
|
||||
elif generation_system.system_type == cte.BOILER and generation_system.fuel_type == cte.ELECTRICITY:
|
||||
heating_equipments['electric_boiler'] = generation_system.nominal_heat_output / 1000
|
||||
else:
|
||||
heating_equipments['general_heating_equipment'] = generation_system.nominal_heat_output / 1000
|
||||
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types and cte.HEATING not in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR:
|
||||
dhw_equipments['air_source_heat_pump'] = generation_system.nominal_heat_output / 1000
|
||||
elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.GROUND:
|
||||
dhw_equipments['ground_source_heat_pump'] = generation_system.nominal_heat_output / 1000
|
||||
elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.WATER:
|
||||
dhw_equipments['water_source_heat_pump'] = generation_system.nominal_heat_output / 1000
|
||||
elif generation_system.system_type == cte.BOILER and generation_system.fuel_type == cte.GAS:
|
||||
dhw_equipments['gas_boiler'] = generation_system.nominal_heat_output / 1000
|
||||
elif generation_system.system_type == cte.BOILER and generation_system.fuel_type == cte.ELECTRICITY:
|
||||
dhw_equipments['electric_boiler'] = generation_system.nominal_heat_output / 1000
|
||||
else:
|
||||
dhw_equipments['general_heating_equipment'] = generation_system.nominal_heat_output / 1000
|
||||
|
||||
|
||||
for heating_equipment in heating_equipments:
|
||||
component = self.search_hvac_equipment(heating_equipment)
|
||||
maintenance_cost = component.maintenance[0]
|
||||
maintenance_heating_0 += (heating_equipments[heating_equipment] * maintenance_cost)
|
||||
|
||||
for cooling_equipment in cooling_equipments:
|
||||
component = self.search_hvac_equipment(cooling_equipment)
|
||||
maintenance_cost = component.maintenance[0]
|
||||
maintenance_cooling_0 += (cooling_equipments[cooling_equipment] * maintenance_cost)
|
||||
|
||||
for dhw_equipment in dhw_equipments:
|
||||
component = self.search_hvac_equipment(dhw_equipment)
|
||||
maintenance_cost = component.maintenance[0]
|
||||
maintenance_dhw_0 += (dhw_equipments[dhw_equipment] * maintenance_cost)
|
||||
|
||||
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
|
||||
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
|
||||
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
|
||||
|
||||
for year in range(1, self._configuration.number_of_years + 1):
|
||||
@ -58,8 +121,18 @@ class TotalMaintenanceCosts(CostBase):
|
||||
self._yearly_maintenance_costs.loc[year, 'Cooling_maintenance'] = (
|
||||
maintenance_cooling_0 * costs_increase
|
||||
)
|
||||
self._yearly_maintenance_costs.loc[year, 'DHW_maintenance'] = (
|
||||
maintenance_dhw_0 * costs_increase
|
||||
)
|
||||
self._yearly_maintenance_costs.loc[year, 'PV_maintenance'] = (
|
||||
maintenance_pv_0 * costs_increase
|
||||
)
|
||||
self._yearly_maintenance_costs.fillna(0, inplace=True)
|
||||
return self._yearly_maintenance_costs
|
||||
|
||||
def search_hvac_equipment(self, equipment_type):
|
||||
for component in self._archetype.operational_cost.maintenance_hvac:
|
||||
if component.type == equipment_type:
|
||||
return component
|
||||
|
||||
|
||||
|
@ -42,48 +42,68 @@ class TotalOperationalCosts(CostBase):
|
||||
factor = total_floor_area / 80
|
||||
else:
|
||||
factor = 1
|
||||
total_electricity_consumption = sum(self._building.energy_consumption_breakdown[cte.ELECTRICITY].values())
|
||||
total_electricity_consumption = sum(self._building.energy_consumption_breakdown[cte.ELECTRICITY].values()) / 3600
|
||||
peak_electricity_load = PeakLoad(self._building).electricity_peak_load
|
||||
peak_load_value = peak_electricity_load.max(axis=1)
|
||||
peak_electricity_demand = peak_load_value[1] / 1000 # self._peak_electricity_demand adapted to kW
|
||||
fuels = archetype.operational_cost.fuels
|
||||
for fuel in fuels:
|
||||
if fuel.type in fuel_consumption_breakdown.keys():
|
||||
if fuel.type == cte.ELECTRICITY:
|
||||
for system_fuel in self._configuration.fuel_type:
|
||||
fuel = None
|
||||
for fuel_tariff in self._configuration.fuel_tariffs:
|
||||
if system_fuel in fuel_tariff:
|
||||
fuel = self.search_fuel(system_fuel, fuel_tariff)
|
||||
if fuel.type == cte.ELECTRICITY:
|
||||
if fuel.variable.rate_type == 'fixed':
|
||||
variable_electricity_cost_year_0 = (
|
||||
total_electricity_consumption * fuel.variable[0] / 1000
|
||||
total_electricity_consumption * float(fuel.variable.values[0]) / 1000
|
||||
)
|
||||
peak_electricity_cost_year_0 = peak_electricity_demand * fuel.fixed_power * 12
|
||||
monthly_electricity_cost_year_0 = fuel.fixed_monthly * 12 * factor
|
||||
for year in range(1, self._configuration.number_of_years + 1):
|
||||
price_increase_electricity = math.pow(1 + self._configuration.electricity_price_index, year)
|
||||
price_increase_peak_electricity = math.pow(1 + self._configuration.electricity_peak_index, year)
|
||||
self._yearly_operational_costs.at[year, 'Fixed Costs Electricity Peak'] = (
|
||||
peak_electricity_cost_year_0 * price_increase_peak_electricity
|
||||
)
|
||||
self._yearly_operational_costs.at[year, 'Fixed Costs Electricity Monthly'] = (
|
||||
monthly_electricity_cost_year_0 * price_increase_peak_electricity
|
||||
)
|
||||
if not isinstance(variable_electricity_cost_year_0, pd.DataFrame):
|
||||
variable_costs_electricity = variable_electricity_cost_year_0 * price_increase_electricity
|
||||
else:
|
||||
variable_costs_electricity = float(variable_electricity_cost_year_0.iloc[0] * price_increase_electricity)
|
||||
self._yearly_operational_costs.at[year, 'Variable Costs Electricity'] = (
|
||||
variable_costs_electricity
|
||||
)
|
||||
else:
|
||||
fuel_fixed_cost = fuel.fixed_monthly * 12 * factor
|
||||
if fuel.type == cte.BIOMASS:
|
||||
conversion_factor = 1
|
||||
hourly_electricity_consumption = self.hourly_fuel_consumption_profile(fuel.type)
|
||||
hourly_electricity_price_profile = fuel.variable.values * len(hourly_electricity_consumption)
|
||||
hourly_electricity_price = [hourly_electricity_consumption[i] / 1000 * hourly_electricity_price_profile[i]
|
||||
for i in range(len(hourly_electricity_consumption))]
|
||||
variable_electricity_cost_year_0 = sum(hourly_electricity_price)
|
||||
peak_electricity_cost_year_0 = peak_electricity_demand * fuel.fixed_power * 12
|
||||
monthly_electricity_cost_year_0 = fuel.fixed_monthly * 12 * factor
|
||||
for year in range(1, self._configuration.number_of_years + 1):
|
||||
price_increase_electricity = math.pow(1 + self._configuration.electricity_price_index, year)
|
||||
price_increase_peak_electricity = math.pow(1 + self._configuration.electricity_peak_index, year)
|
||||
self._yearly_operational_costs.at[year, 'Fixed Costs Electricity Peak'] = (
|
||||
peak_electricity_cost_year_0 * price_increase_peak_electricity
|
||||
)
|
||||
self._yearly_operational_costs.at[year, 'Fixed Costs Electricity Monthly'] = (
|
||||
monthly_electricity_cost_year_0 * price_increase_peak_electricity
|
||||
)
|
||||
if not isinstance(variable_electricity_cost_year_0, pd.DataFrame):
|
||||
variable_costs_electricity = variable_electricity_cost_year_0 * price_increase_electricity
|
||||
else:
|
||||
conversion_factor = fuel.density[0]
|
||||
variable_costs_electricity = float(variable_electricity_cost_year_0.iloc[0] * price_increase_electricity)
|
||||
self._yearly_operational_costs.at[year, 'Variable Costs Electricity'] = (
|
||||
variable_costs_electricity
|
||||
)
|
||||
else:
|
||||
fuel_fixed_cost = fuel.fixed_monthly * 12 * factor
|
||||
if fuel.type == cte.BIOMASS:
|
||||
conversion_factor = 1
|
||||
else:
|
||||
conversion_factor = fuel.density[0]
|
||||
if fuel.variable.rate_type == 'fixed':
|
||||
variable_cost_fuel = (
|
||||
((sum(fuel_consumption_breakdown[fuel.type].values()) * 3600)/(1e6*fuel.lower_heating_value[0] * conversion_factor)) * fuel.variable[0])
|
||||
for year in range(1, self._configuration.number_of_years + 1):
|
||||
price_increase_gas = math.pow(1 + self._configuration.gas_price_index, year)
|
||||
self._yearly_operational_costs.at[year, f'Fixed Costs {fuel.type}'] = fuel_fixed_cost * price_increase_gas
|
||||
self._yearly_operational_costs.at[year, f'Variable Costs {fuel.type}'] = (
|
||||
variable_cost_fuel * price_increase_gas)
|
||||
(sum(fuel_consumption_breakdown[fuel.type].values()) / (
|
||||
1e6 * fuel.lower_heating_value[0] * conversion_factor)) * fuel.variable.values[0])
|
||||
|
||||
else:
|
||||
hourly_fuel_consumption = self.hourly_fuel_consumption_profile(fuel.type)
|
||||
hourly_fuel_price_profile = fuel.variable.values * len(hourly_fuel_consumption)
|
||||
hourly_fuel_price = [hourly_fuel_consumption[i] / (
|
||||
1e6 * fuel.lower_heating_value[0] * conversion_factor) * hourly_fuel_price_profile[i]
|
||||
for i in range(len(hourly_fuel_consumption))]
|
||||
variable_cost_fuel = sum(hourly_fuel_price)
|
||||
|
||||
for year in range(1, self._configuration.number_of_years + 1):
|
||||
price_increase_gas = math.pow(1 + self._configuration.gas_price_index, year)
|
||||
self._yearly_operational_costs.at[year, f'Fixed Costs {fuel.type}'] = fuel_fixed_cost * price_increase_gas
|
||||
self._yearly_operational_costs.at[year, f'Variable Costs {fuel.type}'] = (
|
||||
variable_cost_fuel * price_increase_gas)
|
||||
self._yearly_operational_costs.fillna(0, inplace=True)
|
||||
|
||||
return self._yearly_operational_costs
|
||||
@ -102,3 +122,116 @@ class TotalOperationalCosts(CostBase):
|
||||
|
||||
return columns_list
|
||||
|
||||
def search_fuel(self, system_fuel, tariff):
|
||||
fuels = self._archetype.operational_cost.fuels
|
||||
for fuel in fuels:
|
||||
if system_fuel == fuel.type and tariff == fuel.variable.name:
|
||||
return fuel
|
||||
raise KeyError(f'fuel {system_fuel} with {tariff} tariff not found')
|
||||
|
||||
|
||||
def hourly_fuel_consumption_profile(self, fuel_type):
|
||||
hourly_fuel_consumption = []
|
||||
energy_systems = self._building.energy_systems
|
||||
if fuel_type == cte.ELECTRICITY:
|
||||
appliance = self._building.appliances_electrical_demand[cte.HOUR]
|
||||
lighting = self._building.lighting_electrical_demand[cte.HOUR]
|
||||
elec_heating = 0
|
||||
elec_cooling = 0
|
||||
elec_dhw = 0
|
||||
if cte.HEATING in self._building.energy_consumption_breakdown[cte.ELECTRICITY]:
|
||||
elec_heating = 1
|
||||
if cte.COOLING in self._building.energy_consumption_breakdown[cte.ELECTRICITY]:
|
||||
elec_cooling = 1
|
||||
if cte.DOMESTIC_HOT_WATER in self._building.energy_consumption_breakdown[cte.ELECTRICITY]:
|
||||
elec_dhw = 1
|
||||
heating = None
|
||||
cooling = None
|
||||
dhw = None
|
||||
|
||||
if elec_heating == 1:
|
||||
for energy_system in energy_systems:
|
||||
if cte.HEATING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
if cte.HEATING in generation_system.energy_consumption:
|
||||
heating = generation_system.energy_consumption[cte.HEATING][cte.HOUR]
|
||||
else:
|
||||
if len(energy_system.generation_systems) > 1:
|
||||
heating = [x / 2 for x in self._building.heating_consumption[cte.HOUR]]
|
||||
else:
|
||||
heating = self._building.heating_consumption[cte.HOUR]
|
||||
|
||||
if elec_dhw == 1:
|
||||
for energy_system in energy_systems:
|
||||
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
if cte.DOMESTIC_HOT_WATER in generation_system.energy_consumption:
|
||||
dhw = generation_system.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR]
|
||||
else:
|
||||
if len(energy_system.generation_systems) > 1:
|
||||
dhw = [x / 2 for x in self._building.domestic_hot_water_consumption[cte.HOUR]]
|
||||
else:
|
||||
dhw = self._building.domestic_hot_water_consumption[cte.HOUR]
|
||||
|
||||
if elec_cooling == 1:
|
||||
for energy_system in energy_systems:
|
||||
if cte.COOLING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if cte.COOLING in generation_system.energy_consumption:
|
||||
cooling = generation_system.energy_consumption[cte.COOLING][cte.HOUR]
|
||||
else:
|
||||
if len(energy_system.generation_systems) > 1:
|
||||
cooling = [x / 2 for x in self._building.cooling_consumption[cte.HOUR]]
|
||||
else:
|
||||
cooling = self._building.cooling_consumption[cte.HOUR]
|
||||
|
||||
for i in range(len(self._building.heating_demand[cte.HOUR])):
|
||||
hourly = 0
|
||||
hourly += appliance[i] / 3600
|
||||
hourly += lighting[i] / 3600
|
||||
if heating is not None:
|
||||
hourly += heating[i] / 3600
|
||||
if cooling is not None:
|
||||
hourly += cooling[i] / 3600
|
||||
if dhw is not None:
|
||||
hourly += dhw[i] / 3600
|
||||
hourly_fuel_consumption.append(hourly)
|
||||
else:
|
||||
heating = None
|
||||
dhw = None
|
||||
if cte.HEATING in self._building.energy_consumption_breakdown[fuel_type]:
|
||||
for energy_system in energy_systems:
|
||||
if cte.HEATING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if cte.HEATING in generation_system.energy_consumption:
|
||||
heating = generation_system.energy_consumption[cte.HEATING][cte.HOUR]
|
||||
else:
|
||||
if len(energy_system.generation_systems) > 1:
|
||||
heating = [x / 2 for x in self._building.heating_consumption[cte.HOUR]]
|
||||
else:
|
||||
heating = self._building.heating_consumption[cte.HOUR]
|
||||
if cte.DOMESTIC_HOT_WATER in self._building.energy_consumption_breakdown[fuel_type]:
|
||||
for energy_system in energy_systems:
|
||||
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if cte.DOMESTIC_HOT_WATER in generation_system.energy_consumption:
|
||||
dhw = generation_system.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR]
|
||||
else:
|
||||
if len(energy_system.generation_systems) > 1:
|
||||
dhw = [x / 2 for x in self._building.domestic_hot_water_consumption[cte.HOUR]]
|
||||
else:
|
||||
dhw = self._building.domestic_hot_water_consumption[cte.HOUR]
|
||||
|
||||
for i in range(len(self._building.heating_demand[cte.HOUR])):
|
||||
hourly = 0
|
||||
if heating is not None:
|
||||
hourly += heating[i] / 3600
|
||||
if dhw is not None:
|
||||
hourly += dhw[i] / 3600
|
||||
hourly_fuel_consumption.append(hourly)
|
||||
return hourly_fuel_consumption
|
||||
|
||||
|
||||
|
||||
|
@ -33,14 +33,12 @@ class TotalOperationalIncomes(CostBase):
|
||||
onsite_electricity_production = 0
|
||||
else:
|
||||
onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]
|
||||
|
||||
for year in range(1, self._configuration.number_of_years + 1):
|
||||
price_increase_electricity = math.pow(1 + self._configuration.electricity_price_index, year)
|
||||
# todo: check the adequate assignation of price. Pilar
|
||||
price_export = archetype.income.electricity_export * cte.WATTS_HOUR_TO_JULES * 1000 # to account for unit change
|
||||
price_export = archetype.income.electricity_export # to account for unit change
|
||||
self._yearly_operational_incomes.loc[year, 'Incomes electricity'] = (
|
||||
onsite_electricity_production * price_export * price_increase_electricity
|
||||
(onsite_electricity_production / 3.6e6) * price_export * price_increase_electricity
|
||||
)
|
||||
|
||||
self._yearly_operational_incomes.fillna(0, inplace=True)
|
||||
return self._yearly_operational_incomes
|
||||
return self._yearly_operational_incomes
|
@ -1,338 +0,0 @@
|
||||
import os
|
||||
import hub.helpers.constants as cte
|
||||
import matplotlib.pyplot as plt
|
||||
import random
|
||||
import matplotlib.colors as mcolors
|
||||
from matplotlib import cm
|
||||
from scripts.report_creation import LatexReport
|
||||
|
||||
class EnergySystemAnalysisReport:
|
||||
def __init__(self, city, output_path):
|
||||
self.city = city
|
||||
self.output_path = output_path
|
||||
self.content = []
|
||||
self.report = LatexReport('energy_system_analysis_report.tex')
|
||||
|
||||
def building_energy_info(self):
|
||||
|
||||
table_data = [
|
||||
["Building Name", "Year of Construction", "function", "Yearly Heating Demand (MWh)",
|
||||
"Yearly Cooling Demand (MWh)", "Yearly DHW Demand (MWh)", "Yearly Electricity Demand (MWh)"]
|
||||
]
|
||||
intensity_table_data = [["Building Name", "Total Floor Area m2", "Heating Demand Intensity kWh/m2",
|
||||
"Cooling Demand Intensity kWh/m2", "Electricity Intensity kWh/m2"]]
|
||||
|
||||
for building in self.city.buildings:
|
||||
total_floor_area = 0
|
||||
for zone in building.thermal_zones_from_internal_zones:
|
||||
total_floor_area += zone.total_floor_area
|
||||
building_data = [
|
||||
building.name,
|
||||
str(building.year_of_construction),
|
||||
building.function,
|
||||
str(format(building.heating_demand[cte.YEAR][0] / 3.6e9, '.2f')),
|
||||
str(format(building.cooling_demand[cte.YEAR][0] / 3.6e9, '.2f')),
|
||||
str(format(building.domestic_hot_water_heat_demand[cte.YEAR][0] / 1e6, '.2f')),
|
||||
str(format(
|
||||
(building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0])
|
||||
/ 1e6, '.2f')),
|
||||
]
|
||||
intensity_data = [
|
||||
building.name,
|
||||
str(format(total_floor_area, '.2f')),
|
||||
str(format(building.heating_demand[cte.YEAR][0] / (3.6e6 * total_floor_area), '.2f')),
|
||||
str(format(building.cooling_demand[cte.YEAR][0] / (3.6e6 * total_floor_area), '.2f')),
|
||||
str(format(
|
||||
(building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0]) /
|
||||
(1e3 * total_floor_area), '.2f'))
|
||||
]
|
||||
table_data.append(building_data)
|
||||
intensity_table_data.append(intensity_data)
|
||||
|
||||
self.report.add_table(table_data, caption='City Buildings Energy Demands')
|
||||
self.report.add_table(intensity_table_data, caption='Energy Intensity Information')
|
||||
|
||||
def base_case_charts(self):
|
||||
save_directory = self.output_path
|
||||
|
||||
def autolabel(bars, ax):
|
||||
for bar in bars:
|
||||
height = bar.get_height()
|
||||
ax.annotate('{:.1f}'.format(height),
|
||||
xy=(bar.get_x() + bar.get_width() / 2, height),
|
||||
xytext=(0, 3), # 3 points vertical offset
|
||||
textcoords="offset points",
|
||||
ha='center', va='bottom')
|
||||
|
||||
def create_hvac_demand_chart(building_names, yearly_heating_demand, yearly_cooling_demand):
|
||||
fig, ax = plt.subplots()
|
||||
bar_width = 0.35
|
||||
index = range(len(building_names))
|
||||
|
||||
bars1 = ax.bar(index, yearly_heating_demand, bar_width, label='Yearly Heating Demand (MWh)')
|
||||
bars2 = ax.bar([i + bar_width for i in index], yearly_cooling_demand, bar_width,
|
||||
label='Yearly Cooling Demand (MWh)')
|
||||
|
||||
ax.set_xlabel('Building Name')
|
||||
ax.set_ylabel('Energy Demand (MWh)')
|
||||
ax.set_title('Yearly HVAC Demands')
|
||||
ax.set_xticks([i + bar_width / 2 for i in index])
|
||||
ax.set_xticklabels(building_names, rotation=45, ha='right')
|
||||
ax.legend()
|
||||
autolabel(bars1, ax)
|
||||
autolabel(bars2, ax)
|
||||
fig.tight_layout()
|
||||
plt.savefig(save_directory / 'hvac_demand_chart.jpg')
|
||||
plt.close()
|
||||
|
||||
def create_bar_chart(title, ylabel, data, filename, bar_color=None):
|
||||
fig, ax = plt.subplots()
|
||||
bar_width = 0.35
|
||||
index = range(len(building_names))
|
||||
|
||||
if bar_color is None:
|
||||
# Generate a random color
|
||||
bar_color = random.choice(list(mcolors.CSS4_COLORS.values()))
|
||||
|
||||
bars = ax.bar(index, data, bar_width, label=ylabel, color=bar_color)
|
||||
|
||||
ax.set_xlabel('Building Name')
|
||||
ax.set_ylabel('Energy Demand (MWh)')
|
||||
ax.set_title(title)
|
||||
ax.set_xticks([i + bar_width / 2 for i in index])
|
||||
ax.set_xticklabels(building_names, rotation=45, ha='right')
|
||||
ax.legend()
|
||||
autolabel(bars, ax)
|
||||
fig.tight_layout()
|
||||
plt.savefig(save_directory / filename)
|
||||
plt.close()
|
||||
|
||||
building_names = [building.name for building in self.city.buildings]
|
||||
yearly_heating_demand = [building.heating_demand[cte.YEAR][0] / 3.6e9 for building in self.city.buildings]
|
||||
yearly_cooling_demand = [building.cooling_demand[cte.YEAR][0] / 3.6e9 for building in self.city.buildings]
|
||||
yearly_dhw_demand = [building.domestic_hot_water_heat_demand[cte.YEAR][0] / 1e6 for building in
|
||||
self.city.buildings]
|
||||
yearly_electricity_demand = [(building.lighting_electrical_demand[cte.YEAR][0] +
|
||||
building.appliances_electrical_demand[cte.YEAR][0]) / 1e6 for building in
|
||||
self.city.buildings]
|
||||
|
||||
create_hvac_demand_chart(building_names, yearly_heating_demand, yearly_cooling_demand)
|
||||
create_bar_chart('Yearly DHW Demands', 'Energy Demand (MWh)', yearly_dhw_demand, 'dhw_demand_chart.jpg', )
|
||||
create_bar_chart('Yearly Electricity Demands', 'Energy Demand (MWh)', yearly_electricity_demand,
|
||||
'electricity_demand_chart.jpg')
|
||||
|
||||
def maximum_monthly_hvac_chart(self):
|
||||
save_directory = self.output_path
|
||||
months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October',
|
||||
'November', 'December']
|
||||
for building in self.city.buildings:
|
||||
maximum_monthly_heating_load = []
|
||||
maximum_monthly_cooling_load = []
|
||||
fig, axs = plt.subplots(1, 2, figsize=(12, 6)) # Create a figure with 2 subplots side by side
|
||||
for demand in building.heating_peak_load[cte.MONTH]:
|
||||
maximum_monthly_heating_load.append(demand / 3.6e6)
|
||||
for demand in building.cooling_peak_load[cte.MONTH]:
|
||||
maximum_monthly_cooling_load.append(demand / 3.6e6)
|
||||
|
||||
# Plot maximum monthly heating load
|
||||
axs[0].bar(months, maximum_monthly_heating_load, color='red') # Plot on the first subplot
|
||||
axs[0].set_title('Maximum Monthly Heating Load')
|
||||
axs[0].set_xlabel('Month')
|
||||
axs[0].set_ylabel('Load (kWh)')
|
||||
axs[0].tick_params(axis='x', rotation=45)
|
||||
|
||||
# Plot maximum monthly cooling load
|
||||
axs[1].bar(months, maximum_monthly_cooling_load, color='blue') # Plot on the second subplot
|
||||
axs[1].set_title('Maximum Monthly Cooling Load')
|
||||
axs[1].set_xlabel('Month')
|
||||
axs[1].set_ylabel('Load (kWh)')
|
||||
axs[1].tick_params(axis='x', rotation=45)
|
||||
|
||||
plt.tight_layout() # Adjust layout to prevent overlapping
|
||||
plt.savefig(save_directory / f'{building.name}_monthly_maximum_hvac_loads.jpg')
|
||||
plt.close()
|
||||
|
||||
def load_duration_curves(self):
|
||||
save_directory = self.output_path
|
||||
for building in self.city.buildings:
|
||||
heating_demand = [demand / 3.6e6 for demand in building.heating_demand[cte.HOUR]]
|
||||
cooling_demand = [demand / 3.6e6 for demand in building.cooling_demand[cte.HOUR]]
|
||||
heating_demand_sorted = sorted(heating_demand, reverse=True)
|
||||
cooling_demand_sorted = sorted(cooling_demand, reverse=True)
|
||||
|
||||
plt.style.use('ggplot')
|
||||
|
||||
# Create figure and axis objects with 1 row and 2 columns
|
||||
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
|
||||
|
||||
# Plot sorted heating demand
|
||||
axs[0].plot(heating_demand_sorted, color='red', linewidth=2, label='Heating Demand')
|
||||
axs[0].set_xlabel('Hour', fontsize=14)
|
||||
axs[0].set_ylabel('Heating Demand (kWh)', fontsize=14)
|
||||
axs[0].set_title('Heating Load Duration Curve', fontsize=16)
|
||||
axs[0].grid(True)
|
||||
axs[0].legend(loc='upper right', fontsize=12)
|
||||
|
||||
# Plot sorted cooling demand
|
||||
axs[1].plot(cooling_demand_sorted, color='blue', linewidth=2, label='Cooling Demand')
|
||||
axs[1].set_xlabel('Hour', fontsize=14)
|
||||
axs[1].set_ylabel('Cooling Demand (kWh)', fontsize=14)
|
||||
axs[1].set_title('Cooling Load Duration Curve', fontsize=16)
|
||||
axs[1].grid(True)
|
||||
axs[1].legend(loc='upper right', fontsize=12)
|
||||
|
||||
# Adjust layout
|
||||
plt.tight_layout()
|
||||
plt.savefig(save_directory / f'{building.name}_load_duration_curve.jpg')
|
||||
plt.close()
|
||||
|
||||
def individual_building_info(self, building):
|
||||
table_data = [
|
||||
["Maximum Monthly HVAC Demands",
|
||||
f"\\includegraphics[width=1\\linewidth]{{{building.name}_monthly_maximum_hvac_loads.jpg}}"],
|
||||
["Load Duration Curve", f"\\includegraphics[width=1\\linewidth]{{{building.name}_load_duration_curve.jpg}}"],
|
||||
]
|
||||
|
||||
self.report.add_table(table_data, caption=f'{building.name} Information', first_column_width=1.5)
|
||||
|
||||
def building_system_retrofit_results(self, building_name, current_system, new_system):
|
||||
current_system_archetype = current_system[f'{building_name}']['Energy System Archetype']
|
||||
current_system_heating = current_system[f'{building_name}']['Heating Equipments']
|
||||
current_system_cooling = current_system[f'{building_name}']['Cooling Equipments']
|
||||
current_system_dhw = current_system[f'{building_name}']['DHW Equipments']
|
||||
current_system_pv = current_system[f'{building_name}']['Photovoltaic System Capacity']
|
||||
current_system_heating_fuel = current_system[f'{building_name}']['Heating Fuel']
|
||||
current_system_hvac_consumption = current_system[f'{building_name}']['Yearly HVAC Energy Consumption (MWh)']
|
||||
current_system_dhw_consumption = current_system[f'{building_name}']['DHW Energy Consumption (MWH)']
|
||||
current_pv_production = current_system[f'{building_name}']['PV Yearly Production (kWh)']
|
||||
current_capital_cost = current_system[f'{building_name}']['Energy System Capital Cost (CAD)']
|
||||
current_operational = current_system[f'{building_name}']['Energy System Average Yearly Operational Cost (CAD)']
|
||||
current_lcc = current_system[f'{building_name}']['Energy System Life Cycle Cost (CAD)']
|
||||
new_system_archetype = new_system[f'{building_name}']['Energy System Archetype']
|
||||
new_system_heating = new_system[f'{building_name}']['Heating Equipments']
|
||||
new_system_cooling = new_system[f'{building_name}']['Cooling Equipments']
|
||||
new_system_dhw = new_system[f'{building_name}']['DHW Equipments']
|
||||
new_system_pv = new_system[f'{building_name}']['Photovoltaic System Capacity']
|
||||
new_system_heating_fuel = new_system[f'{building_name}']['Heating Fuel']
|
||||
new_system_hvac_consumption = new_system[f'{building_name}']['Yearly HVAC Energy Consumption (MWh)']
|
||||
new_system_dhw_consumption = new_system[f'{building_name}']['DHW Energy Consumption (MWH)']
|
||||
new_pv_production = new_system[f'{building_name}']['PV Yearly Production (kWh)']
|
||||
new_capital_cost = new_system[f'{building_name}']['Energy System Capital Cost (CAD)']
|
||||
new_operational = new_system[f'{building_name}']['Energy System Average Yearly Operational Cost (CAD)']
|
||||
new_lcc = new_system[f'{building_name}']['Energy System Life Cycle Cost (CAD)']
|
||||
|
||||
energy_system_table_data = [
|
||||
["Detail", "Existing System", "Proposed System"],
|
||||
["Energy System Archetype", current_system_archetype, new_system_archetype],
|
||||
["Heating Equipments", current_system_heating, new_system_heating],
|
||||
["Cooling Equipments", current_system_cooling, new_system_cooling],
|
||||
["DHW Equipments", current_system_dhw, new_system_dhw],
|
||||
["Photovoltaic System Capacity", current_system_pv, new_system_pv],
|
||||
["Heating Fuel", current_system_heating_fuel, new_system_heating_fuel],
|
||||
["Yearly HVAC Energy Consumption (MWh)", current_system_hvac_consumption, new_system_hvac_consumption],
|
||||
["DHW Energy Consumption (MWH)", current_system_dhw_consumption, new_system_dhw_consumption],
|
||||
["PV Yearly Production (kWh)", current_pv_production, new_pv_production],
|
||||
["Energy System Capital Cost (CAD)", current_capital_cost, new_capital_cost],
|
||||
["Energy System Average Yearly Operational Cost (CAD)", current_operational, new_operational],
|
||||
["Energy System Life Cycle Cost (CAD)", current_lcc, new_lcc]
|
||||
]
|
||||
self.report.add_table(energy_system_table_data, caption=f'Building {building_name} Energy System Characteristics')
|
||||
|
||||
def building_fuel_consumption_breakdown(self, building):
|
||||
save_directory = self.output_path
|
||||
# Initialize variables to store fuel consumption breakdown
|
||||
fuel_breakdown = {
|
||||
"Heating": {"Gas": 0, "Electricity": 0},
|
||||
"Domestic Hot Water": {"Gas": 0, "Electricity": 0},
|
||||
"Cooling": {"Electricity": 0},
|
||||
"Appliance": building.appliances_electrical_demand[cte.YEAR][0] / 1e6,
|
||||
"Lighting": building.lighting_electrical_demand[cte.YEAR][0] / 1e6
|
||||
}
|
||||
|
||||
# Iterate through energy systems of the building
|
||||
for energy_system in building.energy_systems:
|
||||
for demand_type in energy_system.demand_types:
|
||||
if demand_type == cte.HEATING:
|
||||
consumption = building.heating_consumption[cte.YEAR][0] / 3.6e9
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
fuel_breakdown[demand_type]["Electricity"] += consumption
|
||||
else:
|
||||
fuel_breakdown[demand_type]["Gas"] += consumption
|
||||
elif demand_type == cte.DOMESTIC_HOT_WATER:
|
||||
consumption = building.domestic_hot_water_consumption[cte.YEAR][0] / 1e6
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
fuel_breakdown[demand_type]["Electricity"] += consumption
|
||||
else:
|
||||
fuel_breakdown[demand_type]["Gas"] += consumption
|
||||
elif demand_type == cte.COOLING:
|
||||
consumption = building.cooling_consumption[cte.YEAR][0] / 3.6e9
|
||||
fuel_breakdown[demand_type]["Electricity"] += consumption
|
||||
|
||||
electricity_labels = ['Appliance', 'Lighting']
|
||||
electricity_sizes = [fuel_breakdown['Appliance'], fuel_breakdown['Lighting']]
|
||||
if fuel_breakdown['Heating']['Electricity'] > 0:
|
||||
electricity_labels.append('Heating')
|
||||
electricity_sizes.append(fuel_breakdown['Heating']['Electricity'])
|
||||
if fuel_breakdown['Cooling']['Electricity'] > 0:
|
||||
electricity_labels.append('Cooling')
|
||||
electricity_sizes.append(fuel_breakdown['Cooling']['Electricity'])
|
||||
if fuel_breakdown['Domestic Hot Water']['Electricity'] > 0:
|
||||
electricity_labels.append('Domestic Hot Water')
|
||||
electricity_sizes.append(fuel_breakdown['Domestic Hot Water']['Electricity'])
|
||||
|
||||
# Data for bar chart
|
||||
gas_labels = ['Heating', 'Domestic Hot Water']
|
||||
gas_sizes = [fuel_breakdown['Heating']['Gas'], fuel_breakdown['Domestic Hot Water']['Gas']]
|
||||
|
||||
# Set the style
|
||||
plt.style.use('ggplot')
|
||||
|
||||
# Create plot grid
|
||||
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
|
||||
|
||||
# Plot pie chart for electricity consumption breakdown
|
||||
colors = cm.get_cmap('tab20c', len(electricity_labels))
|
||||
axs[0].pie(electricity_sizes, labels=electricity_labels,
|
||||
autopct=lambda pct: f"{pct:.1f}%\n({pct / 100 * sum(electricity_sizes):.2f})",
|
||||
startangle=90, colors=[colors(i) for i in range(len(electricity_labels))])
|
||||
axs[0].set_title('Electricity Consumption Breakdown')
|
||||
|
||||
# Plot bar chart for natural gas consumption breakdown
|
||||
colors = cm.get_cmap('Paired', len(gas_labels))
|
||||
axs[1].bar(gas_labels, gas_sizes, color=[colors(i) for i in range(len(gas_labels))])
|
||||
axs[1].set_ylabel('Consumption (MWh)')
|
||||
axs[1].set_title('Natural Gas Consumption Breakdown')
|
||||
|
||||
# Add grid to bar chart
|
||||
axs[1].grid(axis='y', linestyle='--', alpha=0.7)
|
||||
|
||||
# Add a title to the entire figure
|
||||
plt.suptitle('Building Energy Consumption Breakdown', fontsize=16, fontweight='bold')
|
||||
|
||||
# Adjust layout
|
||||
plt.tight_layout()
|
||||
|
||||
# Save the plot as a high-quality image
|
||||
plt.savefig(save_directory / f'{building.name}_energy_consumption_breakdown.png', dpi=300)
|
||||
plt.close()
|
||||
|
||||
def create_report(self, current_system, new_system):
|
||||
os.chdir(self.output_path)
|
||||
self.report.add_section('Current Status')
|
||||
self.building_energy_info()
|
||||
self.base_case_charts()
|
||||
self.report.add_image('hvac_demand_chart.jpg', caption='Yearly HVAC Demands')
|
||||
self.report.add_image('dhw_demand_chart.jpg', caption='Yearly DHW Demands')
|
||||
self.report.add_image('electricity_demand_chart.jpg', caption='Yearly Electricity Demands')
|
||||
self.maximum_monthly_hvac_chart()
|
||||
self.load_duration_curves()
|
||||
for building in self.city.buildings:
|
||||
self.individual_building_info(building)
|
||||
self.building_system_retrofit_results(building_name=building.name, current_system=current_system, new_system=new_system)
|
||||
self.building_fuel_consumption_breakdown(building)
|
||||
self.report.add_image(f'{building.name}_energy_consumption_breakdown.png',
|
||||
caption=f'Building {building.name} Consumption by source and sector breakdown')
|
||||
self.report.save_report()
|
||||
self.report.compile_to_pdf()
|
596
scripts/energy_system_retrofit_report.py
Normal file
596
scripts/energy_system_retrofit_report.py
Normal file
@ -0,0 +1,596 @@
|
||||
import os
|
||||
import hub.helpers.constants as cte
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import cm
|
||||
from scripts.report_creation import LatexReport
|
||||
from matplotlib.ticker import MaxNLocator
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
import glob
|
||||
|
||||
|
||||
class EnergySystemRetrofitReport:
|
||||
def __init__(self, city, output_path, retrofit_scenario, current_status_energy_consumption_data,
|
||||
retrofitted_energy_consumption_data, current_status_lcc_data, retrofitted_lcc_data):
|
||||
self.city = city
|
||||
self.current_status_data = current_status_energy_consumption_data
|
||||
self.retrofitted_data = retrofitted_energy_consumption_data
|
||||
self.current_status_lcc = current_status_lcc_data
|
||||
self.retrofitted_lcc = retrofitted_lcc_data
|
||||
self.output_path = output_path
|
||||
self.content = []
|
||||
self.retrofit_scenario = retrofit_scenario
|
||||
self.report = LatexReport('energy_system_retrofit_report',
|
||||
'Energy System Retrofit Report', self.retrofit_scenario, output_path)
|
||||
self.system_schemas_path = (Path(__file__).parent.parent / 'hub' / 'data' / 'energy_systems' / 'schemas')
|
||||
self.charts_path = Path(output_path) / 'charts'
|
||||
self.charts_path.mkdir(parents=True, exist_ok=True)
|
||||
files = glob.glob(f'{self.charts_path}/*')
|
||||
for file in files:
|
||||
os.remove(file)
|
||||
|
||||
def building_energy_info(self):
|
||||
table_data = [
|
||||
["Building Name", "Year of Construction", "function", "Yearly Heating Demand (MWh)",
|
||||
"Yearly Cooling Demand (MWh)", "Yearly DHW Demand (MWh)", "Yearly Electricity Demand (MWh)"]
|
||||
]
|
||||
intensity_table_data = [["Building Name", "Total Floor Area $m^2$", "Heating Demand Intensity kWh/ $m^2$",
|
||||
"Cooling Demand Intensity kWh/ $m^2$", "Electricity Intensity kWh/ $m^2$"]]
|
||||
peak_load_data = [["Building Name", "Heating Peak Load (kW)", "Cooling Peak Load (kW)",
|
||||
"Domestic Hot Water Peak Load (kW)"]]
|
||||
|
||||
for building in self.city.buildings:
|
||||
total_floor_area = 0
|
||||
for zone in building.thermal_zones_from_internal_zones:
|
||||
total_floor_area += zone.total_floor_area
|
||||
building_data = [
|
||||
building.name,
|
||||
str(building.year_of_construction),
|
||||
building.function,
|
||||
str(format(building.heating_demand[cte.YEAR][0] / 3.6e9, '.2f')),
|
||||
str(format(building.cooling_demand[cte.YEAR][0] / 3.6e9, '.2f')),
|
||||
str(format(building.domestic_hot_water_heat_demand[cte.YEAR][0] / 3.6e9, '.2f')),
|
||||
str(format(
|
||||
(building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0])
|
||||
/ 3.6e9, '.2f')),
|
||||
]
|
||||
intensity_data = [
|
||||
building.name,
|
||||
str(format(total_floor_area, '.2f')),
|
||||
str(format(building.heating_demand[cte.YEAR][0] / (3.6e6 * total_floor_area), '.2f')),
|
||||
str(format(building.cooling_demand[cte.YEAR][0] / (3.6e6 * total_floor_area), '.2f')),
|
||||
str(format(
|
||||
(building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0]) /
|
||||
(3.6e6 * total_floor_area), '.2f'))
|
||||
]
|
||||
peak_data = [
|
||||
building.name,
|
||||
str(format(building.heating_peak_load[cte.YEAR][0] / 1000, '.2f')),
|
||||
str(format(building.cooling_peak_load[cte.YEAR][0] / 1000, '.2f')),
|
||||
str(format(
|
||||
(building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0]) /
|
||||
(3.6e6 * total_floor_area), '.2f'))
|
||||
]
|
||||
table_data.append(building_data)
|
||||
intensity_table_data.append(intensity_data)
|
||||
peak_load_data.append(peak_data)
|
||||
|
||||
self.report.add_table(table_data, caption='Buildings Energy Consumption Data')
|
||||
self.report.add_table(intensity_table_data, caption='Buildings Energy Use Intensity Data')
|
||||
self.report.add_table(peak_load_data, caption='Buildings Peak Load Data')
|
||||
|
||||
def plot_monthly_energy_demands(self, data, file_name, title):
|
||||
# Data preparation
|
||||
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
||||
demands = {
|
||||
'Heating': ('heating', '#2196f3'),
|
||||
'Cooling': ('cooling', '#ff5a5f'),
|
||||
'DHW': ('dhw', '#4caf50'),
|
||||
'Electricity': ('lighting_appliance', '#ffc107')
|
||||
}
|
||||
|
||||
# Helper function for plotting
|
||||
def plot_bar_chart(ax, demand_type, color, ylabel, title):
|
||||
values = data[demand_type]
|
||||
ax.bar(months, values, color=color, width=0.6, zorder=2)
|
||||
ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.set_ylabel(ylabel, fontsize=14, labelpad=10)
|
||||
ax.set_title(title, fontsize=14, weight='bold', alpha=.8, pad=40)
|
||||
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
|
||||
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
|
||||
ax.set_xticks(np.arange(len(months)))
|
||||
ax.set_xticklabels(months, rotation=45, ha='right')
|
||||
ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=90)
|
||||
ax.spines[['top', 'left', 'bottom']].set_visible(False)
|
||||
ax.spines['right'].set_linewidth(1.1)
|
||||
average_value = np.mean(values)
|
||||
ax.axhline(y=average_value, color='grey', linewidth=2, linestyle='--')
|
||||
ax.text(len(months) - 1, average_value, f'Average = {average_value:.1f} kWh', ha='right', va='bottom',
|
||||
color='grey')
|
||||
|
||||
# Plotting
|
||||
fig, axs = plt.subplots(4, 1, figsize=(20, 16), dpi=96)
|
||||
fig.suptitle(title, fontsize=16, weight='bold', alpha=.8)
|
||||
|
||||
plot_bar_chart(axs[0], 'heating', demands['Heating'][1], 'Heating Demand (kWh)', 'Monthly Heating Demand')
|
||||
plot_bar_chart(axs[1], 'cooling', demands['Cooling'][1], 'Cooling Demand (kWh)', 'Monthly Cooling Demand')
|
||||
plot_bar_chart(axs[2], 'dhw', demands['DHW'][1], 'DHW Demand (kWh)', 'Monthly DHW Demand')
|
||||
plot_bar_chart(axs[3], 'lighting_appliance', demands['Electricity'][1], 'Electricity Demand (kWh)',
|
||||
'Monthly Electricity Demand')
|
||||
|
||||
# Set a white background
|
||||
fig.patch.set_facecolor('white')
|
||||
|
||||
# Adjust the margins around the plot area
|
||||
plt.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.1, hspace=0.5)
|
||||
|
||||
# Save the plot
|
||||
chart_path = self.charts_path / f'{file_name}.png'
|
||||
plt.savefig(chart_path, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
return chart_path
|
||||
|
||||
def plot_monthly_energy_consumption(self, data, file_name, title):
|
||||
# Data preparation
|
||||
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
||||
consumptions = {
|
||||
'Heating': ('heating', '#2196f3', 'Heating Consumption (kWh)', 'Monthly Energy Consumption for Heating'),
|
||||
'Cooling': ('cooling', '#ff5a5f', 'Cooling Consumption (kWh)', 'Monthly Energy Consumption for Cooling'),
|
||||
'DHW': ('dhw', '#4caf50', 'DHW Consumption (kWh)', 'Monthly DHW Consumption')
|
||||
}
|
||||
|
||||
# Helper function for plotting
|
||||
def plot_bar_chart(ax, consumption_type, color, ylabel, title):
|
||||
values = data[consumption_type]
|
||||
ax.bar(months, values, color=color, width=0.6, zorder=2)
|
||||
ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.set_xlabel('Month', fontsize=12, labelpad=10)
|
||||
ax.set_ylabel(ylabel, fontsize=14, labelpad=10)
|
||||
ax.set_title(title, fontsize=14, weight='bold', alpha=.8, pad=40)
|
||||
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
|
||||
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
|
||||
ax.set_xticks(np.arange(len(months)))
|
||||
ax.set_xticklabels(months, rotation=45, ha='right')
|
||||
ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=90)
|
||||
ax.spines[['top', 'left', 'bottom']].set_visible(False)
|
||||
ax.spines['right'].set_linewidth(1.1)
|
||||
average_value = np.mean(values)
|
||||
ax.axhline(y=average_value, color='grey', linewidth=2, linestyle='--')
|
||||
ax.text(len(months) - 1, average_value, f'Average = {average_value:.1f} kWh', ha='right', va='bottom',
|
||||
color='grey')
|
||||
|
||||
# Plotting
|
||||
fig, axs = plt.subplots(3, 1, figsize=(20, 15), dpi=96)
|
||||
fig.suptitle(title, fontsize=16, weight='bold', alpha=.8)
|
||||
|
||||
plot_bar_chart(axs[0], 'heating', consumptions['Heating'][1], consumptions['Heating'][2],
|
||||
consumptions['Heating'][3])
|
||||
plot_bar_chart(axs[1], 'cooling', consumptions['Cooling'][1], consumptions['Cooling'][2],
|
||||
consumptions['Cooling'][3])
|
||||
plot_bar_chart(axs[2], 'dhw', consumptions['DHW'][1], consumptions['DHW'][2], consumptions['DHW'][3])
|
||||
|
||||
# Set a white background
|
||||
fig.patch.set_facecolor('white')
|
||||
|
||||
# Adjust the margins around the plot area
|
||||
plt.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.1, wspace=0.3, hspace=0.5)
|
||||
|
||||
# Save the plot
|
||||
chart_path = self.charts_path / f'{file_name}.png'
|
||||
plt.savefig(chart_path, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
return chart_path
|
||||
|
||||
def fuel_consumption_breakdown(self, file_name, data):
|
||||
fuel_consumption_breakdown = {}
|
||||
for building in self.city.buildings:
|
||||
for key, breakdown in data[f'{building.name}']['energy_consumption_breakdown'].items():
|
||||
if key not in fuel_consumption_breakdown:
|
||||
fuel_consumption_breakdown[key] = {sector: 0 for sector in breakdown}
|
||||
for sector, value in breakdown.items():
|
||||
if sector in fuel_consumption_breakdown[key]:
|
||||
fuel_consumption_breakdown[key][sector] += value / 3.6e6
|
||||
else:
|
||||
fuel_consumption_breakdown[key][sector] = value / 3.6e6
|
||||
|
||||
plt.style.use('ggplot')
|
||||
num_keys = len(fuel_consumption_breakdown)
|
||||
fig, axs = plt.subplots(1 if num_keys <= 2 else num_keys, min(num_keys, 2), figsize=(12, 5))
|
||||
axs = axs if num_keys > 1 else [axs] # Ensure axs is always iterable
|
||||
|
||||
for i, (fuel, breakdown) in enumerate(fuel_consumption_breakdown.items()):
|
||||
labels = breakdown.keys()
|
||||
values = breakdown.values()
|
||||
colors = cm.get_cmap('tab20c', len(labels))
|
||||
ax = axs[i] if num_keys > 1 else axs[0]
|
||||
ax.pie(values, labels=labels,
|
||||
autopct=lambda pct: f"{pct:.1f}%\n({pct / 100 * sum(values):.2f})",
|
||||
startangle=90, colors=[colors(j) for j in range(len(labels))])
|
||||
ax.set_title(f'{fuel} Consumption Breakdown')
|
||||
|
||||
plt.suptitle('City Energy Consumption Breakdown', fontsize=16, fontweight='bold')
|
||||
plt.tight_layout(rect=[0, 0, 1, 0.95]) # Adjust layout to fit the suptitle
|
||||
|
||||
chart_path = self.charts_path / f'{file_name}.png'
|
||||
plt.savefig(chart_path, dpi=300)
|
||||
plt.close()
|
||||
return chart_path
|
||||
|
||||
def energy_system_archetype_schematic(self):
|
||||
energy_system_archetypes = {}
|
||||
for building in self.city.buildings:
|
||||
if building.energy_systems_archetype_name not in energy_system_archetypes:
|
||||
energy_system_archetypes[building.energy_systems_archetype_name] = [building.name]
|
||||
else:
|
||||
energy_system_archetypes[building.energy_systems_archetype_name].append(building.name)
|
||||
|
||||
text = ""
|
||||
items = ""
|
||||
for archetype, buildings in energy_system_archetypes.items():
|
||||
buildings_str = ", ".join(buildings)
|
||||
text += f"Figure 4 shows the schematic of the proposed energy system for buildings {buildings_str}.\n"
|
||||
if archetype in ['PV+4Pipe+DHW', 'PV+ASHP+GasBoiler+TES']:
|
||||
text += "This energy system archetype is formed of the following systems: \par"
|
||||
items = ['Rooftop Photovoltaic System: The rooftop PV system is tied to the grid and in case there is surplus '
|
||||
'energy, it is sold to Hydro-Quebec through their Net-Meterin program.',
|
||||
'4-Pipe HVAC System: This systems includes a 4-pipe heat pump capable of generating heat and cooling '
|
||||
'at the same time, a natural gas boiler as the auxiliary heating system, and a hot water storage tank.'
|
||||
'The temperature inside the tank is kept between 40-55 C. The cooling demand is totally supplied by '
|
||||
'the heat pump unit.',
|
||||
'Domestic Hot Water Heat Pump System: This system is in charge of supplying domestic hot water demand.'
|
||||
'The heat pump is connected to a thermal storage tank with electric resistance heating coil inside it.'
|
||||
' The temperature inside the tank should always remain above 60 C.']
|
||||
|
||||
self.report.add_text(text)
|
||||
self.report.add_itemize(items=items)
|
||||
schema_path = self.system_schemas_path / f'{archetype}.jpg'
|
||||
self.report.add_image(str(schema_path).replace('\\', '/'),
|
||||
f'Proposed energy system for buildings {buildings_str}')
|
||||
|
||||
def plot_monthly_radiation(self):
|
||||
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
||||
monthly_roof_radiation = []
|
||||
for i in range(len(months)):
|
||||
tilted_radiation = 0
|
||||
for building in self.city.buildings:
|
||||
tilted_radiation += (building.roofs[0].global_irradiance_tilted[cte.MONTH][i] /
|
||||
(cte.WATTS_HOUR_TO_JULES * 1000))
|
||||
monthly_roof_radiation.append(tilted_radiation)
|
||||
|
||||
def plot_bar_chart(ax, months, values, color, ylabel, title):
|
||||
ax.bar(months, values, color=color, width=0.6, zorder=2)
|
||||
ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.set_xlabel('Month', fontsize=12, labelpad=10)
|
||||
ax.set_ylabel(ylabel, fontsize=14, labelpad=10)
|
||||
ax.set_title(title, fontsize=14, weight='bold', alpha=.8, pad=40)
|
||||
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
|
||||
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
|
||||
ax.set_xticks(np.arange(len(months)))
|
||||
ax.set_xticklabels(months, rotation=45, ha='right')
|
||||
ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=90)
|
||||
ax.spines[['top', 'left', 'bottom']].set_visible(False)
|
||||
ax.spines['right'].set_linewidth(1.1)
|
||||
average_value = np.mean(values)
|
||||
ax.axhline(y=average_value, color='grey', linewidth=2, linestyle='--')
|
||||
ax.text(len(months) - 1, average_value, f'Average = {average_value:.1f} kWh', ha='right', va='bottom',
|
||||
color='grey')
|
||||
|
||||
# Plotting the bar chart
|
||||
fig, ax = plt.subplots(figsize=(15, 8), dpi=96)
|
||||
plot_bar_chart(ax, months, monthly_roof_radiation, '#ffc107', 'Tilted Roof Radiation (kWh / m2)',
|
||||
'Monthly Tilted Roof Radiation')
|
||||
|
||||
# Set a white background
|
||||
fig.patch.set_facecolor('white')
|
||||
|
||||
# Adjust the margins around the plot area
|
||||
plt.subplots_adjust(left=0.1, right=0.95, top=0.9, bottom=0.1)
|
||||
|
||||
# Save the plot
|
||||
chart_path = self.charts_path / 'monthly_tilted_roof_radiation.png'
|
||||
plt.savefig(chart_path, bbox_inches='tight')
|
||||
plt.close()
|
||||
return chart_path
|
||||
|
||||
def energy_consumption_comparison(self, current_status_data, retrofitted_data, file_name, title):
|
||||
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
||||
consumptions = {
|
||||
'Heating': ('heating', '#2196f3', 'Heating Consumption (kWh)', 'Monthly Energy Consumption for Heating'),
|
||||
'Cooling': ('cooling', '#ff5a5f', 'Cooling Consumption (kWh)', 'Monthly Energy Consumption for Cooling'),
|
||||
'DHW': ('dhw', '#4caf50', 'DHW Consumption (kWh)', 'Monthly DHW Consumption')
|
||||
}
|
||||
|
||||
# Helper function for plotting
|
||||
def plot_double_bar_chart(ax, consumption_type, color, ylabel, title):
|
||||
current_values = current_status_data[consumption_type]
|
||||
retrofitted_values = retrofitted_data[consumption_type]
|
||||
bar_width = 0.35
|
||||
index = np.arange(len(months))
|
||||
|
||||
ax.bar(index, current_values, bar_width, label='Current Status', color=color, alpha=0.7, zorder=2)
|
||||
ax.bar(index + bar_width, retrofitted_values, bar_width, label='Retrofitted', color=color, hatch='/', zorder=2)
|
||||
|
||||
ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.set_xlabel('Month', fontsize=12, labelpad=10)
|
||||
ax.set_ylabel(ylabel, fontsize=14, labelpad=10)
|
||||
ax.set_title(title, fontsize=14, weight='bold', alpha=.8, pad=40)
|
||||
ax.set_xticks(index + bar_width / 2)
|
||||
ax.set_xticklabels(months, rotation=45, ha='right')
|
||||
ax.legend()
|
||||
|
||||
# Adding bar labels
|
||||
ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=90)
|
||||
ax.bar_label(ax.containers[1], padding=3, color='black', fontsize=12, rotation=90)
|
||||
|
||||
ax.spines[['top', 'left', 'bottom']].set_visible(False)
|
||||
ax.spines['right'].set_linewidth(1.1)
|
||||
|
||||
# Plotting
|
||||
fig, axs = plt.subplots(3, 1, figsize=(20, 25), dpi=96)
|
||||
fig.suptitle(title, fontsize=16, weight='bold', alpha=.8)
|
||||
|
||||
plot_double_bar_chart(axs[0], 'heating', consumptions['Heating'][1], consumptions['Heating'][2],
|
||||
consumptions['Heating'][3])
|
||||
plot_double_bar_chart(axs[1], 'cooling', consumptions['Cooling'][1], consumptions['Cooling'][2],
|
||||
consumptions['Cooling'][3])
|
||||
plot_double_bar_chart(axs[2], 'dhw', consumptions['DHW'][1], consumptions['DHW'][2], consumptions['DHW'][3])
|
||||
|
||||
# Set a white background
|
||||
fig.patch.set_facecolor('white')
|
||||
|
||||
# Adjust the margins around the plot area
|
||||
plt.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.1, wspace=0.3, hspace=0.5)
|
||||
|
||||
# Save the plot
|
||||
chart_path = self.charts_path / f'{file_name}.png'
|
||||
plt.savefig(chart_path, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
return chart_path
|
||||
|
||||
def yearly_consumption_comparison(self):
|
||||
current_total_consumption = round(self.current_status_data['total_consumption'], 2)
|
||||
retrofitted_total_consumption = round(self.retrofitted_data['total_consumption'], 2)
|
||||
text = (
|
||||
f'The total yearly energy consumption before and after the retrofit are {current_total_consumption} MWh and '
|
||||
f'{retrofitted_total_consumption} MWh, respectively.')
|
||||
if retrofitted_total_consumption < current_total_consumption:
|
||||
change = str(round((current_total_consumption - retrofitted_total_consumption) * 100 / current_total_consumption,
|
||||
2))
|
||||
text += f'Therefore, the total yearly energy consumption decreased by {change} \%.'
|
||||
else:
|
||||
change = str(round((retrofitted_total_consumption - current_total_consumption) * 100 /
|
||||
retrofitted_total_consumption, 2))
|
||||
text += f'Therefore, the total yearly energy consumption increased by {change} \%. \par'
|
||||
self.report.add_text(text)
|
||||
|
||||
def pv_system(self):
|
||||
self.report.add_text('The first step in PV assessments is evaluating the potential of buildings for installing '
|
||||
'rooftop PV system. The benchmark value used for this evaluation is the mean yearly solar '
|
||||
'incident in Montreal. According to Hydro-Quebec, the mean annual incident in Montreal is 1350'
|
||||
'kWh/m2. Therefore, any building with rooftop annual global horizontal radiation of less than '
|
||||
'1080 kWh/m2 is considered to be infeasible. Table 4 shows the yearly horizontal radiation on '
|
||||
'buildings roofs. \par')
|
||||
radiation_data = [
|
||||
["Building Name", "Roof Area $m^2$", "Function", "Rooftop Annual Global Horizontal Radiation kWh/ $m^2$"]
|
||||
]
|
||||
pv_feasible_buildings = []
|
||||
for building in self.city.buildings:
|
||||
if building.roofs[0].global_irradiance[cte.YEAR][0] > 1080:
|
||||
pv_feasible_buildings.append(building.name)
|
||||
data = [building.name, str(format(building.roofs[0].perimeter_area, '.2f')), building.function,
|
||||
str(format(building.roofs[0].global_irradiance[cte.YEAR][0] / (cte.WATTS_HOUR_TO_JULES * 1000), '.2f'))]
|
||||
radiation_data.append(data)
|
||||
|
||||
self.report.add_table(radiation_data,
|
||||
caption='Buildings Roof Characteristics')
|
||||
|
||||
if len(pv_feasible_buildings) == len(self.city.buildings):
|
||||
buildings_str = 'all'
|
||||
else:
|
||||
buildings_str = ", ".join(pv_feasible_buildings)
|
||||
self.report.add_text(f"From the table it can be seen that {buildings_str} buildings are good candidates to have "
|
||||
f"rooftop PV system. The next step is calculating the amount of solar radiation on a tilted "
|
||||
f"surface. Figure 5 shows the total monthly solar radiation on a surface with the tilt angle "
|
||||
f"of 45 degrees on the roofs of those buildings that are identified to have rooftop PV system."
|
||||
f"\par")
|
||||
tilted_radiation = self.plot_monthly_radiation()
|
||||
self.report.add_image(str(tilted_radiation).replace('\\', '/'),
|
||||
caption='Total Monthly Solar Radiation on Buildings Roofs on a 45 Degrees Tilted Surface',
|
||||
placement='H')
|
||||
self.report.add_text('The first step in sizing the PV system is to find the available roof area. '
|
||||
'Few considerations need to be made here. The considerations include space for maintenance '
|
||||
'crew, space for mechanical equipment, and orientation correction factor to make sure all '
|
||||
'the panel are truly facing south. After all these considerations, the minimum distance '
|
||||
'between the panels to avoid shading throughout the year is found. Table 5 shows the number of'
|
||||
'panles on each buildings roof, yearly PV production, total electricity consumption, and self '
|
||||
'consumption. \par')
|
||||
|
||||
pv_output_table = [['Building Name', 'Total Surface Area of PV Panels ($m^2$)',
|
||||
'Total Solar Incident on PV Modules (MWh)', 'Yearly PV production (MWh)']]
|
||||
|
||||
for building in self.city.buildings:
|
||||
if building.name in pv_feasible_buildings:
|
||||
pv_data = []
|
||||
pv_data.append(building.name)
|
||||
yearly_solar_incident = (building.roofs[0].global_irradiance_tilted[cte.YEAR][0] *
|
||||
building.roofs[0].installed_solar_collector_area) / (cte.WATTS_HOUR_TO_JULES * 1e6)
|
||||
yearly_solar_incident_str = format(yearly_solar_incident, '.2f')
|
||||
yearly_pv_output = building.onsite_electrical_production[cte.YEAR][0] / (cte.WATTS_HOUR_TO_JULES * 1e6)
|
||||
yearly_pv_output_str = format(yearly_pv_output, '.2f')
|
||||
|
||||
pv_data.append(format(building.roofs[0].installed_solar_collector_area, '.2f'))
|
||||
pv_data.append(yearly_solar_incident_str)
|
||||
pv_data.append(yearly_pv_output_str)
|
||||
|
||||
pv_output_table.append(pv_data)
|
||||
|
||||
self.report.add_table(pv_output_table, caption='PV System Simulation Results', first_column_width=3)
|
||||
|
||||
def life_cycle_cost_stacked_bar(self, file_name, title):
|
||||
# Aggregate LCC components for current and retrofitted statuses
|
||||
current_status_capex = 0
|
||||
current_status_opex = 0
|
||||
current_status_maintenance = 0
|
||||
current_status_end_of_life = 0
|
||||
retrofitted_capex = 0
|
||||
retrofitted_opex = 0
|
||||
retrofitted_maintenance = 0
|
||||
retrofitted_end_of_life = 0
|
||||
current_status_operational_income = 0
|
||||
retrofitted_operational_income = 0
|
||||
|
||||
for building in self.city.buildings:
|
||||
current_status_capex += self.current_status_lcc[f'{building.name}']['capital_cost_per_sqm']
|
||||
retrofitted_capex += self.retrofitted_lcc[f'{building.name}']['capital_cost_per_sqm']
|
||||
current_status_opex += self.current_status_lcc[f'{building.name}']['operational_cost_per_sqm']
|
||||
retrofitted_opex += self.retrofitted_lcc[f'{building.name}']['operational_cost_per_sqm']
|
||||
current_status_maintenance += self.current_status_lcc[f'{building.name}']['maintenance_cost_per_sqm']
|
||||
retrofitted_maintenance += self.retrofitted_lcc[f'{building.name}']['maintenance_cost_per_sqm']
|
||||
current_status_end_of_life += self.current_status_lcc[f'{building.name}']['end_of_life_cost_per_sqm']
|
||||
retrofitted_end_of_life += self.retrofitted_lcc[f'{building.name}']['end_of_life_cost_per_sqm']
|
||||
current_status_operational_income += self.current_status_lcc[f'{building.name}']['operational_income_per_sqm']
|
||||
retrofitted_operational_income += self.retrofitted_lcc[f'{building.name}']['operational_income_per_sqm']
|
||||
|
||||
current_status_lcc_components_sqm = {
|
||||
'Capital Cost': current_status_capex / len(self.city.buildings),
|
||||
'Operational Cost': (current_status_opex - current_status_operational_income) / len(self.city.buildings),
|
||||
'Maintenance Cost': current_status_maintenance / len(self.city.buildings),
|
||||
'End of Life Cost': current_status_end_of_life / len(self.city.buildings),
|
||||
}
|
||||
retrofitted_lcc_components_sqm = {
|
||||
'Capital Cost': retrofitted_capex / len(self.city.buildings),
|
||||
'Operational Cost': (retrofitted_opex - retrofitted_operational_income) / len(self.city.buildings),
|
||||
'Maintenance Cost': retrofitted_maintenance / len(self.city.buildings),
|
||||
'End of Life Cost': retrofitted_end_of_life / len(self.city.buildings),
|
||||
}
|
||||
|
||||
labels = ['Current Status', 'Retrofitted Status']
|
||||
categories = ['Capital Cost', 'Operational Cost', 'Maintenance Cost', 'End of Life Cost']
|
||||
colors = ['#2196f3', '#ff5a5f', '#4caf50', '#ffc107'] # Added new color
|
||||
|
||||
# Data preparation
|
||||
bar_width = 0.35
|
||||
r = np.arange(len(labels))
|
||||
|
||||
fig, ax = plt.subplots(figsize=(12, 8), dpi=96)
|
||||
fig.suptitle(title, fontsize=16, weight='bold', alpha=.8)
|
||||
|
||||
# Plotting current status data
|
||||
bottom = np.zeros(len(labels))
|
||||
for category, color in zip(categories, colors):
|
||||
values = [current_status_lcc_components_sqm[category], retrofitted_lcc_components_sqm[category]]
|
||||
ax.bar(r, values, bottom=bottom, color=color, edgecolor='white', width=bar_width, label=category)
|
||||
bottom += values
|
||||
|
||||
# Adding summation annotations at the top of the bars
|
||||
for idx, (x, total) in enumerate(zip(r, bottom)):
|
||||
ax.text(x, total, f'{total:.1f}', ha='center', va='bottom', fontsize=12, fontweight='bold')
|
||||
|
||||
# Adding labels, title, and grid
|
||||
ax.set_xlabel('LCC Components', fontsize=12, labelpad=10)
|
||||
ax.set_ylabel('Average Cost (CAD/m²)', fontsize=14, labelpad=10)
|
||||
ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.set_xticks(r)
|
||||
ax.set_xticklabels(labels, rotation=45, ha='right')
|
||||
ax.legend()
|
||||
|
||||
# Adding a white background
|
||||
fig.patch.set_facecolor('white')
|
||||
|
||||
# Adjusting the margins around the plot area
|
||||
plt.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.2)
|
||||
|
||||
# Save the plot
|
||||
chart_path = self.charts_path / f'{file_name}.png'
|
||||
plt.savefig(chart_path, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
return chart_path
|
||||
|
||||
def create_report(self):
|
||||
# Add sections and text to the report
|
||||
self.report.add_section('Overview of the Current Status in Buildings')
|
||||
self.report.add_text('In this section, an overview of the current status of buildings characteristics, '
|
||||
'energy demand and consumptions are provided')
|
||||
self.report.add_subsection('Buildings Characteristics')
|
||||
|
||||
self.building_energy_info()
|
||||
|
||||
# current monthly demands and consumptions
|
||||
current_monthly_demands = self.current_status_data['monthly_demands']
|
||||
current_monthly_consumptions = self.current_status_data['monthly_consumptions']
|
||||
|
||||
# Plot and save demand chart
|
||||
current_demand_chart_path = self.plot_monthly_energy_demands(data=current_monthly_demands,
|
||||
file_name='current_monthly_demands',
|
||||
title='Current Status Monthly Energy Demands')
|
||||
# Plot and save consumption chart
|
||||
current_consumption_chart_path = self.plot_monthly_energy_consumption(data=current_monthly_consumptions,
|
||||
file_name='monthly_consumptions',
|
||||
title='Monthly Energy Consumptions')
|
||||
current_consumption_breakdown_path = self.fuel_consumption_breakdown('City_Energy_Consumption_Breakdown',
|
||||
self.current_status_data)
|
||||
retrofitted_consumption_breakdown_path = self.fuel_consumption_breakdown(
|
||||
'fuel_consumption_breakdown_after_retrofit',
|
||||
self.retrofitted_data)
|
||||
life_cycle_cost_sqm_stacked_bar_chart_path = self.life_cycle_cost_stacked_bar('lcc_per_sqm',
|
||||
'LCC Analysis')
|
||||
# Add current state of energy demands in the city
|
||||
self.report.add_subsection('Current State of Energy Demands in the City')
|
||||
self.report.add_text('The total monthly energy demands in the city are shown in Figure 1. It should be noted '
|
||||
'that the electricity demand refers to total lighting and appliance electricity demands')
|
||||
self.report.add_image(str(current_demand_chart_path).replace('\\', '/'),
|
||||
'Total Monthly Energy Demands in City',
|
||||
placement='h')
|
||||
|
||||
# Add current state of energy consumption in the city
|
||||
self.report.add_subsection('Current State of Energy Consumption in the City')
|
||||
self.report.add_text('The following figure shows the amount of energy consumed to supply heating, cooling, and '
|
||||
'domestic hot water needs in the city. The details of the systems in each building before '
|
||||
'and after retrofit are provided in Section 4. \par')
|
||||
self.report.add_image(str(current_consumption_chart_path).replace('\\', '/'),
|
||||
'Total Monthly Energy Consumptions in City',
|
||||
placement='H')
|
||||
self.report.add_text('Figure 3 shows the yearly energy supplied to the city by fuel in different sectors. '
|
||||
'All the values are in kWh.')
|
||||
self.report.add_image(str(current_consumption_breakdown_path).replace('\\', '/'),
|
||||
'Current Energy Consumption Breakdown in the City by Fuel',
|
||||
placement='H')
|
||||
self.report.add_section(f'{self.retrofit_scenario}')
|
||||
self.report.add_subsection('Proposed Systems')
|
||||
self.energy_system_archetype_schematic()
|
||||
if 'PV' in self.retrofit_scenario:
|
||||
self.report.add_subsection('Rooftop Photovoltaic System Implementation')
|
||||
self.pv_system()
|
||||
if 'System' in self.retrofit_scenario:
|
||||
self.report.add_subsection('Retrofitted HVAC and DHW Systems')
|
||||
self.report.add_text('Figure 6 shows a comparison between total monthly energy consumption in the selected '
|
||||
'buildings before and after retrofitting.')
|
||||
consumption_comparison = self.energy_consumption_comparison(self.current_status_data['monthly_consumptions'],
|
||||
self.retrofitted_data['monthly_consumptions'],
|
||||
'energy_consumption_comparison_in_city',
|
||||
'Total Monthly Energy Consumption Comparison in '
|
||||
'Buildings')
|
||||
self.report.add_image(str(consumption_comparison).replace('\\', '/'),
|
||||
caption='Comparison of Total Monthly Energy Consumption in City Buildings',
|
||||
placement='H')
|
||||
self.yearly_consumption_comparison()
|
||||
self.report.add_text('Figure 7 shows the fuel consumption breakdown in the area after the retrofit.')
|
||||
self.report.add_image(str(retrofitted_consumption_breakdown_path).replace('\\', '/'),
|
||||
caption=f'Fuel Consumption Breakdown After {self.retrofit_scenario}',
|
||||
placement='H')
|
||||
self.report.add_subsection('Life Cycle Cost Analysis')
|
||||
self.report.add_image(str(life_cycle_cost_sqm_stacked_bar_chart_path).replace('\\', '/'),
|
||||
caption='Average Life Cycle Cost Components',
|
||||
placement='H')
|
||||
|
||||
# Save and compile the report
|
||||
self.report.save_report()
|
||||
self.report.compile_to_pdf()
|
@ -1,68 +1,176 @@
|
||||
import hub.helpers.constants as cte
|
||||
|
||||
|
||||
def system_results(buildings):
|
||||
system_performance_summary = {}
|
||||
fields = ["Energy System Archetype", "Heating Equipments", "Cooling Equipments", "DHW Equipments",
|
||||
"Photovoltaic System Capacity", "Heating Fuel", "Yearly HVAC Energy Consumption (MWh)",
|
||||
"DHW Energy Consumption (MWH)", "PV Yearly Production (kWh)", "LCC Analysis Duration (Years)",
|
||||
"Energy System Capital Cost (CAD)", "Energy System Average Yearly Operational Cost (CAD)",
|
||||
"Energy System Life Cycle Cost (CAD)"]
|
||||
for building in buildings:
|
||||
system_performance_summary[f'{building.name}'] = {}
|
||||
for field in fields:
|
||||
system_performance_summary[f'{building.name}'][field] = '-'
|
||||
|
||||
for building in buildings:
|
||||
fuels = []
|
||||
system_performance_summary[f'{building.name}']['Energy System Archetype'] = building.energy_systems_archetype_name
|
||||
energy_systems = building.energy_systems
|
||||
def hourly_electricity_consumption_profile(building):
|
||||
hourly_electricity_consumption = []
|
||||
energy_systems = building.energy_systems
|
||||
appliance = building.appliances_electrical_demand[cte.HOUR]
|
||||
lighting = building.lighting_electrical_demand[cte.HOUR]
|
||||
elec_heating = 0
|
||||
elec_cooling = 0
|
||||
elec_dhw = 0
|
||||
if cte.HEATING in building.energy_consumption_breakdown[cte.ELECTRICITY]:
|
||||
elec_heating = 1
|
||||
if cte.COOLING in building.energy_consumption_breakdown[cte.ELECTRICITY]:
|
||||
elec_cooling = 1
|
||||
if cte.DOMESTIC_HOT_WATER in building.energy_consumption_breakdown[cte.ELECTRICITY]:
|
||||
elec_dhw = 1
|
||||
heating = None
|
||||
cooling = None
|
||||
dhw = None
|
||||
if elec_heating == 1:
|
||||
for energy_system in energy_systems:
|
||||
demand_types = energy_system.demand_types
|
||||
for demand_type in demand_types:
|
||||
if demand_type == cte.COOLING:
|
||||
equipments = []
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
equipments.append(generation_system.name or generation_system.system_type)
|
||||
cooling_equipments = ", ".join(equipments)
|
||||
system_performance_summary[f'{building.name}']['Cooling Equipments'] = cooling_equipments
|
||||
elif demand_type == cte.HEATING:
|
||||
equipments = []
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.nominal_heat_output is not None:
|
||||
equipments.append(generation_system.name or generation_system.system_type)
|
||||
fuels.append(generation_system.fuel_type)
|
||||
heating_equipments = ", ".join(equipments)
|
||||
system_performance_summary[f'{building.name}']['Heating Equipments'] = heating_equipments
|
||||
elif demand_type == cte.DOMESTIC_HOT_WATER:
|
||||
equipments = []
|
||||
for generation_system in energy_system.generation_systems:
|
||||
equipments.append(generation_system.name or generation_system.system_type)
|
||||
dhw_equipments = ", ".join(equipments)
|
||||
system_performance_summary[f'{building.name}']['DHW Equipments'] = dhw_equipments
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.system_type == cte.PHOTOVOLTAIC:
|
||||
system_performance_summary[f'{building.name}'][
|
||||
'Photovoltaic System Capacity'] = generation_system.nominal_electricity_output or str(0)
|
||||
heating_fuels = ", ".join(fuels)
|
||||
system_performance_summary[f'{building.name}']['Heating Fuel'] = heating_fuels
|
||||
system_performance_summary[f'{building.name}']['Yearly HVAC Energy Consumption (MWh)'] = format(
|
||||
(building.heating_consumption[cte.YEAR][0] + building.cooling_consumption[cte.YEAR][0]) / 3.6e9, '.2f')
|
||||
system_performance_summary[f'{building.name}']['DHW Energy Consumption (MWH)'] = format(
|
||||
building.domestic_hot_water_consumption[cte.YEAR][0] / 1e6, '.2f')
|
||||
return system_performance_summary
|
||||
if cte.HEATING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
if cte.HEATING in generation_system.energy_consumption:
|
||||
heating = generation_system.energy_consumption[cte.HEATING][cte.HOUR]
|
||||
else:
|
||||
if len(energy_system.generation_systems) > 1:
|
||||
heating = [x / 2 for x in building.heating_consumption[cte.HOUR]]
|
||||
else:
|
||||
heating = building.heating_consumption[cte.HOUR]
|
||||
if elec_dhw == 1:
|
||||
for energy_system in energy_systems:
|
||||
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
if cte.DOMESTIC_HOT_WATER in generation_system.energy_consumption:
|
||||
dhw = generation_system.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR]
|
||||
else:
|
||||
if len(energy_system.generation_systems) > 1:
|
||||
dhw = [x / 2 for x in building.domestic_hot_water_consumption[cte.HOUR]]
|
||||
else:
|
||||
dhw = building.domestic_hot_water_consumption[cte.HOUR]
|
||||
|
||||
if elec_cooling == 1:
|
||||
for energy_system in energy_systems:
|
||||
if cte.COOLING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if cte.COOLING in generation_system.energy_consumption:
|
||||
cooling = generation_system.energy_consumption[cte.COOLING][cte.HOUR]
|
||||
else:
|
||||
if len(energy_system.generation_systems) > 1:
|
||||
cooling = [x / 2 for x in building.cooling_consumption[cte.HOUR]]
|
||||
else:
|
||||
cooling = building.cooling_consumption[cte.HOUR]
|
||||
|
||||
for i in range(len(building.heating_demand[cte.HOUR])):
|
||||
hourly = 0
|
||||
hourly += appliance[i] / 3600
|
||||
hourly += lighting[i] / 3600
|
||||
if heating is not None:
|
||||
hourly += heating[i] / 3600
|
||||
if cooling is not None:
|
||||
hourly += cooling[i] / 3600
|
||||
if dhw is not None:
|
||||
hourly += dhw[i] / 3600
|
||||
hourly_electricity_consumption.append(hourly)
|
||||
return hourly_electricity_consumption
|
||||
|
||||
|
||||
def new_system_results(buildings):
|
||||
new_system_performance_summary = {}
|
||||
fields = ["Energy System Archetype", "Heating Equipments", "Cooling Equipments", "DHW Equipments",
|
||||
"Photovoltaic System Capacity", "Heating Fuel", "Yearly HVAC Energy Consumption (MWh)",
|
||||
"DHW Energy Consumption (MWH)", "PV Yearly Production (kWh)", "LCC Analysis Duration (Years)",
|
||||
"Energy System Capital Cost (CAD)", "Energy System Average Yearly Operational Cost (CAD)",
|
||||
"Energy System Life Cycle Cost (CAD)"]
|
||||
for building in buildings:
|
||||
new_system_performance_summary[f'{building.name}'] = {}
|
||||
for field in fields:
|
||||
new_system_performance_summary[f'{building.name}'][field] = '-'
|
||||
return new_system_performance_summary
|
||||
def consumption_data(city):
|
||||
energy_consumption_data = {}
|
||||
for building in city.buildings:
|
||||
hourly_electricity_consumption = hourly_electricity_consumption_profile(building)
|
||||
energy_consumption_data[f'{building.name}'] = {'heating_consumption': building.heating_consumption,
|
||||
'cooling_consumption': building.cooling_consumption,
|
||||
'domestic_hot_water_consumption':
|
||||
building.domestic_hot_water_consumption,
|
||||
'energy_consumption_breakdown':
|
||||
building.energy_consumption_breakdown,
|
||||
'hourly_electricity_consumption': hourly_electricity_consumption}
|
||||
peak_electricity_consumption = 0
|
||||
for building in energy_consumption_data:
|
||||
peak_electricity_consumption += max(energy_consumption_data[building]['hourly_electricity_consumption'])
|
||||
heating_demand_monthly = []
|
||||
cooling_demand_monthly = []
|
||||
dhw_demand_monthly = []
|
||||
lighting_appliance_monthly = []
|
||||
heating_consumption_monthly = []
|
||||
cooling_consumption_monthly = []
|
||||
dhw_consumption_monthly = []
|
||||
for i in range(12):
|
||||
heating_demand = 0
|
||||
cooling_demand = 0
|
||||
dhw_demand = 0
|
||||
lighting_appliance_demand = 0
|
||||
heating_consumption = 0
|
||||
cooling_consumption = 0
|
||||
dhw_consumption = 0
|
||||
for building in city.buildings:
|
||||
heating_demand += building.heating_demand[cte.MONTH][i] / 3.6e6
|
||||
cooling_demand += building.cooling_demand[cte.MONTH][i] / 3.6e6
|
||||
dhw_demand += building.domestic_hot_water_heat_demand[cte.MONTH][i] / 3.6e6
|
||||
lighting_appliance_demand += building.lighting_electrical_demand[cte.MONTH][i] / 3.6e6
|
||||
heating_consumption += building.heating_consumption[cte.MONTH][i] / 3.6e6
|
||||
if building.cooling_consumption[cte.YEAR][0] == 0:
|
||||
cooling_consumption += building.cooling_demand[cte.MONTH][i] / (3.6e6 * 2)
|
||||
else:
|
||||
cooling_consumption += building.cooling_consumption[cte.MONTH][i] / 3.6e6
|
||||
dhw_consumption += building.domestic_hot_water_consumption[cte.MONTH][i] / 3.6e6
|
||||
heating_demand_monthly.append(heating_demand)
|
||||
cooling_demand_monthly.append(cooling_demand)
|
||||
dhw_demand_monthly.append(dhw_demand)
|
||||
lighting_appliance_monthly.append(lighting_appliance_demand)
|
||||
heating_consumption_monthly.append(heating_consumption)
|
||||
cooling_consumption_monthly.append(cooling_consumption)
|
||||
dhw_consumption_monthly.append(dhw_consumption)
|
||||
|
||||
monthly_demands = {'heating': heating_demand_monthly,
|
||||
'cooling': cooling_demand_monthly,
|
||||
'dhw': dhw_demand_monthly,
|
||||
'lighting_appliance': lighting_appliance_monthly}
|
||||
monthly_consumptions = {'heating': heating_consumption_monthly,
|
||||
'cooling': cooling_consumption_monthly,
|
||||
'dhw': dhw_consumption_monthly}
|
||||
yearly_heating = 0
|
||||
yearly_cooling = 0
|
||||
yearly_dhw = 0
|
||||
yearly_appliance = 0
|
||||
yearly_lighting = 0
|
||||
for building in city.buildings:
|
||||
yearly_appliance += building.appliances_electrical_demand[cte.YEAR][0] / 3.6e9
|
||||
yearly_lighting += building.lighting_electrical_demand[cte.YEAR][0] / 3.6e9
|
||||
yearly_heating += building.heating_consumption[cte.YEAR][0] / 3.6e9
|
||||
yearly_cooling += building.cooling_consumption[cte.YEAR][0] / 3.6e9
|
||||
yearly_dhw += building.domestic_hot_water_consumption[cte.YEAR][0] / 3.6e9
|
||||
|
||||
total_consumption = yearly_heating + yearly_cooling + yearly_dhw + yearly_appliance + yearly_lighting
|
||||
energy_consumption_data['monthly_demands'] = monthly_demands
|
||||
energy_consumption_data['monthly_consumptions'] = monthly_consumptions
|
||||
energy_consumption_data['total_consumption'] = total_consumption
|
||||
energy_consumption_data['maximum_hourly_electricity_consumption'] = peak_electricity_consumption
|
||||
|
||||
return energy_consumption_data
|
||||
|
||||
|
||||
def cost_data(building, lcc_dataframe, cost_retrofit_scenario):
|
||||
total_floor_area = 0
|
||||
for thermal_zone in building.thermal_zones_from_internal_zones:
|
||||
total_floor_area += thermal_zone.total_floor_area
|
||||
capital_cost = lcc_dataframe.loc['total_capital_costs_systems', f'Scenario {cost_retrofit_scenario}']
|
||||
operational_cost = lcc_dataframe.loc['total_operational_costs', f'Scenario {cost_retrofit_scenario}']
|
||||
maintenance_cost = lcc_dataframe.loc['total_maintenance_costs', f'Scenario {cost_retrofit_scenario}']
|
||||
end_of_life_cost = lcc_dataframe.loc['end_of_life_costs', f'Scenario {cost_retrofit_scenario}']
|
||||
operational_income = lcc_dataframe.loc['operational_incomes', f'Scenario {cost_retrofit_scenario}']
|
||||
total_life_cycle_cost = capital_cost + operational_cost + maintenance_cost + end_of_life_cost + operational_income
|
||||
specific_capital_cost = capital_cost / total_floor_area
|
||||
specific_operational_cost = operational_cost / total_floor_area
|
||||
specific_maintenance_cost = maintenance_cost / total_floor_area
|
||||
specific_end_of_life_cost = end_of_life_cost / total_floor_area
|
||||
specific_operational_income = operational_income / total_floor_area
|
||||
specific_life_cycle_cost = total_life_cycle_cost / total_floor_area
|
||||
life_cycle_cost_analysis = {'capital_cost': capital_cost,
|
||||
'capital_cost_per_sqm': specific_capital_cost,
|
||||
'operational_cost': operational_cost,
|
||||
'operational_cost_per_sqm': specific_operational_cost,
|
||||
'maintenance_cost': maintenance_cost,
|
||||
'maintenance_cost_per_sqm': specific_maintenance_cost,
|
||||
'end_of_life_cost': end_of_life_cost,
|
||||
'end_of_life_cost_per_sqm': specific_end_of_life_cost,
|
||||
'operational_income': operational_income,
|
||||
'operational_income_per_sqm': specific_operational_income,
|
||||
'total_life_cycle_cost': total_life_cycle_cost,
|
||||
'total_life_cycle_cost_per_sqm': specific_life_cycle_cost}
|
||||
return life_cycle_cost_analysis
|
||||
|
@ -52,17 +52,17 @@ class SystemSizing:
|
||||
if cte.HEATING in demand_types:
|
||||
if len(generation_systems) == 1:
|
||||
for generation in generation_systems:
|
||||
generation.nominal_heat_output = building.heating_peak_load[cte.YEAR][0] / 3600
|
||||
generation.nominal_heat_output = building.heating_peak_load[cte.YEAR][0]
|
||||
else:
|
||||
for generation in generation_systems:
|
||||
generation.nominal_heat_output = building.heating_peak_load[cte.YEAR][0] / (len(generation_systems) * 3600)
|
||||
generation.nominal_heat_output = building.heating_peak_load[cte.YEAR][0] / (len(generation_systems))
|
||||
elif cte.COOLING in demand_types:
|
||||
if len(generation_systems) == 1:
|
||||
for generation in generation_systems:
|
||||
generation.nominal_cooling_output = building.cooling_peak_load[cte.YEAR][0] / 3600
|
||||
generation.nominal_cooling_output = building.cooling_peak_load[cte.YEAR][0]
|
||||
else:
|
||||
for generation in generation_systems:
|
||||
generation.nominal_heat_output = building.cooling_peak_load[cte.YEAR][0] / (len(generation_systems) * 3600)
|
||||
generation.nominal_heat_output = building.cooling_peak_load[cte.YEAR][0] / (len(generation_systems))
|
||||
|
||||
|
||||
|
||||
|
@ -6,7 +6,9 @@ Project Coder Saeed Ranjbar saeed.ranjbar@mail.concordia.ca
|
||||
"""
|
||||
|
||||
from scripts.system_simulation_models.archetype13 import Archetype13
|
||||
from scripts.system_simulation_models.archetype13_stratified_tes import Archetype13Stratified
|
||||
from scripts.system_simulation_models.archetype1 import Archetype1
|
||||
from scripts.system_simulation_models.archetypes14_15 import Archetype14_15
|
||||
|
||||
|
||||
class EnergySystemsSimulationFactory:
|
||||
@ -35,6 +37,15 @@ class EnergySystemsSimulationFactory:
|
||||
self._building.level_of_detail.energy_systems = 2
|
||||
self._building.level_of_detail.energy_systems = 2
|
||||
|
||||
def _archetype14_15(self):
|
||||
"""
|
||||
Enrich the city by using the sizing and simulation model developed for archetype14 and archetype15 of
|
||||
montreal_future_systems
|
||||
"""
|
||||
Archetype14_15(self._building, self._output_path).enrich_buildings()
|
||||
self._building.level_of_detail.energy_systems = 2
|
||||
self._building.level_of_detail.energy_systems = 2
|
||||
|
||||
def enrich(self):
|
||||
"""
|
||||
Enrich the city given to the class using the class given handler
|
||||
|
@ -9,10 +9,10 @@ from hub.imports.results_factory import ResultFactory
|
||||
sys.path.append('./')
|
||||
|
||||
|
||||
def energy_plus_workflow(city):
|
||||
def energy_plus_workflow(city, output_path):
|
||||
try:
|
||||
# city = city
|
||||
out_path = (Path(__file__).parent.parent / 'out_files')
|
||||
out_path = output_path
|
||||
files = glob.glob(f'{out_path}/*')
|
||||
|
||||
# for file in files:
|
||||
|
@ -4,13 +4,16 @@ from shapely import Point
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def process_geojson(x, y, diff):
|
||||
def process_geojson(x, y, diff, expansion=False):
|
||||
selection_box = Polygon([[x + diff, y - diff],
|
||||
[x - diff, y - diff],
|
||||
[x - diff, y + diff],
|
||||
[x + diff, y + diff]])
|
||||
geojson_file = Path('./data/collinear_clean 2.geojson').resolve()
|
||||
output_file = Path('./input_files/output_buildings.geojson').resolve()
|
||||
if not expansion:
|
||||
output_file = Path('./input_files/output_buildings.geojson').resolve()
|
||||
else:
|
||||
output_file = Path('./input_files/output_buildings_expanded.geojson').resolve()
|
||||
buildings_in_region = []
|
||||
|
||||
with open(geojson_file, 'r') as file:
|
||||
|
37
scripts/pv_feasibility.py
Normal file
37
scripts/pv_feasibility.py
Normal file
@ -0,0 +1,37 @@
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
|
||||
|
||||
def pv_feasibility(current_x, current_y, current_diff, selected_buildings):
|
||||
input_files_path = (Path(__file__).parent.parent / 'input_files')
|
||||
output_path = (Path(__file__).parent.parent / 'out_files').resolve()
|
||||
sra_output_path = output_path / 'sra_outputs' / 'extended_city_sra_outputs'
|
||||
sra_output_path.mkdir(parents=True, exist_ok=True)
|
||||
new_diff = current_diff * 5
|
||||
geojson_file = process_geojson(x=current_x, y=current_y, diff=new_diff, expansion=True)
|
||||
file_path = input_files_path / 'output_buildings.geojson'
|
||||
city = GeometryFactory('geojson',
|
||||
path=file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
WeatherFactory('epw', city).enrich()
|
||||
ExportsFactory('sra', city, sra_output_path).export()
|
||||
sra_path = (sra_output_path / f'{city.name}_sra.xml').resolve()
|
||||
subprocess.run(['sra', str(sra_path)])
|
||||
ResultFactory('sra', city, sra_output_path).enrich()
|
||||
for selected_building in selected_buildings:
|
||||
for building in city.buildings:
|
||||
if selected_building.name == building.name:
|
||||
selected_building.roofs[0].global_irradiance = building.roofs[0].global_irradiance
|
||||
|
||||
|
||||
|
||||
|
59
scripts/pv_sizing_and_simulation.py
Normal file
59
scripts/pv_sizing_and_simulation.py
Normal file
@ -0,0 +1,59 @@
|
||||
import math
|
||||
|
||||
from scripts.radiation_tilted import RadiationTilted
|
||||
import hub.helpers.constants as cte
|
||||
from hub.helpers.monthly_values import MonthlyValues
|
||||
|
||||
|
||||
class PVSizingSimulation(RadiationTilted):
|
||||
def __init__(self, building, solar_angles, tilt_angle, module_height, module_width, ghi):
|
||||
super().__init__(building, solar_angles, tilt_angle, ghi)
|
||||
self.module_height = module_height
|
||||
self.module_width = module_width
|
||||
self.total_number_of_panels = 0
|
||||
self.enrich()
|
||||
|
||||
def available_space(self):
|
||||
roof_area = self.building.roofs[0].perimeter_area
|
||||
maintenance_factor = 0.1
|
||||
orientation_factor = 0.2
|
||||
if self.building.function == cte.RESIDENTIAL:
|
||||
mechanical_equipment_factor = 0.2
|
||||
else:
|
||||
mechanical_equipment_factor = 0.3
|
||||
available_roof = (maintenance_factor + orientation_factor + mechanical_equipment_factor) * roof_area
|
||||
return available_roof
|
||||
|
||||
def inter_row_spacing(self):
|
||||
winter_solstice = self.df[(self.df['AST'].dt.month == 12) &
|
||||
(self.df['AST'].dt.day == 21) &
|
||||
(self.df['AST'].dt.hour == 12)]
|
||||
solar_altitude = winter_solstice['solar altitude'].values[0]
|
||||
solar_azimuth = winter_solstice['solar azimuth'].values[0]
|
||||
distance = ((self.module_height * abs(math.cos(math.radians(solar_azimuth)))) /
|
||||
math.tan(math.radians(solar_altitude)))
|
||||
distance = float(format(distance, '.1f'))
|
||||
return distance
|
||||
|
||||
def number_of_panels(self, available_roof, inter_row_distance):
|
||||
space_dimension = math.sqrt(available_roof)
|
||||
space_dimension = float(format(space_dimension, '.2f'))
|
||||
panels_per_row = math.ceil(space_dimension / self.module_width)
|
||||
number_of_rows = math.ceil(space_dimension / inter_row_distance)
|
||||
self.total_number_of_panels = panels_per_row * number_of_rows
|
||||
return panels_per_row, number_of_rows
|
||||
|
||||
def pv_output(self):
|
||||
radiation = self.total_radiation_tilted
|
||||
pv_module_area = self.module_width * self.module_height
|
||||
available_roof = self.available_space()
|
||||
inter_row_spacing = self.inter_row_spacing()
|
||||
self.number_of_panels(available_roof, inter_row_spacing)
|
||||
self.building.roofs[0].installed_solar_collector_area = pv_module_area * self.total_number_of_panels
|
||||
system_efficiency = 0.2
|
||||
pv_hourly_production = [x * system_efficiency * self.total_number_of_panels * pv_module_area *
|
||||
cte.WATTS_HOUR_TO_JULES for x in radiation]
|
||||
self.building.onsite_electrical_production[cte.HOUR] = pv_hourly_production
|
||||
self.building.onsite_electrical_production[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self.building.onsite_electrical_production[cte.HOUR]))
|
||||
self.building.onsite_electrical_production[cte.YEAR] = [sum(self.building.onsite_electrical_production[cte.MONTH])]
|
113
scripts/radiation_tilted.py
Normal file
113
scripts/radiation_tilted.py
Normal file
@ -0,0 +1,113 @@
|
||||
import pandas as pd
|
||||
import math
|
||||
import hub.helpers.constants as cte
|
||||
from hub.helpers.monthly_values import MonthlyValues
|
||||
|
||||
|
||||
class RadiationTilted:
|
||||
def __init__(self, building, solar_angles, tilt_angle, ghi, solar_constant=1366.1, maximum_clearness_index=1,
|
||||
min_cos_zenith=0.065, maximum_zenith_angle=87):
|
||||
self.building = building
|
||||
self.ghi = ghi
|
||||
self.tilt_angle = tilt_angle
|
||||
self.zeniths = solar_angles['zenith'].tolist()[:-1]
|
||||
self.incidents = solar_angles['incident angle'].tolist()[:-1]
|
||||
self.date_time = solar_angles['DateTime'].tolist()[:-1]
|
||||
self.ast = solar_angles['AST'].tolist()[:-1]
|
||||
self.solar_azimuth = solar_angles['solar azimuth'].tolist()[:-1]
|
||||
self.solar_altitude = solar_angles['solar altitude'].tolist()[:-1]
|
||||
data = {'DateTime': self.date_time, 'AST': self.ast, 'solar altitude': self.solar_altitude, 'zenith': self.zeniths,
|
||||
'solar azimuth': self.solar_azimuth, 'incident angle': self.incidents, 'ghi': self.ghi}
|
||||
self.df = pd.DataFrame(data)
|
||||
self.df['DateTime'] = pd.to_datetime(self.df['DateTime'])
|
||||
self.df['AST'] = pd.to_datetime(self.df['AST'])
|
||||
self.df.set_index('DateTime', inplace=True)
|
||||
self.solar_constant = solar_constant
|
||||
self.maximum_clearness_index = maximum_clearness_index
|
||||
self.min_cos_zenith = min_cos_zenith
|
||||
self.maximum_zenith_angle = maximum_zenith_angle
|
||||
self.i_on = []
|
||||
self.i_oh = []
|
||||
self.k_t = []
|
||||
self.fraction_diffuse = []
|
||||
self.diffuse_horizontal = []
|
||||
self.beam_horizontal = []
|
||||
self.dni = []
|
||||
self.beam_tilted = []
|
||||
self.diffuse_tilted = []
|
||||
self.total_radiation_tilted = []
|
||||
self.calculate()
|
||||
|
||||
def dni_extra(self):
|
||||
for i in range(len(self.df)):
|
||||
self.i_on.append(self.solar_constant * (1 + 0.033 * math.cos(math.radians(360 * self.df.index.dayofyear[i] / 365))))
|
||||
|
||||
self.df['extraterrestrial normal radiation (Wh/m2)'] = self.i_on
|
||||
|
||||
def clearness_index(self):
|
||||
for i in range(len(self.df)):
|
||||
self.i_oh.append(self.i_on[i] * max(math.cos(math.radians(self.zeniths[i])), self.min_cos_zenith))
|
||||
self.k_t.append(self.ghi[i] / self.i_oh[i])
|
||||
self.k_t[i] = max(0, self.k_t[i])
|
||||
self.k_t[i] = min(self.maximum_clearness_index, self.k_t[i])
|
||||
self.df['extraterrestrial radiation on horizontal (Wh/m2)'] = self.i_oh
|
||||
self.df['clearness index'] = self.k_t
|
||||
|
||||
def diffuse_fraction(self):
|
||||
for i in range(len(self.df)):
|
||||
if self.k_t[i] <= 0.22:
|
||||
self.fraction_diffuse.append(1 - 0.09 * self.k_t[i])
|
||||
elif self.k_t[i] <= 0.8:
|
||||
self.fraction_diffuse.append(0.9511 - 0.1604 * self.k_t[i] + 4.388 * self.k_t[i] ** 2 -
|
||||
16.638 * self.k_t[i] ** 3 + 12.336 * self.k_t[i] ** 4)
|
||||
else:
|
||||
self.fraction_diffuse.append(0.165)
|
||||
if self.zeniths[i] > self.maximum_zenith_angle:
|
||||
self.fraction_diffuse[i] = 1
|
||||
|
||||
self.df['diffuse fraction'] = self.fraction_diffuse
|
||||
|
||||
def radiation_components_horizontal(self):
|
||||
for i in range(len(self.df)):
|
||||
self.diffuse_horizontal.append(self.ghi[i] * self.fraction_diffuse[i])
|
||||
self.beam_horizontal.append(self.ghi[i] - self.diffuse_horizontal[i])
|
||||
self.dni.append((self.ghi[i] - self.diffuse_horizontal[i]) / math.cos(math.radians(self.zeniths[i])))
|
||||
if self.zeniths[i] > self.maximum_zenith_angle or self.dni[i] < 0:
|
||||
self.dni[i] = 0
|
||||
|
||||
self.df['diffuse horizontal (Wh/m2)'] = self.diffuse_horizontal
|
||||
self.df['dni (Wh/m2)'] = self.dni
|
||||
self.df['beam horizontal (Wh/m2)'] = self.beam_horizontal
|
||||
|
||||
def radiation_components_tilted(self):
|
||||
for i in range(len(self.df)):
|
||||
self.beam_tilted.append(self.dni[i] * math.cos(math.radians(self.incidents[i])))
|
||||
self.beam_tilted[i] = max(self.beam_tilted[i], 0)
|
||||
self.diffuse_tilted.append(self.diffuse_horizontal[i] * ((1 + math.cos(math.radians(self.tilt_angle))) / 2))
|
||||
self.total_radiation_tilted.append(self.beam_tilted[i] + self.diffuse_tilted[i])
|
||||
|
||||
self.df['beam tilted (Wh/m2)'] = self.beam_tilted
|
||||
self.df['diffuse tilted (Wh/m2)'] = self.diffuse_tilted
|
||||
self.df['total radiation tilted (Wh/m2)'] = self.total_radiation_tilted
|
||||
|
||||
def calculate(self) -> pd.DataFrame:
|
||||
self.dni_extra()
|
||||
self.clearness_index()
|
||||
self.diffuse_fraction()
|
||||
self.radiation_components_horizontal()
|
||||
self.radiation_components_tilted()
|
||||
return self.df
|
||||
|
||||
def enrich(self):
|
||||
tilted_radiation = self.total_radiation_tilted
|
||||
self.building.roofs[0].global_irradiance_tilted[cte.HOUR] = [x * cte.WATTS_HOUR_TO_JULES for x in
|
||||
tilted_radiation]
|
||||
self.building.roofs[0].global_irradiance_tilted[cte.HOUR] = [x * cte.WATTS_HOUR_TO_JULES for x in
|
||||
tilted_radiation]
|
||||
self.building.roofs[0].global_irradiance_tilted[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self.building.roofs[0].global_irradiance_tilted[cte.HOUR]))
|
||||
self.building.roofs[0].global_irradiance_tilted[cte.YEAR] = \
|
||||
[sum(self.building.roofs[0].global_irradiance_tilted[cte.MONTH])]
|
||||
|
||||
|
||||
|
@ -1,73 +1,119 @@
|
||||
import subprocess
|
||||
import datetime
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class LatexReport:
|
||||
def __init__(self, file_name):
|
||||
self.file_name = file_name
|
||||
self.content = []
|
||||
self.content.append(r'\documentclass{article}')
|
||||
self.content.append(r'\usepackage[margin=2.5cm]{geometry}') # Adjust page margins
|
||||
self.content.append(r'\usepackage{graphicx}')
|
||||
self.content.append(r'\usepackage{tabularx}')
|
||||
self.content.append(r'\begin{document}')
|
||||
# Get current date and time
|
||||
current_datetime = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
self.content.append(r'\title{Energy System Analysis Report - ' + current_datetime + r'}')
|
||||
self.content.append(r'\author{Next-Generation Cities Institute}')
|
||||
self.content.append(r'\date{}') # Remove the date field, as it's included in the title now
|
||||
self.content.append(r'\maketitle')
|
||||
def __init__(self, file_name, title, subtitle, output_path):
|
||||
self.file_name = file_name
|
||||
self.output_path = Path(output_path) / 'report'
|
||||
self.output_path.mkdir(parents=True, exist_ok=True)
|
||||
self.file_path = self.output_path / f"{file_name}.tex"
|
||||
self.content = []
|
||||
self.content.append(r'\documentclass{article}')
|
||||
self.content.append(r'\usepackage[margin=2.5cm]{geometry}')
|
||||
self.content.append(r'\usepackage{graphicx}')
|
||||
self.content.append(r'\usepackage{tabularx}')
|
||||
self.content.append(r'\usepackage{multirow}')
|
||||
self.content.append(r'\usepackage{float}')
|
||||
self.content.append(r'\begin{document}')
|
||||
|
||||
current_datetime = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
|
||||
self.content.append(r'\title{' + title + '}')
|
||||
self.content.append(r'\author{Next-Generation Cities Institute}')
|
||||
self.content.append(r'\date{}')
|
||||
self.content.append(r'\maketitle')
|
||||
|
||||
self.content.append(r'\begin{center}')
|
||||
self.content.append(r'\large ' + subtitle + r'\\')
|
||||
self.content.append(r'\large ' + current_datetime)
|
||||
self.content.append(r'\end{center}')
|
||||
|
||||
def add_section(self, section_title):
|
||||
self.content.append(r'\section{' + section_title + r'}')
|
||||
self.content.append(r'\section{' + section_title + r'}')
|
||||
|
||||
def add_subsection(self, subsection_title):
|
||||
self.content.append(r'\subsection{' + subsection_title + r'}')
|
||||
self.content.append(r'\subsection{' + subsection_title + r'}')
|
||||
|
||||
def add_subsubsection(self, subsection_title):
|
||||
self.content.append(r'\subsubsection{' + subsection_title + r'}')
|
||||
|
||||
def add_text(self, text):
|
||||
self.content.append(text)
|
||||
self.content.append(text)
|
||||
|
||||
def add_table(self, table_data, caption=None, first_column_width=None):
|
||||
def add_table(self, table_data, caption=None, first_column_width=None, merge_first_column=False):
|
||||
num_columns = len(table_data[0])
|
||||
total_width = 0.9 # Default total width
|
||||
total_width = 0.9
|
||||
first_column_width_str = ''
|
||||
|
||||
if first_column_width is not None:
|
||||
first_column_width_str = str(first_column_width) + 'cm'
|
||||
total_width -= first_column_width / 16.0 # Adjust total width for the first column
|
||||
total_width -= first_column_width / 16.0
|
||||
|
||||
if caption:
|
||||
self.content.append(r'\begin{table}[htbp]')
|
||||
self.content.append(r'\caption{' + caption + r'}')
|
||||
self.content.append(r'\centering')
|
||||
|
||||
self.content.append(r'\begin{tabularx}{\textwidth}{|p{' + first_column_width_str + r'}|' + '|'.join(['X'] * (
|
||||
num_columns - 1)) + '|}' if first_column_width is not None else r'\begin{tabularx}{\textwidth}{|' + '|'.join(
|
||||
['X'] * num_columns) + '|}')
|
||||
column_format = '|p{' + first_column_width_str + r'}|' + '|'.join(
|
||||
['X'] * (num_columns - 1)) + '|' if first_column_width is not None else '|' + '|'.join(['X'] * num_columns) + '|'
|
||||
self.content.append(r'\begin{tabularx}{\textwidth}{' + column_format + '}')
|
||||
self.content.append(r'\hline')
|
||||
for row in table_data:
|
||||
self.content.append(' & '.join(row) + r' \\')
|
||||
|
||||
previous_first_column = None
|
||||
rowspan_count = 1
|
||||
|
||||
for i, row in enumerate(table_data):
|
||||
if merge_first_column and i > 0 and row[0] == previous_first_column:
|
||||
rowspan_count += 1
|
||||
self.content.append(' & '.join(['' if j == 0 else cell for j, cell in enumerate(row)]) + r' \\')
|
||||
else:
|
||||
if merge_first_column and i > 0 and rowspan_count > 1:
|
||||
self.content[-rowspan_count] = self.content[-rowspan_count].replace(r'\multirow{1}',
|
||||
r'\multirow{' + str(rowspan_count) + '}')
|
||||
rowspan_count = 1
|
||||
if merge_first_column and i < len(table_data) - 1 and row[0] == table_data[i + 1][0]:
|
||||
self.content.append(r'\multirow{1}{*}{' + row[0] + '}' + ' & ' + ' & '.join(row[1:]) + r' \\')
|
||||
else:
|
||||
self.content.append(' & '.join(row) + r' \\')
|
||||
previous_first_column = row[0]
|
||||
self.content.append(r'\hline')
|
||||
|
||||
if merge_first_column and rowspan_count > 1:
|
||||
self.content[-rowspan_count] = self.content[-rowspan_count].replace(r'\multirow{1}',
|
||||
r'\multirow{' + str(rowspan_count) + '}')
|
||||
|
||||
self.content.append(r'\end{tabularx}')
|
||||
|
||||
if caption:
|
||||
self.content.append(r'\end{table}')
|
||||
|
||||
def add_image(self, image_path, caption=None):
|
||||
def add_image(self, image_path, caption=None, placement='ht'):
|
||||
if caption:
|
||||
self.content.append(r'\begin{figure}[htbp]')
|
||||
self.content.append(r'\begin{figure}[' + placement + r']')
|
||||
self.content.append(r'\centering')
|
||||
self.content.append(r'\includegraphics[width=0.8\textwidth]{' + image_path + r'}')
|
||||
self.content.append(r'\includegraphics[width=\textwidth]{' + image_path + r'}')
|
||||
self.content.append(r'\caption{' + caption + r'}')
|
||||
self.content.append(r'\end{figure}')
|
||||
else:
|
||||
self.content.append(r'\begin{figure}[htbp]')
|
||||
self.content.append(r'\begin{figure}[' + placement + r']')
|
||||
self.content.append(r'\centering')
|
||||
self.content.append(r'\includegraphics[width=0.8\textwidth]{' + image_path + r'}')
|
||||
self.content.append(r'\includegraphics[width=\textwidth]{' + image_path + r'}')
|
||||
self.content.append(r'\end{figure}')
|
||||
|
||||
def add_itemize(self, items):
|
||||
self.content.append(r'\begin{itemize}')
|
||||
for item in items:
|
||||
self.content.append(r'\item ' + item)
|
||||
self.content.append(r'\end{itemize}')
|
||||
|
||||
def save_report(self):
|
||||
self.content.append(r'\end{document}') # Add this line to close the document
|
||||
with open(self.file_name, 'w') as f:
|
||||
self.content.append(r'\end{document}')
|
||||
with open(self.file_path, 'w') as f:
|
||||
f.write('\n'.join(self.content))
|
||||
|
||||
def compile_to_pdf(self):
|
||||
subprocess.run(['pdflatex', self.file_name])
|
||||
subprocess.run(['pdflatex', '-output-directory', str(self.output_path), str(self.file_path)])
|
||||
|
||||
|
146
scripts/solar_angles.py
Normal file
146
scripts/solar_angles.py
Normal file
@ -0,0 +1,146 @@
|
||||
import math
|
||||
import pandas as pd
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class CitySolarAngles:
|
||||
def __init__(self, file_name, location_latitude, location_longitude, tilt_angle, surface_azimuth_angle,
|
||||
standard_meridian=-75):
|
||||
self.file_name = file_name
|
||||
self.location_latitude = location_latitude
|
||||
self.location_longitude = location_longitude
|
||||
self.location_latitude_rad = math.radians(location_latitude)
|
||||
self.surface_azimuth_angle = surface_azimuth_angle
|
||||
self.surface_azimuth_rad = math.radians(surface_azimuth_angle)
|
||||
self.tilt_angle = tilt_angle
|
||||
self.tilt_angle_rad = math.radians(tilt_angle)
|
||||
self.standard_meridian = standard_meridian
|
||||
self.longitude_correction = (location_longitude - standard_meridian) * 4
|
||||
self.timezone = 'Etc/GMT+5'
|
||||
|
||||
self.eot = []
|
||||
self.ast = []
|
||||
self.hour_angles = []
|
||||
self.declinations = []
|
||||
self.solar_altitudes = []
|
||||
self.solar_azimuths = []
|
||||
self.zeniths = []
|
||||
self.incidents = []
|
||||
self.beam_tilted = []
|
||||
self.factor = []
|
||||
self.times = pd.date_range(start='2023-01-01', end='2024-01-01', freq='H', tz=self.timezone)
|
||||
self.df = pd.DataFrame(index=self.times)
|
||||
self.day_of_year = self.df.index.dayofyear
|
||||
|
||||
def solar_time(self, datetime_val, day_of_year):
|
||||
b = (day_of_year - 81) * 2 * math.pi / 364
|
||||
eot = 9.87 * math.sin(2 * b) - 7.53 * math.cos(b) - 1.5 * math.sin(b)
|
||||
self.eot.append(eot)
|
||||
|
||||
# Calculate Local Solar Time (LST)
|
||||
lst_hour = datetime_val.hour
|
||||
lst_minute = datetime_val.minute
|
||||
lst_second = datetime_val.second
|
||||
lst = lst_hour + lst_minute / 60 + lst_second / 3600
|
||||
|
||||
# Calculate Apparent Solar Time (AST) in decimal hours
|
||||
ast_decimal = lst + eot / 60 + self.longitude_correction / 60
|
||||
ast_hours = int(ast_decimal)
|
||||
ast_minutes = round((ast_decimal - ast_hours) * 60)
|
||||
|
||||
# Ensure ast_minutes is within valid range
|
||||
if ast_minutes == 60:
|
||||
ast_hours += 1
|
||||
ast_minutes = 0
|
||||
elif ast_minutes < 0:
|
||||
ast_minutes = 0
|
||||
ast_time = datetime(year=datetime_val.year, month=datetime_val.month, day=datetime_val.day,
|
||||
hour=ast_hours, minute=ast_minutes)
|
||||
self.ast.append(ast_time)
|
||||
return ast_time
|
||||
|
||||
def declination_angle(self, day_of_year):
|
||||
declination = 23.45 * math.sin(math.radians(360 / 365 * (284 + day_of_year)))
|
||||
declination_radian = math.radians(declination)
|
||||
self.declinations.append(declination)
|
||||
return declination_radian
|
||||
|
||||
def hour_angle(self, ast_time):
|
||||
hour_angle = ((ast_time.hour * 60 + ast_time.minute) - 720) / 4
|
||||
hour_angle_radian = math.radians(hour_angle)
|
||||
self.hour_angles.append(hour_angle)
|
||||
return hour_angle_radian
|
||||
|
||||
def solar_altitude(self, declination_radian, hour_angle_radian):
|
||||
solar_altitude_radians = math.asin(math.cos(self.location_latitude_rad) * math.cos(declination_radian) *
|
||||
math.cos(hour_angle_radian) + math.sin(self.location_latitude_rad) *
|
||||
math.sin(declination_radian))
|
||||
solar_altitude = math.degrees(solar_altitude_radians)
|
||||
self.solar_altitudes.append(solar_altitude)
|
||||
return solar_altitude_radians
|
||||
|
||||
def zenith(self, solar_altitude_radians):
|
||||
solar_altitude = math.degrees(solar_altitude_radians)
|
||||
zenith_degree = 90 - solar_altitude
|
||||
zenith_radian = math.radians(zenith_degree)
|
||||
self.zeniths.append(zenith_degree)
|
||||
return zenith_radian
|
||||
|
||||
def solar_azimuth_analytical(self, hourangle, declination, zenith):
|
||||
numer = (math.cos(zenith) * math.sin(self.location_latitude_rad) - math.sin(declination))
|
||||
denom = (math.sin(zenith) * math.cos(self.location_latitude_rad))
|
||||
if math.isclose(denom, 0.0, abs_tol=1e-8):
|
||||
cos_azi = 1.0
|
||||
else:
|
||||
cos_azi = numer / denom
|
||||
|
||||
cos_azi = max(-1.0, min(1.0, cos_azi))
|
||||
|
||||
sign_ha = math.copysign(1, hourangle)
|
||||
solar_azimuth_radians = sign_ha * math.acos(cos_azi) + math.pi
|
||||
solar_azimuth_degrees = math.degrees(solar_azimuth_radians)
|
||||
self.solar_azimuths.append(solar_azimuth_degrees)
|
||||
return solar_azimuth_radians
|
||||
|
||||
def incident_angle(self, solar_altitude_radians, solar_azimuth_radians):
|
||||
incident_radian = math.acos(math.cos(solar_altitude_radians) *
|
||||
math.cos(abs(solar_azimuth_radians - self.surface_azimuth_rad)) *
|
||||
math.sin(self.tilt_angle_rad) + math.sin(solar_altitude_radians) *
|
||||
math.cos(self.tilt_angle_rad))
|
||||
incident_angle_degrees = math.degrees(incident_radian)
|
||||
self.incidents.append(incident_angle_degrees)
|
||||
return incident_radian
|
||||
|
||||
@property
|
||||
def calculate(self) -> pd.DataFrame:
|
||||
for i in range(len(self.times)):
|
||||
datetime_val = self.times[i]
|
||||
day_of_year = self.day_of_year[i]
|
||||
declination_radians = self.declination_angle(day_of_year)
|
||||
ast_time = self.solar_time(datetime_val, day_of_year)
|
||||
hour_angle_radians = self.hour_angle(ast_time)
|
||||
solar_altitude_radians = self.solar_altitude(declination_radians, hour_angle_radians)
|
||||
zenith_radians = self.zenith(solar_altitude_radians)
|
||||
solar_azimuth_radians = self.solar_azimuth_analytical(hour_angle_radians, declination_radians, zenith_radians)
|
||||
incident_angle_radian = self.incident_angle(solar_altitude_radians, solar_azimuth_radians)
|
||||
|
||||
self.df['DateTime'] = self.times
|
||||
self.df['AST'] = self.ast
|
||||
self.df['hour angle'] = self.hour_angles
|
||||
self.df['eot'] = self.eot
|
||||
self.df['declination angle'] = self.declinations
|
||||
self.df['solar altitude'] = self.solar_altitudes
|
||||
self.df['zenith'] = self.zeniths
|
||||
self.df['solar azimuth'] = self.solar_azimuths
|
||||
self.df['incident angle'] = self.incidents
|
||||
|
||||
return self.df
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,135 +0,0 @@
|
||||
import csv
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import hub.helpers.constants as cte
|
||||
from hub.helpers.monthly_values import MonthlyValues
|
||||
|
||||
|
||||
class SystemSimulation:
|
||||
def __init__(self, building, out_path):
|
||||
self.building = building
|
||||
self.energy_systems = building.energy_systems
|
||||
self.heating_demand = [0] + building.heating_demand[cte.HOUR]
|
||||
self.cooling_demand = building.cooling_demand
|
||||
self.dhw_demand = building.domestic_hot_water_heat_demand
|
||||
self.T_out = building.external_temperature[cte.HOUR]
|
||||
self.maximum_heating_demand = building.heating_peak_load[cte.YEAR][0]
|
||||
self.maximum_cooling_demand = building.cooling_peak_load[cte.YEAR][0]
|
||||
self.name = building.name
|
||||
self.energy_system_archetype = building.energy_systems_archetype_name
|
||||
self.out_path = out_path
|
||||
|
||||
def archetype1(self):
|
||||
out_path = self.out_path
|
||||
T, T_sup, T_ret, m_ch, m_dis, q_hp, q_aux = [0] * len(self.heating_demand), [0] * len(
|
||||
self.heating_demand), [0] * len(self.heating_demand), [0] * len(self.heating_demand), [0] * len(
|
||||
self.heating_demand), [0] * len(self.heating_demand), [0] * len(self.heating_demand)
|
||||
hp_electricity: List[float] = [0.0] * len(self.heating_demand)
|
||||
aux_fuel: List[float] = [0.0] * len(self.heating_demand)
|
||||
heating_consumption: List[float] = [0.0] * len(self.heating_demand)
|
||||
boiler_consumption: List[float] = [0.0] * len(self.heating_demand)
|
||||
T[0], dt = 25, 3600 # Assuming dt is defined somewhere
|
||||
ua, v, hp_cap, hp_efficiency, boiler_efficiency = 0, 0, 0, 0, 0
|
||||
for energy_system in self.energy_systems:
|
||||
if cte.ELECTRICITY not in energy_system.demand_types:
|
||||
generation_systems = energy_system.generation_systems
|
||||
for generation_system in generation_systems:
|
||||
if generation_system.system_type == cte.HEAT_PUMP and cte.HEATING in energy_system.demand_types:
|
||||
hp_cap = generation_system.nominal_heat_output
|
||||
hp_efficiency = float(generation_system.heat_efficiency)
|
||||
for storage in generation_system.energy_storage_systems:
|
||||
if storage.type_energy_stored == 'thermal':
|
||||
v, h = float(storage.volume), float(storage.height)
|
||||
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
|
||||
storage.layers)
|
||||
u_tot = 1 / r_tot
|
||||
d = math.sqrt((4 * v) / (math.pi * h))
|
||||
a_side = math.pi * d * h
|
||||
a_top = math.pi * d ** 2 / 4
|
||||
ua = u_tot * (2 * a_top + a_side)
|
||||
elif generation_system.system_type == cte.BOILER:
|
||||
boiler_cap = generation_system.nominal_heat_output
|
||||
boiler_efficiency = float(generation_system.heat_efficiency)
|
||||
|
||||
for i in range(len(self.heating_demand) - 1):
|
||||
T[i + 1] = T[i] + ((m_ch[i] * (T_sup[i] - T[i])) + (
|
||||
ua * (self.T_out[i] - T[i])) / cte.WATER_HEAT_CAPACITY - m_dis[i] * (T[i] - T_ret[i])) * (dt / (cte.WATER_DENSITY * v))
|
||||
if T[i + 1] < 35:
|
||||
q_hp[i + 1] = hp_cap * 1000
|
||||
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * 7)
|
||||
T_sup[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + T[i + 1]
|
||||
elif 35 <= T[i + 1] < 45 and q_hp[i] == 0:
|
||||
q_hp[i + 1] = 0
|
||||
m_ch[i + 1] = 0
|
||||
T_sup[i + 1] = T[i + 1]
|
||||
elif 35 <= T[i + 1] < 45 and q_hp[i] > 0:
|
||||
q_hp[i + 1] = hp_cap * 1000
|
||||
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * 3)
|
||||
T_sup[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + T[i + 1]
|
||||
else:
|
||||
q_hp[i + 1], m_ch[i + 1], T_sup[i + 1] = 0, 0, T[i + 1]
|
||||
|
||||
hp_electricity[i + 1] = q_hp[i + 1] / hp_efficiency
|
||||
if self.heating_demand[i + 1] == 0:
|
||||
m_dis[i + 1], t_return, T_ret[i + 1] = 0, T[i + 1], T[i + 1]
|
||||
else:
|
||||
if self.heating_demand[i + 1] > 0.5 * self.maximum_heating_demand:
|
||||
factor = 8
|
||||
else:
|
||||
factor = 4
|
||||
m_dis[i + 1] = self.maximum_heating_demand / (cte.WATER_HEAT_CAPACITY * factor * 3600)
|
||||
t_return = T[i + 1] - self.heating_demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY * 3600)
|
||||
if m_dis[i + 1] == 0 or (m_dis[i + 1] > 0 and t_return < 25):
|
||||
T_ret[i + 1] = max(25, T[i + 1])
|
||||
else:
|
||||
T_ret[i + 1] = T[i + 1] - self.heating_demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY * 3600)
|
||||
tes_output = m_dis[i + 1] * cte.WATER_HEAT_CAPACITY * (T[i + 1] - T_ret[i + 1])
|
||||
if tes_output < (self.heating_demand[i + 1] / 3600):
|
||||
q_aux[i + 1] = (self.heating_demand[i + 1] / 3600) - tes_output
|
||||
aux_fuel[i + 1] = (q_aux[i + 1] * dt) / 35.8e6
|
||||
boiler_consumption[i + 1] = q_aux[i + 1] / boiler_efficiency
|
||||
heating_consumption[i + 1] = boiler_consumption[i + 1] + hp_electricity[i + 1]
|
||||
data = list(zip(T, T_sup, T_ret, m_ch, m_dis, q_hp, hp_electricity, aux_fuel, q_aux, self.heating_demand))
|
||||
file_name = f'simulation_results_{self.name}.csv'
|
||||
with open(out_path / file_name, 'w', newline='') as csvfile:
|
||||
output_file = csv.writer(csvfile)
|
||||
# Write header
|
||||
output_file.writerow(['T', 'T_sup', 'T_ret', 'm_ch', 'm_dis', 'q_hp', 'hp_electricity', 'aux_fuel', 'q_aux', 'heating_demand'])
|
||||
# Write data
|
||||
output_file.writerows(data)
|
||||
return heating_consumption, hp_electricity, boiler_consumption, T_sup
|
||||
|
||||
def enrich(self):
|
||||
if self.energy_system_archetype == 'PV+ASHP+GasBoiler+TES' or 'PV+4Pipe+DHW':
|
||||
building_new_heating_consumption, building_heating_electricity_consumption, building_heating_gas_consumption, supply_temperature = (
|
||||
self.archetype1())
|
||||
self.building.heating_consumption[cte.HOUR] = building_new_heating_consumption
|
||||
self.building.heating_consumption[cte.MONTH] = MonthlyValues.get_total_month(self.building.heating_consumption[cte.HOUR])
|
||||
self.building.heating_consumption[cte.YEAR] = [sum(self.building.heating_consumption[cte.MONTH])]
|
||||
disaggregated_consumption = {}
|
||||
for energy_system in self.building.energy_systems:
|
||||
if cte.HEATING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.system_type == cte.HEAT_PUMP:
|
||||
generation_system.heat_supply_temperature = supply_temperature
|
||||
disaggregated_consumption[generation_system.fuel_type] = {}
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
disaggregated_consumption[generation_system.fuel_type][
|
||||
cte.HOUR] = building_heating_electricity_consumption
|
||||
disaggregated_consumption[generation_system.fuel_type][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
disaggregated_consumption[generation_system.fuel_type][cte.HOUR])
|
||||
disaggregated_consumption[generation_system.fuel_type][cte.YEAR] = [
|
||||
sum(disaggregated_consumption[generation_system.fuel_type][cte.MONTH])]
|
||||
else:
|
||||
disaggregated_consumption[generation_system.fuel_type][cte.HOUR] = building_heating_gas_consumption
|
||||
disaggregated_consumption[generation_system.fuel_type][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
disaggregated_consumption[generation_system.fuel_type][cte.HOUR])
|
||||
disaggregated_consumption[generation_system.fuel_type][cte.YEAR] = [
|
||||
sum(disaggregated_consumption[generation_system.fuel_type][cte.MONTH])]
|
||||
self.building.heating_fuel_consumption_disaggregated = disaggregated_consumption
|
||||
return self.building
|
||||
|
||||
|
@ -128,7 +128,7 @@ class Archetype1:
|
||||
hp = self.hvac_sizing()[0]
|
||||
eer_curve_coefficients = [float(coefficient) for coefficient in hp.cooling_efficiency_curve.coefficients]
|
||||
cooling_efficiency = float(hp.cooling_efficiency)
|
||||
demand = self._hourly_heating_demand
|
||||
demand = self._hourly_cooling_demand
|
||||
hp.source_temperature = self._t_out
|
||||
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_eer"]
|
||||
num_hours = len(demand)
|
||||
|
@ -1,49 +1,73 @@
|
||||
import math
|
||||
|
||||
import hub.helpers.constants as cte
|
||||
import csv
|
||||
from hub.helpers.monthly_values import MonthlyValues
|
||||
|
||||
|
||||
class Archetype13:
|
||||
def __init__(self, building, output_path):
|
||||
self._building = building
|
||||
self._name = building.name
|
||||
self._pv_system = building.energy_systems[0]
|
||||
self._hvac_system = building.energy_systems[1]
|
||||
self._dhw_system = building.energy_systems[-1]
|
||||
self._dhw_peak_flow_rate = (building.thermal_zones_from_internal_zones[0].total_floor_area *
|
||||
building.thermal_zones_from_internal_zones[0].domestic_hot_water.peak_flow *
|
||||
cte.WATER_DENSITY)
|
||||
self._heating_peak_load = building.heating_peak_load[cte.YEAR][0]
|
||||
self._cooling_peak_load = building.cooling_peak_load[cte.YEAR][0]
|
||||
self._domestic_hot_water_peak_load = building.domestic_hot_water_peak_load[cte.YEAR][0]
|
||||
self._hourly_heating_demand = [0] + [demand / 3600 for demand in building.heating_demand[cte.HOUR]]
|
||||
self._hourly_cooling_demand = [demand / 3600 for demand in building.cooling_demand[cte.HOUR]]
|
||||
self._hourly_dhw_demand = building.domestic_hot_water_heat_demand[cte.HOUR]
|
||||
self._hourly_heating_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in building.heating_demand[cte.HOUR]]
|
||||
self._hourly_cooling_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in building.cooling_demand[cte.HOUR]]
|
||||
self._hourly_dhw_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in
|
||||
building.domestic_hot_water_heat_demand[cte.HOUR]]
|
||||
self._output_path = output_path
|
||||
self._t_out = building.external_temperature
|
||||
self._t_out = building.external_temperature[cte.HOUR]
|
||||
self.results = {}
|
||||
self.dt = 900
|
||||
|
||||
def hvac_sizing(self):
|
||||
storage_factor = 3
|
||||
heat_pump = self._hvac_system.generation_systems[0]
|
||||
boiler = self._hvac_system.generation_systems[1]
|
||||
thermal_storage = heat_pump.energy_storage_systems[0]
|
||||
heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600)
|
||||
heat_pump.nominal_cooling_output = round(self._cooling_peak_load / 3600)
|
||||
boiler.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600)
|
||||
heat_pump = self._hvac_system.generation_systems[1]
|
||||
boiler = self._hvac_system.generation_systems[0]
|
||||
thermal_storage = boiler.energy_storage_systems[0]
|
||||
heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load)
|
||||
heat_pump.nominal_cooling_output = round(self._cooling_peak_load)
|
||||
boiler.nominal_heat_output = round(0.5 * self._heating_peak_load)
|
||||
thermal_storage.volume = round(
|
||||
(self._heating_peak_load * storage_factor) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 30))
|
||||
(self._heating_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
|
||||
(cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
|
||||
return heat_pump, boiler, thermal_storage
|
||||
|
||||
def hvac_simulation(self):
|
||||
def dhw_sizing(self):
|
||||
storage_factor = 3
|
||||
dhw_hp = self._dhw_system.generation_systems[0]
|
||||
dhw_hp.nominal_heat_output = 0.7 * self._domestic_hot_water_peak_load
|
||||
dhw_hp.source_temperature = self._t_out
|
||||
dhw_tes = dhw_hp.energy_storage_systems[0]
|
||||
dhw_tes.volume = round(
|
||||
(self._domestic_hot_water_peak_load * storage_factor * 3600) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 10))
|
||||
return dhw_hp, dhw_tes
|
||||
|
||||
def heating_system_simulation(self):
|
||||
hp, boiler, tes = self.hvac_sizing()
|
||||
if hp.source_medium == cte.AIR:
|
||||
hp.source_temperature = self._t_out[cte.HOUR]
|
||||
# Heating System Simulation
|
||||
variable_names = ["t_sup", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "q_boiler", "hp_cop",
|
||||
"hp_electricity", "boiler_gas", "boiler_consumption", "heating_consumption"]
|
||||
num_hours = len(self._hourly_heating_demand)
|
||||
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
|
||||
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
|
||||
demand = [0] + [x for x in self._hourly_heating_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
hp.source_temperature = self._t_out
|
||||
variable_names = ["t_sup_hp", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "q_boiler", "hp_cop",
|
||||
"hp_electricity", "boiler_gas_consumption", "t_sup_boiler", "boiler_energy_consumption",
|
||||
"heating_consumption"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup, t_tank, t_ret, m_ch, m_dis, q_hp, q_boiler, hp_cop,
|
||||
hp_electricity, boiler_gas, boiler_consumption, heating_consumption) = [variables[name] for name in variable_names]
|
||||
t_tank[0] = 30
|
||||
dt = 3600
|
||||
(t_sup_hp, t_tank, t_ret, m_ch, m_dis, q_hp, q_boiler, hp_cop,
|
||||
hp_electricity, boiler_gas_consumption, t_sup_boiler, boiler_energy_consumption, heating_consumption) = \
|
||||
[variables[name] for name in variable_names]
|
||||
t_tank[0] = 55
|
||||
hp_heating_cap = hp.nominal_heat_output
|
||||
hp_efficiency = float(hp.heat_efficiency)
|
||||
boiler_heating_cap = boiler.nominal_heat_output
|
||||
hp_delta_t = 5
|
||||
boiler_efficiency = float(boiler.heat_efficiency)
|
||||
v, h = float(tes.volume), float(tes.height)
|
||||
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
|
||||
@ -53,48 +77,312 @@ class Archetype13:
|
||||
a_side = math.pi * d * h
|
||||
a_top = math.pi * d ** 2 / 4
|
||||
ua = u_tot * (2 * a_top + a_side)
|
||||
for i in range(len(self._hourly_heating_demand) - 1):
|
||||
# storage temperature prediction
|
||||
for i in range(len(demand) - 1):
|
||||
t_tank[i + 1] = (t_tank[i] +
|
||||
((m_ch[i] * (t_sup[i] - t_tank[i])) +
|
||||
(ua * (self._t_out[i] - t_tank[i] + 5)) / cte.WATER_HEAT_CAPACITY -
|
||||
m_dis[i] * (t_tank[i] - t_ret[i])) * (dt / (cte.WATER_DENSITY * v)))
|
||||
(m_ch[i] * (t_sup_boiler[i] - t_tank[i]) +
|
||||
(ua * (t_out[i] - t_tank[i])) / cte.WATER_HEAT_CAPACITY -
|
||||
m_dis[i] * (t_tank[i] - t_ret[i])) * (self.dt / (cte.WATER_DENSITY * v)))
|
||||
# hp operation
|
||||
if t_tank[i + 1] < 40:
|
||||
q_hp[i + 1] = hp_heating_cap
|
||||
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * 7)
|
||||
t_sup[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
|
||||
elif 45 <= t_tank[i + 1] < 55 and q_hp[i] == 0:
|
||||
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
|
||||
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
|
||||
elif 40 <= t_tank[i + 1] < 55 and q_hp[i] == 0:
|
||||
q_hp[i + 1] = 0
|
||||
m_ch[i + 1] = 0
|
||||
t_sup[i + 1] = t_tank[i + 1]
|
||||
elif 45 <= t_tank[i + 1] < 55 and q_hp[i] > 0:
|
||||
t_sup_hp[i + 1] = t_tank[i + 1]
|
||||
elif 40 <= t_tank[i + 1] < 55 and q_hp[i] > 0:
|
||||
q_hp[i + 1] = hp_heating_cap
|
||||
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * 3)
|
||||
t_sup[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
|
||||
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
|
||||
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
|
||||
else:
|
||||
q_hp[i + 1], m_ch[i + 1], t_sup[i + 1] = 0, 0, t_tank[i + 1]
|
||||
|
||||
hp_electricity[i + 1] = q_hp[i + 1] / hp_efficiency
|
||||
if self._hourly_heating_demand[i + 1] == 0:
|
||||
m_dis[i + 1], t_return, t_ret[i + 1] = 0, t_tank[i + 1], t_tank[i + 1]
|
||||
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i + 1] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i + 1] + 32
|
||||
if q_hp[i + 1] > 0:
|
||||
hp_cop[i + 1] = (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[3] * t_out_fahrenheit +
|
||||
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
|
||||
else:
|
||||
if self._hourly_heating_demand[i + 1] > 0.5 * self._heating_peak_load:
|
||||
hp_cop[i + 1] = 0
|
||||
hp_electricity[i + 1] = 0
|
||||
# boiler operation
|
||||
if q_hp[i + 1] > 0:
|
||||
if t_sup_hp[i + 1] < 45:
|
||||
q_boiler[i + 1] = boiler_heating_cap
|
||||
elif demand[i + 1] > 0.5 * self._heating_peak_load / self.dt:
|
||||
q_boiler[i + 1] = 0.5 * boiler_heating_cap
|
||||
boiler_energy_consumption[i + 1] = q_boiler[i + 1] / boiler_efficiency
|
||||
boiler_gas_consumption[i + 1] = (q_boiler[i + 1] * self.dt) / (boiler_efficiency * cte.NATURAL_GAS_LHV)
|
||||
t_sup_boiler[i + 1] = t_sup_hp[i + 1] + (q_boiler[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY))
|
||||
# storage discharging
|
||||
if demand[i + 1] == 0:
|
||||
m_dis[i + 1] = 0
|
||||
t_ret[i + 1] = t_tank[i + 1]
|
||||
else:
|
||||
if demand[i + 1] > 0.5 * self._heating_peak_load:
|
||||
factor = 8
|
||||
else:
|
||||
factor = 4
|
||||
m_dis[i + 1] = self._heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor * 3600)
|
||||
t_return = t_tank[i + 1] - self._hourly_heating_demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
|
||||
if m_dis[i + 1] == 0 or (m_dis[i + 1] > 0 and t_return < 25):
|
||||
t_ret[i + 1] = max(25, t_tank[i + 1])
|
||||
m_dis[i + 1] = self._heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor)
|
||||
t_ret[i + 1] = t_tank[i + 1] - demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
|
||||
tes.temperature = []
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
boiler_consumption_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in boiler_energy_consumption]
|
||||
hp_hourly = []
|
||||
boiler_hourly = []
|
||||
boiler_sum = 0
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand)):
|
||||
hp_sum += hp_electricity_j[i]
|
||||
boiler_sum += boiler_consumption_j[i]
|
||||
if (i - 1) % number_of_ts == 0:
|
||||
tes.temperature.append(t_tank[i])
|
||||
hp_hourly.append(hp_sum)
|
||||
boiler_hourly.append(boiler_sum)
|
||||
hp_sum = 0
|
||||
boiler_sum = 0
|
||||
hp.energy_consumption[cte.HEATING] = {}
|
||||
hp.energy_consumption[cte.HEATING][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.HEATING][cte.HOUR])
|
||||
hp.energy_consumption[cte.HEATING][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.HEATING][cte.MONTH])]
|
||||
boiler.energy_consumption[cte.HEATING] = {}
|
||||
boiler.energy_consumption[cte.HEATING][cte.HOUR] = boiler_hourly
|
||||
boiler.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
boiler.energy_consumption[cte.HEATING][cte.HOUR])
|
||||
boiler.energy_consumption[cte.HEATING][cte.YEAR] = [
|
||||
sum(boiler.energy_consumption[cte.HEATING][cte.MONTH])]
|
||||
|
||||
self.results['Heating Demand (W)'] = demand
|
||||
self.results['HP Heat Output (W)'] = q_hp
|
||||
self.results['HP Source Temperature'] = t_out
|
||||
self.results['HP Supply Temperature'] = t_sup_hp
|
||||
self.results['HP COP'] = hp_cop
|
||||
self.results['HP Electricity Consumption (W)'] = hp_electricity
|
||||
self.results['Boiler Heat Output (W)'] = q_boiler
|
||||
self.results['Boiler Supply Temperature'] = t_sup_boiler
|
||||
self.results['Boiler Gas Consumption'] = boiler_gas_consumption
|
||||
self.results['TES Temperature'] = t_tank
|
||||
self.results['TES Charging Flow Rate (kg/s)'] = m_ch
|
||||
self.results['TES Discharge Flow Rate (kg/s)'] = m_dis
|
||||
self.results['Heating Loop Return Temperature'] = t_ret
|
||||
return hp_hourly, boiler_hourly
|
||||
|
||||
def cooling_system_simulation(self):
|
||||
hp = self.hvac_sizing()[0]
|
||||
eer_curve_coefficients = [float(coefficient) for coefficient in hp.cooling_efficiency_curve.coefficients]
|
||||
cooling_efficiency = float(hp.cooling_efficiency)
|
||||
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
|
||||
demand = [0] + [x for x in self._hourly_cooling_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
hp.source_temperature = self._t_out
|
||||
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_eer"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_eer) = [variables[name] for name in variable_names]
|
||||
t_ret[0] = 13
|
||||
|
||||
for i in range(1, len(demand)):
|
||||
if demand[i] > 0.15 * self._cooling_peak_load:
|
||||
m[i] = hp.nominal_cooling_output / (cte.WATER_HEAT_CAPACITY * 5)
|
||||
if t_ret[i - 1] >= 13:
|
||||
if demand[i] < 0.25 * self._cooling_peak_load:
|
||||
q_hp[i] = 0.25 * hp.nominal_cooling_output
|
||||
elif demand[i] < 0.5 * self._cooling_peak_load:
|
||||
q_hp[i] = 0.5 * hp.nominal_cooling_output
|
||||
else:
|
||||
q_hp[i] = hp.nominal_cooling_output
|
||||
t_sup_hp[i] = t_ret[i - 1] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
else:
|
||||
t_ret[i + 1] = t_tank[i + 1] - self._hourly_heating_demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY * 3600)
|
||||
tes_output = m_dis[i + 1] * cte.WATER_HEAT_CAPACITY * (t_tank[i + 1] - t_ret[i + 1])
|
||||
if tes_output < (self._hourly_heating_demand[i + 1] / 3600):
|
||||
q_boiler[i + 1] = (self._hourly_heating_demand[i + 1] / 3600) - tes_output
|
||||
boiler_gas[i + 1] = (q_boiler[i + 1] * dt) / 50e6
|
||||
boiler_consumption[i + 1] = q_boiler[i + 1] / boiler_efficiency
|
||||
heating_consumption[i + 1] = boiler_consumption[i + 1] + hp_electricity[i + 1]
|
||||
data = list(zip(t_tank, t_sup, t_ret, m_ch, m_dis, q_hp, hp_electricity, boiler_gas, q_boiler,
|
||||
self._hourly_heating_demand))
|
||||
q_hp[i] = 0
|
||||
t_sup_hp[i] = t_ret[i - 1]
|
||||
if m[i] == 0:
|
||||
t_ret[i] = t_sup_hp[i]
|
||||
else:
|
||||
t_ret[i] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
else:
|
||||
m[i] = 0
|
||||
q_hp[i] = 0
|
||||
t_sup_hp[i] = t_ret[i - 1]
|
||||
t_ret[i] = t_ret[i - 1]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i] + 32
|
||||
if q_hp[i] > 0:
|
||||
hp_eer[i] = (eer_curve_coefficients[0] +
|
||||
eer_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
eer_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[3] * t_out_fahrenheit +
|
||||
eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i] = q_hp[i] / cooling_efficiency
|
||||
else:
|
||||
hp_eer[i] = 0
|
||||
hp_electricity[i] = 0
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
hp_hourly = []
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand)):
|
||||
hp_sum += hp_electricity_j[i]
|
||||
if (i - 1) % number_of_ts == 0:
|
||||
hp_hourly.append(hp_sum)
|
||||
hp_sum = 0
|
||||
hp.energy_consumption[cte.COOLING] = {}
|
||||
hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.COOLING][cte.HOUR])
|
||||
hp.energy_consumption[cte.COOLING][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.COOLING][cte.MONTH])]
|
||||
self.results['Cooling Demand (W)'] = demand
|
||||
self.results['HP Cooling Output (W)'] = q_hp
|
||||
self.results['HP Cooling Supply Temperature'] = t_sup_hp
|
||||
self.results['HP Cooling COP'] = hp_eer
|
||||
self.results['HP Electricity Consumption'] = hp_electricity
|
||||
self.results['Cooling Loop Flow Rate (kg/s)'] = m
|
||||
self.results['Cooling Loop Return Temperature'] = t_ret
|
||||
return hp_hourly
|
||||
|
||||
def dhw_system_simulation(self):
|
||||
hp, tes = self.dhw_sizing()
|
||||
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
|
||||
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
|
||||
demand = [0] + [x for x in self._hourly_dhw_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
variable_names = ["t_sup_hp", "t_tank", "m_ch", "m_dis", "q_hp", "q_coil", "hp_cop",
|
||||
"hp_electricity", "available hot water (m3)", "refill flow rate (kg/s)"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t_tank, m_ch, m_dis, m_refill, q_hp, q_coil, hp_cop, hp_electricity, v_dhw) = \
|
||||
[variables[name] for name in variable_names]
|
||||
t_tank[0] = 70
|
||||
v_dhw[0] = tes.volume
|
||||
|
||||
hp_heating_cap = hp.nominal_heat_output
|
||||
hp_delta_t = 8
|
||||
v, h = float(tes.volume), float(tes.height)
|
||||
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
|
||||
tes.layers)
|
||||
u_tot = 1 / r_tot
|
||||
d = math.sqrt((4 * v) / (math.pi * h))
|
||||
a_side = math.pi * d * h
|
||||
a_top = math.pi * d ** 2 / 4
|
||||
ua = u_tot * (2 * a_top + a_side)
|
||||
freshwater_temperature = 18
|
||||
for i in range(len(demand) - 1):
|
||||
delta_t_demand = demand[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if t_tank[i] < 65:
|
||||
q_hp[i] = hp_heating_cap
|
||||
delta_t_hp = q_hp[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if demand[i] > 0:
|
||||
dhw_needed = (demand[i] * cte.HOUR_TO_SECONDS) / (cte.WATER_HEAT_CAPACITY * t_tank[i] * cte.WATER_DENSITY)
|
||||
m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
|
||||
m_refill[i] = m_dis[i]
|
||||
delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (self.dt / (v * cte.WATER_DENSITY))
|
||||
diff = delta_t_freshwater + delta_t_demand - delta_t_hp
|
||||
if diff > 0:
|
||||
if diff > 0:
|
||||
power = diff * (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v) / self.dt
|
||||
if power <= float(tes.heating_coil_capacity):
|
||||
q_coil[i] = power
|
||||
else:
|
||||
q_coil[i] = float(tes.heating_coil_capacity)
|
||||
delta_t_coil = q_coil[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
|
||||
if q_hp[i] > 0:
|
||||
m_ch[i] = q_hp[i] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
|
||||
t_sup_hp[i] = (q_hp[i] / (m_ch[i] * cte.WATER_HEAT_CAPACITY)) + t_tank[i]
|
||||
else:
|
||||
m_ch[i] = 0
|
||||
t_sup_hp[i] = t_tank[i]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i] + 32
|
||||
if q_hp[i] > 0:
|
||||
hp_cop[i] = (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[3] * t_out_fahrenheit +
|
||||
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i] = q_hp[i] / hp_cop[i]
|
||||
else:
|
||||
hp_cop[i] = 0
|
||||
hp_electricity[i] = 0
|
||||
|
||||
t_tank[i + 1] = t_tank[i] + (delta_t_hp - delta_t_freshwater - delta_t_demand + delta_t_coil)
|
||||
tes.temperature = []
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
|
||||
hp_hourly = []
|
||||
coil_hourly = []
|
||||
coil_sum = 0
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand)):
|
||||
hp_sum += hp_electricity_j[i]
|
||||
coil_sum += heating_coil_j[i]
|
||||
if (i - 1) % number_of_ts == 0:
|
||||
tes.temperature.append(t_tank[i])
|
||||
hp_hourly.append(hp_sum)
|
||||
coil_hourly.append(coil_sum)
|
||||
hp_sum = 0
|
||||
coil_sum = 0
|
||||
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
|
||||
tes.heating_coil_energy_consumption = {}
|
||||
tes.heating_coil_energy_consumption[cte.HOUR] = coil_hourly
|
||||
tes.heating_coil_energy_consumption[cte.MONTH] = MonthlyValues.get_total_month(
|
||||
tes.heating_coil_energy_consumption[cte.HOUR])
|
||||
tes.heating_coil_energy_consumption[cte.YEAR] = [
|
||||
sum(tes.heating_coil_energy_consumption[cte.MONTH])]
|
||||
tes.temperature = t_tank
|
||||
|
||||
self.results['DHW Demand (W)'] = demand
|
||||
self.results['DHW HP Heat Output (W)'] = q_hp
|
||||
self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
|
||||
self.results['DHW HP Source Temperature'] = t_out
|
||||
self.results['DHW HP Supply Temperature'] = t_sup_hp
|
||||
self.results['DHW HP COP'] = hp_cop
|
||||
self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
|
||||
self.results['DHW TES Temperature'] = t_tank
|
||||
self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
|
||||
self.results['DHW Flow Rate (kg/s)'] = m_dis
|
||||
self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
|
||||
self.results['Available Water in Tank (m3)'] = v_dhw
|
||||
return hp_hourly, coil_hourly
|
||||
|
||||
def enrich_buildings(self):
|
||||
self.hvac_sizing()
|
||||
hp_heating, boiler_consumption = self.heating_system_simulation()
|
||||
hp_cooling = self.cooling_system_simulation()
|
||||
hp_dhw, heating_coil = self.dhw_system_simulation()
|
||||
heating_consumption = [hp_heating[i] + boiler_consumption[i] for i in range(len(hp_heating))]
|
||||
dhw_consumption = [hp_dhw[i] + heating_coil[i] for i in range(len(hp_dhw))]
|
||||
self._building.heating_consumption[cte.HOUR] = heating_consumption
|
||||
self._building.heating_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.heating_consumption[cte.HOUR]))
|
||||
self._building.heating_consumption[cte.YEAR] = [sum(self._building.heating_consumption[cte.MONTH])]
|
||||
self._building.cooling_consumption[cte.HOUR] = hp_cooling
|
||||
self._building.cooling_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.cooling_consumption[cte.HOUR]))
|
||||
self._building.cooling_consumption[cte.YEAR] = [sum(self._building.cooling_consumption[cte.MONTH])]
|
||||
self._building.domestic_hot_water_consumption[cte.HOUR] = dhw_consumption
|
||||
self._building.domestic_hot_water_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.domestic_hot_water_consumption[cte.HOUR]))
|
||||
self._building.domestic_hot_water_consumption[cte.YEAR] = [
|
||||
sum(self._building.domestic_hot_water_consumption[cte.MONTH])]
|
||||
file_name = f'energy_system_simulation_results_{self._name}.csv'
|
||||
with open(self._output_path / file_name, 'w', newline='') as csvfile:
|
||||
output_file = csv.writer(csvfile)
|
||||
# Write header
|
||||
output_file.writerow(self.results.keys())
|
||||
# Write data
|
||||
output_file.writerows(zip(*self.results.values()))
|
||||
|
392
scripts/system_simulation_models/archetype13_stratified_tes.py
Normal file
392
scripts/system_simulation_models/archetype13_stratified_tes.py
Normal file
@ -0,0 +1,392 @@
|
||||
import math
|
||||
import hub.helpers.constants as cte
|
||||
import csv
|
||||
from hub.helpers.monthly_values import MonthlyValues
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Archetype13Stratified:
|
||||
def __init__(self, building, output_path):
|
||||
self._building = building
|
||||
self._name = building.name
|
||||
self._pv_system = building.energy_systems[0]
|
||||
self._hvac_system = building.energy_systems[1]
|
||||
self._dhw_system = building.energy_systems[-1]
|
||||
self._dhw_peak_flow_rate = (building.thermal_zones_from_internal_zones[0].total_floor_area *
|
||||
building.thermal_zones_from_internal_zones[0].domestic_hot_water.peak_flow *
|
||||
cte.WATER_DENSITY)
|
||||
self._heating_peak_load = building.heating_peak_load[cte.YEAR][0]
|
||||
self._cooling_peak_load = building.cooling_peak_load[cte.YEAR][0]
|
||||
self._domestic_hot_water_peak_load = building.domestic_hot_water_peak_load[cte.YEAR][0]
|
||||
self._hourly_heating_demand = [demand / 3600 for demand in building.heating_demand[cte.HOUR]]
|
||||
self._hourly_cooling_demand = [demand / 3600 for demand in building.cooling_demand[cte.HOUR]]
|
||||
self._hourly_dhw_demand = [0] + building.domestic_hot_water_heat_demand[cte.HOUR]
|
||||
self._output_path = output_path
|
||||
self._t_out = building.external_temperature[cte.HOUR]
|
||||
self.results = {}
|
||||
|
||||
def hvac_sizing(self):
|
||||
storage_factor = 3
|
||||
heat_pump = self._hvac_system.generation_systems[1]
|
||||
boiler = self._hvac_system.generation_systems[0]
|
||||
thermal_storage = boiler.energy_storage_systems[0]
|
||||
heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600)
|
||||
heat_pump.nominal_cooling_output = round(self._cooling_peak_load / 3600)
|
||||
boiler.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600)
|
||||
thermal_storage.volume = round(
|
||||
(self._heating_peak_load * storage_factor) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
|
||||
return heat_pump, boiler, thermal_storage
|
||||
|
||||
def dhw_sizing(self):
|
||||
storage_factor = 3
|
||||
dhw_hp = self._dhw_system.generation_systems[0]
|
||||
dhw_hp.nominal_heat_output = 0.7 * self._domestic_hot_water_peak_load
|
||||
dhw_hp.source_temperature = self._t_out
|
||||
dhw_tes = dhw_hp.energy_storage_systems[0]
|
||||
dhw_tes.volume = round(
|
||||
(self._domestic_hot_water_peak_load * storage_factor * 3600) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 10))
|
||||
return dhw_hp, dhw_tes
|
||||
|
||||
def heating_system_simulation_stratified(self):
|
||||
hp, boiler, tes = self.hvac_sizing()
|
||||
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
|
||||
demand = [0] + [x for x in self._hourly_heating_demand for _ in range(12)]
|
||||
hp.source_temperature = self._t_out
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(12)]
|
||||
variable_names = ["t_sup_hp", "t1", "t2", "t3", "t4", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "q_boiler",
|
||||
"hp_cop", "hp_electricity", "boiler_gas_consumption", "t_sup_boiler", "boiler_energy_consumption",
|
||||
"heating_consumption"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t1, t2, t3, t4, t_tank, t_ret, m_ch, m_dis, q_hp, q_boiler, hp_cop,
|
||||
hp_electricity, boiler_gas_consumption, t_sup_boiler, boiler_energy_consumption, heating_consumption) = \
|
||||
[variables[name] for name in variable_names]
|
||||
t_tank[0] = 55
|
||||
t1[0] = 55
|
||||
t2[0] = 55
|
||||
t3[0] = 55
|
||||
t4[0] = 55
|
||||
dt = 300
|
||||
hp_heating_cap = hp.nominal_heat_output
|
||||
boiler_heating_cap = boiler.nominal_heat_output
|
||||
hp_delta_t = 5
|
||||
boiler_efficiency = float(boiler.heat_efficiency)
|
||||
v, h = float(tes.volume) / 4, float(tes.height) / 4
|
||||
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
|
||||
tes.layers)
|
||||
u_tot = 1 / r_tot
|
||||
d = math.sqrt((4 * v) / (math.pi * h))
|
||||
a_side = math.pi * d * h
|
||||
a_top = math.pi * d ** 2 / 4
|
||||
ua_side = u_tot * a_side
|
||||
ua_top_bottom = u_tot * (a_top + a_side)
|
||||
# storage temperature prediction
|
||||
for i in range(len(demand) - 1):
|
||||
t1[i + 1] = t1[i] + ((m_ch[i] * (t_sup_boiler[i] - t1[i])) + (
|
||||
np.heaviside((m_dis[i] - m_ch[i]), 0) * (m_ch[i] - m_dis[i]) * (t1[i] - t2[i])) + (
|
||||
ua_top_bottom * (t_out[i] - t1[i])) / cte.WATER_HEAT_CAPACITY - cte.WATER_THERMAL_CONDUCTIVITY * (a_top * (t1[i] - t2[i])) / (
|
||||
cte.WATER_HEAT_CAPACITY * h)) * (dt / (cte.WATER_DENSITY * v))
|
||||
t2[i + 1] = t2[i] + ((np.heaviside((m_dis[i] - m_ch[i]), 0) * (m_ch[i] - m_dis[i]) * (t2[i] - t3[i])) + (
|
||||
ua_side * (t_out[i] - t2[i])) / cte.WATER_HEAT_CAPACITY - (cte.WATER_THERMAL_CONDUCTIVITY * (a_top * (t2[i] - t1[i])) / (cte.WATER_HEAT_CAPACITY * h)) - (
|
||||
cte.WATER_THERMAL_CONDUCTIVITY * (a_top * (t2[i] - t3[i])) / (cte.WATER_HEAT_CAPACITY * h)) + (
|
||||
np.heaviside((m_ch[i] - m_dis[i]), 0) * (m_ch[i] - m_dis[i]) * (
|
||||
t1[i] - t2[i]))) * (dt / (cte.WATER_DENSITY * v))
|
||||
t3[i + 1] = t3[i] + ((np.heaviside((m_dis[i] - m_ch[i]), 0) * (m_ch[i] - m_dis[i]) * (t3[i] - t4[i])) + (
|
||||
ua_side * (t_out[i] - t3[i])) / cte.WATER_HEAT_CAPACITY - (cte.WATER_THERMAL_CONDUCTIVITY * (a_top * (t3[i] - t2[i])) / (cte.WATER_HEAT_CAPACITY * h)) - (
|
||||
cte.WATER_THERMAL_CONDUCTIVITY * (a_top * (t3[i] - t4[i])) / (cte.WATER_HEAT_CAPACITY * h)) + (
|
||||
np.heaviside((m_ch[i] - m_dis[i]), 0) * (m_ch[i] - m_dis[i]) * (
|
||||
t2[i] - t3[i]))) * (dt / (cte.WATER_DENSITY * v))
|
||||
t4[i + 1] = t4[i] + (np.heaviside((m_ch[i] - m_dis[i]), 0) * ((m_ch[i] - m_dis[i]) * (t3[i] - t4[i])) + (
|
||||
ua_top_bottom * (t_out[i] - t4[-1])) / cte.WATER_HEAT_CAPACITY - m_dis[i] * ((t4[i] - t_ret[i])) - (
|
||||
cte.WATER_THERMAL_CONDUCTIVITY * (a_top * (t4[i] - t3[i])) / (cte.WATER_HEAT_CAPACITY * h))) * (dt / (cte.WATER_DENSITY * v))
|
||||
# hp operation
|
||||
if t1[i + 1] < 40:
|
||||
q_hp[i + 1] = hp_heating_cap
|
||||
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
|
||||
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t4[i + 1]
|
||||
elif 40 <= t1[i + 1] < 55 and q_hp[i] == 0:
|
||||
q_hp[i + 1] = 0
|
||||
m_ch[i + 1] = 0
|
||||
t_sup_hp[i + 1] = t4[i + 1]
|
||||
elif 40 <= t1[i + 1] < 55 and q_hp[i] > 0:
|
||||
q_hp[i + 1] = hp_heating_cap
|
||||
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
|
||||
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t4[i + 1]
|
||||
else:
|
||||
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t4[i + 1]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i + 1] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i + 1] + 32
|
||||
if q_hp[i + 1] > 0:
|
||||
hp_cop[i + 1] = (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[3] * t_out_fahrenheit +
|
||||
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
|
||||
else:
|
||||
hp_cop[i + 1] = 0
|
||||
hp_electricity[i + 1] = 0
|
||||
# boiler operation
|
||||
if q_hp[i + 1] > 0:
|
||||
if t_sup_hp[i + 1] < 45:
|
||||
q_boiler[i + 1] = boiler_heating_cap
|
||||
elif demand[i + 1] > 0.5 * self._heating_peak_load / dt:
|
||||
q_boiler[i + 1] = 0.5 * boiler_heating_cap
|
||||
boiler_energy_consumption[i + 1] = q_boiler[i + 1] / boiler_efficiency
|
||||
boiler_gas_consumption[i + 1] = (q_boiler[i + 1] * dt) / (boiler_efficiency * cte.NATURAL_GAS_LHV)
|
||||
t_sup_boiler[i + 1] = t_sup_hp[i + 1] + (q_boiler[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY))
|
||||
# storage discharging
|
||||
if demand[i + 1] == 0:
|
||||
m_dis[i + 1] = 0
|
||||
t_ret[i + 1] = t1[i + 1]
|
||||
else:
|
||||
if demand[i + 1] > 0.5 * self._heating_peak_load / cte.HOUR_TO_SECONDS:
|
||||
factor = 8
|
||||
else:
|
||||
factor = 4
|
||||
m_dis[i + 1] = self._heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor * cte.HOUR_TO_SECONDS)
|
||||
t_ret[i + 1] = t1[i + 1] - demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
|
||||
|
||||
hp_electricity_wh = [x / 12 for x in hp_electricity]
|
||||
boiler_consumption_wh = [x / 12 for x in boiler_energy_consumption]
|
||||
hp_hourly = []
|
||||
boiler_hourly = []
|
||||
tes.temperature = {}
|
||||
tes.temperature['layer_1'] = []
|
||||
tes.temperature['layer_2'] = []
|
||||
tes.temperature['layer_3'] = []
|
||||
tes.temperature['layer_4'] = []
|
||||
for i in range(1, len(demand), 12):
|
||||
tes.temperature['layer_1'].append(t1[i])
|
||||
tes.temperature['layer_2'].append(t2[i])
|
||||
tes.temperature['layer_3'].append(t3[i])
|
||||
tes.temperature['layer_4'].append(t4[i])
|
||||
demand_modified = demand[1:]
|
||||
hp_hourly.append(hp_electricity[1])
|
||||
boiler_hourly.append(boiler_energy_consumption[1])
|
||||
boiler_sum = 0
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand_modified) + 1):
|
||||
hp_sum += hp_electricity_wh[i]
|
||||
boiler_sum += boiler_consumption_wh[i]
|
||||
if i % 12 == 0:
|
||||
hp_hourly.append(hp_sum)
|
||||
boiler_hourly.append(boiler_sum)
|
||||
hp_sum = 0
|
||||
boiler_sum = 0
|
||||
|
||||
hp.energy_consumption[cte.HEATING] = {}
|
||||
hp.energy_consumption[cte.HEATING][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.HEATING][cte.HOUR])
|
||||
hp.energy_consumption[cte.HEATING][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.HEATING][cte.MONTH])]
|
||||
boiler.energy_consumption[cte.HEATING] = {}
|
||||
boiler.energy_consumption[cte.HEATING][cte.HOUR] = boiler_hourly
|
||||
boiler.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
boiler.energy_consumption[cte.HEATING][cte.HOUR])
|
||||
boiler.energy_consumption[cte.HEATING][cte.YEAR] = [
|
||||
sum(boiler.energy_consumption[cte.HEATING][cte.MONTH])]
|
||||
|
||||
self.results['Heating Demand (W)'] = demand
|
||||
self.results['HP Heat Output (W)'] = q_hp
|
||||
self.results['HP Source Temperature'] = t_out
|
||||
self.results['HP Supply Temperature'] = t_sup_hp
|
||||
self.results['HP COP'] = hp_cop
|
||||
self.results['HP Electricity Consumption (W)'] = hp_electricity
|
||||
self.results['Boiler Heat Output (W)'] = q_boiler
|
||||
self.results['Boiler Supply Temperature'] = t_sup_boiler
|
||||
self.results['Boiler Gas Consumption'] = boiler_gas_consumption
|
||||
self.results['TES Layer 1 Temperature'] = t1
|
||||
self.results['TES Layer 2 Temperature'] = t2
|
||||
self.results['TES Layer 3 Temperature'] = t3
|
||||
self.results['TES Layer 4 Temperature'] = t4
|
||||
self.results['TES Charging Flow Rate (kg/s)'] = m_ch
|
||||
self.results['TES Discharge Flow Rate (kg/s)'] = m_dis
|
||||
self.results['Heating Loop Return Temperature'] = t_ret
|
||||
return hp_electricity, boiler_energy_consumption
|
||||
|
||||
def cooling_system_simulation(self):
|
||||
hp = self.hvac_sizing()[0]
|
||||
eer_curve_coefficients = [float(coefficient) for coefficient in hp.cooling_efficiency_curve.coefficients]
|
||||
cooling_efficiency = float(hp.cooling_efficiency)
|
||||
demand = self._hourly_cooling_demand
|
||||
hp.source_temperature = self._t_out
|
||||
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_eer"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_eer) = [variables[name] for name in variable_names]
|
||||
t_ret[0] = 13
|
||||
dt = 3600
|
||||
for i in range(len(demand) - 1):
|
||||
if demand[i] > 0:
|
||||
m[i] = self._cooling_peak_load / (cte.WATER_HEAT_CAPACITY * 5 * dt)
|
||||
if t_ret[i] > 13:
|
||||
if demand[i] < 0.25 * self._cooling_peak_load / dt:
|
||||
q_hp[i] = 0.25 * hp.nominal_cooling_output
|
||||
elif demand[i] < 0.5 * self._cooling_peak_load / dt:
|
||||
q_hp[i] = 0.5 * hp.nominal_cooling_output
|
||||
else:
|
||||
q_hp[i] = hp.nominal_cooling_output
|
||||
t_sup_hp[i] = t_ret[i] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
else:
|
||||
q_hp[i] = 0
|
||||
t_sup_hp[i] = t_ret[i]
|
||||
t_ret[i + 1] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
else:
|
||||
m[i] = 0
|
||||
q_hp[i] = 0
|
||||
t_sup_hp[i] = t_ret[i]
|
||||
t_ret[i + 1] = t_ret[i]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
|
||||
t_out_fahrenheit = 1.8 * self._t_out[i] + 32
|
||||
if q_hp[i] > 0:
|
||||
hp_eer[i] = (eer_curve_coefficients[0] +
|
||||
eer_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
eer_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[3] * t_out_fahrenheit +
|
||||
eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i] = q_hp[i] / cooling_efficiency
|
||||
else:
|
||||
hp_eer[i] = 0
|
||||
hp_electricity[i] = 0
|
||||
hp.energy_consumption[cte.COOLING] = {}
|
||||
hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_electricity
|
||||
hp.energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.COOLING][cte.HOUR])
|
||||
hp.energy_consumption[cte.COOLING][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.COOLING][cte.MONTH])]
|
||||
# self.results['Cooling Demand (W)'] = demand
|
||||
# self.results['HP Cooling Output (W)'] = q_hp
|
||||
# self.results['HP Cooling Supply Temperature'] = t_sup_hp
|
||||
# self.results['HP Cooling COP'] = hp_eer
|
||||
# self.results['HP Electricity Consumption'] = hp_electricity
|
||||
# self.results['Cooling Loop Flow Rate (kg/s)'] = m
|
||||
# self.results['Cooling Loop Return Temperature'] = t_ret
|
||||
return hp_electricity
|
||||
|
||||
def dhw_system_simulation(self):
|
||||
hp, tes = self.dhw_sizing()
|
||||
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
|
||||
demand = self._hourly_dhw_demand
|
||||
variable_names = ["t_sup_hp", "t_tank", "m_ch", "m_dis", "q_hp", "q_coil", "hp_cop",
|
||||
"hp_electricity", "available hot water (m3)", "refill flow rate (kg/s)"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t_tank, m_ch, m_dis, m_refill, q_hp, q_coil, hp_cop, hp_electricity, v_dhw) = \
|
||||
[variables[name] for name in variable_names]
|
||||
t_tank[0] = 70
|
||||
v_dhw[0] = tes.volume
|
||||
dt = 3600
|
||||
hp_heating_cap = hp.nominal_heat_output
|
||||
hp_delta_t = 8
|
||||
v, h = float(tes.volume), float(tes.height)
|
||||
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
|
||||
tes.layers)
|
||||
u_tot = 1 / r_tot
|
||||
d = math.sqrt((4 * v) / (math.pi * h))
|
||||
a_side = math.pi * d * h
|
||||
a_top = math.pi * d ** 2 / 4
|
||||
ua = u_tot * (2 * a_top + a_side)
|
||||
freshwater_temperature = 18
|
||||
for i in range(len(demand) - 1):
|
||||
delta_t_demand = demand[i] * (dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if t_tank[i] < 65:
|
||||
q_hp[i] = hp_heating_cap
|
||||
delta_t_hp = q_hp[i] * (dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if demand[i] > 0:
|
||||
dhw_needed = (demand[i] * cte.HOUR_TO_SECONDS) / (cte.WATER_HEAT_CAPACITY * t_tank[i] * cte.WATER_DENSITY)
|
||||
m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
|
||||
m_refill[i] = m_dis[i]
|
||||
delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (dt / (v * cte.WATER_DENSITY))
|
||||
diff = delta_t_freshwater + delta_t_demand - delta_t_hp
|
||||
if diff > 0:
|
||||
if diff > 0:
|
||||
power = diff * (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v) / dt
|
||||
if power <= float(tes.heating_coil_capacity):
|
||||
q_coil[i] = power
|
||||
else:
|
||||
q_coil[i] = float(tes.heating_coil_capacity)
|
||||
elif t_tank[i] < 65:
|
||||
q_coil[i] = float(tes.heating_coil_capacity)
|
||||
delta_t_coil = q_coil[i] * (dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
|
||||
if q_hp[i] > 0:
|
||||
m_ch[i] = q_hp[i] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
|
||||
t_sup_hp[i] = (q_hp[i] / (m_ch[i] * cte.WATER_HEAT_CAPACITY)) + t_tank[i]
|
||||
else:
|
||||
m_ch[i] = 0
|
||||
t_sup_hp[i] = t_tank[i]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
|
||||
t_out_fahrenheit = 1.8 * self._t_out[i] + 32
|
||||
if q_hp[i] > 0:
|
||||
hp_cop[i] = (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[3] * t_out_fahrenheit +
|
||||
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i] = q_hp[i] / 3.5
|
||||
else:
|
||||
hp_cop[i] = 0
|
||||
hp_electricity[i] = 0
|
||||
|
||||
t_tank[i + 1] = t_tank[i] + (delta_t_hp - delta_t_freshwater - delta_t_demand + delta_t_coil)
|
||||
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_electricity
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
|
||||
tes.heating_coil_energy_consumption = {}
|
||||
tes.heating_coil_energy_consumption[cte.HOUR] = q_coil
|
||||
tes.heating_coil_energy_consumption[cte.MONTH] = MonthlyValues.get_total_month(
|
||||
tes.heating_coil_energy_consumption[cte.HOUR])
|
||||
tes.heating_coil_energy_consumption[cte.YEAR] = [
|
||||
sum(tes.heating_coil_energy_consumption[cte.MONTH])]
|
||||
tes.temperature = t_tank
|
||||
|
||||
|
||||
# self.results['DHW Demand (W)'] = demand
|
||||
# self.results['DHW HP Heat Output (W)'] = q_hp
|
||||
# self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
|
||||
# self.results['DHW HP Source Temperature'] = self._t_out
|
||||
# self.results['DHW HP Supply Temperature'] = t_sup_hp
|
||||
# self.results['DHW HP COP'] = hp_cop
|
||||
# self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
|
||||
# self.results['DHW TES Temperature'] = t_tank
|
||||
# self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
|
||||
# self.results['DHW Flow Rate (kg/s)'] = m_dis
|
||||
# self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
|
||||
# self.results['Available Water in Tank (m3)'] = v_dhw
|
||||
return hp_electricity, q_coil
|
||||
|
||||
def enrich_buildings(self):
|
||||
hp_heating, boiler_consumption = self.heating_system_simulation_stratified()
|
||||
# hp_cooling = self.cooling_system_simulation()
|
||||
# hp_dhw, heating_coil = self.dhw_system_simulation()
|
||||
heating_consumption = [hp_heating[i] + boiler_consumption[i] for i in range(len(hp_heating))]
|
||||
# dhw_consumption = [hp_dhw[i] + heating_coil[i] for i in range(len(hp_dhw))]
|
||||
# self._building.heating_consumption[cte.HOUR] = heating_consumption
|
||||
# self._building.heating_consumption[cte.MONTH] = (
|
||||
# MonthlyValues.get_total_month(self._building.heating_consumption[cte.HOUR]))
|
||||
# self._building.heating_consumption[cte.YEAR] = sum(self._building.heating_consumption[cte.MONTH])
|
||||
# self._building.cooling_consumption[cte.HOUR] = hp_cooling
|
||||
# self._building.cooling_consumption[cte.MONTH] = (
|
||||
# MonthlyValues.get_total_month(self._building.cooling_consumption[cte.HOUR]))
|
||||
# self._building.cooling_consumption[cte.YEAR] = sum(self._building.cooling_consumption[cte.MONTH])
|
||||
# self._building.domestic_hot_water_consumption[cte.HOUR] = dhw_consumption
|
||||
# self._building.domestic_hot_water_consumption[cte.MONTH] = (
|
||||
# MonthlyValues.get_total_month(self._building.domestic_hot_water_consumption[cte.HOUR]))
|
||||
# self._building.domestic_hot_water_consumption[cte.YEAR] = (
|
||||
# sum(self._building.domestic_hot_water_consumption[cte.MONTH]))
|
||||
file_name = f'energy_system_simulation_results_{self._name}.csv'
|
||||
with open(self._output_path / file_name, 'w', newline='') as csvfile:
|
||||
output_file = csv.writer(csvfile)
|
||||
# Write header
|
||||
output_file.writerow(self.results.keys())
|
||||
# Write data
|
||||
output_file.writerows(zip(*self.results.values()))
|
402
scripts/system_simulation_models/archetypes14_15.py
Normal file
402
scripts/system_simulation_models/archetypes14_15.py
Normal file
@ -0,0 +1,402 @@
|
||||
import math
|
||||
import hub.helpers.constants as cte
|
||||
import csv
|
||||
from hub.helpers.monthly_values import MonthlyValues
|
||||
|
||||
|
||||
class Archetype14_15:
|
||||
def __init__(self, building, output_path):
|
||||
self._building = building
|
||||
self._name = building.name
|
||||
if 'PV' in building.energy_systems_archetype_name:
|
||||
i = 1
|
||||
self._pv_system = building.energy_systems[0]
|
||||
else:
|
||||
i = 0
|
||||
self._dhw_system = building.energy_systems[i]
|
||||
self._heating_system = building.energy_systems[i + 1]
|
||||
self._cooling_system = building.energy_systems[i + 2]
|
||||
self._dhw_peak_flow_rate = (building.thermal_zones_from_internal_zones[0].total_floor_area *
|
||||
building.thermal_zones_from_internal_zones[0].domestic_hot_water.peak_flow *
|
||||
cte.WATER_DENSITY)
|
||||
self._heating_peak_load = building.heating_peak_load[cte.YEAR][0]
|
||||
self._cooling_peak_load = building.cooling_peak_load[cte.YEAR][0]
|
||||
self._domestic_hot_water_peak_load = building.domestic_hot_water_peak_load[cte.YEAR][0]
|
||||
self._hourly_heating_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in building.heating_demand[cte.HOUR]]
|
||||
self._hourly_cooling_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in building.cooling_demand[cte.HOUR]]
|
||||
self._hourly_dhw_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in
|
||||
building.domestic_hot_water_heat_demand[cte.HOUR]]
|
||||
self._output_path = output_path
|
||||
self._t_out = building.external_temperature[cte.HOUR]
|
||||
self.results = {}
|
||||
self.dt = 900
|
||||
|
||||
def heating_system_sizing(self):
|
||||
storage_factor = 3
|
||||
heat_pump = self._heating_system.generation_systems[1]
|
||||
heat_pump.source_temperature = self._t_out
|
||||
boiler = self._heating_system.generation_systems[0]
|
||||
thermal_storage = boiler.energy_storage_systems[0]
|
||||
heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load)
|
||||
boiler.nominal_heat_output = round(0.5 * self._heating_peak_load)
|
||||
thermal_storage.volume = round(
|
||||
(self._heating_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
|
||||
(cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
|
||||
return heat_pump, boiler, thermal_storage
|
||||
|
||||
def cooling_system_sizing(self):
|
||||
heat_pump = self._cooling_system.generation_systems[0]
|
||||
heat_pump.nominal_cooling_output = heat_pump.nominal_cooling_output = round(self._cooling_peak_load)
|
||||
heat_pump.source_temperature = self._t_out
|
||||
return heat_pump
|
||||
|
||||
|
||||
def dhw_system_sizing(self):
|
||||
storage_factor = 3
|
||||
dhw_hp = self._dhw_system.generation_systems[0]
|
||||
dhw_hp.nominal_heat_output = round(0.7 * self._domestic_hot_water_peak_load)
|
||||
dhw_hp.source_temperature = self._t_out
|
||||
dhw_tes = dhw_hp.energy_storage_systems[0]
|
||||
dhw_tes.volume = round(
|
||||
(self._domestic_hot_water_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
|
||||
(cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 10))
|
||||
return dhw_hp, dhw_tes
|
||||
|
||||
def heating_system_simulation(self):
|
||||
hp, boiler, tes = self.heating_system_sizing()
|
||||
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
|
||||
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
|
||||
demand = [0] + [x for x in self._hourly_heating_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
hp.source_temperature = self._t_out
|
||||
variable_names = ["t_sup_hp", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "q_boiler", "hp_cop",
|
||||
"hp_electricity", "boiler_gas_consumption", "t_sup_boiler", "boiler_energy_consumption",
|
||||
"heating_consumption"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t_tank, t_ret, m_ch, m_dis, q_hp, q_boiler, hp_cop,
|
||||
hp_electricity, boiler_gas_consumption, t_sup_boiler, boiler_energy_consumption, heating_consumption) = \
|
||||
[variables[name] for name in variable_names]
|
||||
t_tank[0] = 55
|
||||
hp_heating_cap = hp.nominal_heat_output
|
||||
boiler_heating_cap = boiler.nominal_heat_output
|
||||
hp_delta_t = 5
|
||||
boiler_efficiency = float(boiler.heat_efficiency)
|
||||
v, h = float(tes.volume), float(tes.height)
|
||||
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
|
||||
tes.layers)
|
||||
u_tot = 1 / r_tot
|
||||
d = math.sqrt((4 * v) / (math.pi * h))
|
||||
a_side = math.pi * d * h
|
||||
a_top = math.pi * d ** 2 / 4
|
||||
ua = u_tot * (2 * a_top + a_side)
|
||||
# storage temperature prediction
|
||||
for i in range(len(demand) - 1):
|
||||
t_tank[i + 1] = (t_tank[i] +
|
||||
(m_ch[i] * (t_sup_boiler[i] - t_tank[i]) +
|
||||
(ua * (t_out[i] - t_tank[i])) / cte.WATER_HEAT_CAPACITY -
|
||||
m_dis[i] * (t_tank[i] - t_ret[i])) * (self.dt / (cte.WATER_DENSITY * v)))
|
||||
# hp operation
|
||||
if t_tank[i + 1] < 40:
|
||||
q_hp[i + 1] = hp_heating_cap
|
||||
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
|
||||
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
|
||||
elif 40 <= t_tank[i + 1] < 55 and q_hp[i] == 0:
|
||||
q_hp[i + 1] = 0
|
||||
m_ch[i + 1] = 0
|
||||
t_sup_hp[i + 1] = t_tank[i + 1]
|
||||
elif 40 <= t_tank[i + 1] < 55 and q_hp[i] > 0:
|
||||
q_hp[i + 1] = hp_heating_cap
|
||||
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
|
||||
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
|
||||
else:
|
||||
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i + 1] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i + 1] + 32
|
||||
if q_hp[i + 1] > 0:
|
||||
hp_cop[i + 1] = (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[3] * t_out_fahrenheit +
|
||||
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
|
||||
else:
|
||||
hp_cop[i + 1] = 0
|
||||
hp_electricity[i + 1] = 0
|
||||
# boiler operation
|
||||
if q_hp[i + 1] > 0:
|
||||
if t_sup_hp[i + 1] < 45:
|
||||
q_boiler[i + 1] = boiler_heating_cap
|
||||
elif demand[i + 1] > 0.5 * self._heating_peak_load / self.dt:
|
||||
q_boiler[i + 1] = 0.5 * boiler_heating_cap
|
||||
boiler_energy_consumption[i + 1] = q_boiler[i + 1] / boiler_efficiency
|
||||
boiler_gas_consumption[i + 1] = (q_boiler[i + 1] * self.dt) / (boiler_efficiency * cte.NATURAL_GAS_LHV)
|
||||
t_sup_boiler[i + 1] = t_sup_hp[i + 1] + (q_boiler[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY))
|
||||
# storage discharging
|
||||
if demand[i + 1] == 0:
|
||||
m_dis[i + 1] = 0
|
||||
t_ret[i + 1] = t_tank[i + 1]
|
||||
else:
|
||||
if demand[i + 1] > 0.5 * self._heating_peak_load / cte.HOUR_TO_SECONDS:
|
||||
factor = 8
|
||||
else:
|
||||
factor = 4
|
||||
m_dis[i + 1] = self._heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor * cte.HOUR_TO_SECONDS)
|
||||
t_ret[i + 1] = t_tank[i + 1] - demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
|
||||
tes.temperature = []
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
boiler_consumption_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in boiler_energy_consumption]
|
||||
hp_hourly = []
|
||||
boiler_hourly = []
|
||||
boiler_sum = 0
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand)):
|
||||
hp_sum += hp_electricity_j[i]
|
||||
boiler_sum += boiler_consumption_j[i]
|
||||
if (i - 1) % number_of_ts == 0:
|
||||
tes.temperature.append(t_tank[i])
|
||||
hp_hourly.append(hp_sum)
|
||||
boiler_hourly.append(boiler_sum)
|
||||
hp_sum = 0
|
||||
boiler_sum = 0
|
||||
hp.energy_consumption[cte.HEATING] = {}
|
||||
hp.energy_consumption[cte.HEATING][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.HEATING][cte.HOUR])
|
||||
hp.energy_consumption[cte.HEATING][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.HEATING][cte.MONTH])]
|
||||
boiler.energy_consumption[cte.HEATING] = {}
|
||||
boiler.energy_consumption[cte.HEATING][cte.HOUR] = boiler_hourly
|
||||
boiler.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
boiler.energy_consumption[cte.HEATING][cte.HOUR])
|
||||
boiler.energy_consumption[cte.HEATING][cte.YEAR] = [
|
||||
sum(boiler.energy_consumption[cte.HEATING][cte.MONTH])]
|
||||
|
||||
self.results['Heating Demand (W)'] = demand
|
||||
self.results['HP Heat Output (W)'] = q_hp
|
||||
self.results['HP Source Temperature'] = t_out
|
||||
self.results['HP Supply Temperature'] = t_sup_hp
|
||||
self.results['HP COP'] = hp_cop
|
||||
self.results['HP Electricity Consumption (W)'] = hp_electricity
|
||||
self.results['Boiler Heat Output (W)'] = q_boiler
|
||||
self.results['Boiler Supply Temperature'] = t_sup_boiler
|
||||
self.results['Boiler Gas Consumption'] = boiler_gas_consumption
|
||||
self.results['TES Temperature'] = t_tank
|
||||
self.results['TES Charging Flow Rate (kg/s)'] = m_ch
|
||||
self.results['TES Discharge Flow Rate (kg/s)'] = m_dis
|
||||
self.results['Heating Loop Return Temperature'] = t_ret
|
||||
return hp_hourly, boiler_hourly
|
||||
|
||||
def cooling_system_simulation(self):
|
||||
hp = self.cooling_system_sizing()
|
||||
eer_curve_coefficients = [float(coefficient) for coefficient in hp.cooling_efficiency_curve.coefficients]
|
||||
cooling_efficiency = float(hp.cooling_efficiency)
|
||||
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
|
||||
demand = [0] + [x for x in self._hourly_cooling_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
hp.source_temperature = self._t_out
|
||||
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_eer"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_eer) = [variables[name] for name in variable_names]
|
||||
t_ret[0] = 13
|
||||
|
||||
for i in range(1, len(demand)):
|
||||
if demand[i] > 0:
|
||||
m[i] = self._cooling_peak_load / (cte.WATER_HEAT_CAPACITY * 5 * cte.HOUR_TO_SECONDS)
|
||||
if t_ret[i - 1] >= 13:
|
||||
if demand[i] < 0.25 * self._cooling_peak_load / cte.HOUR_TO_SECONDS:
|
||||
q_hp[i] = 0.25 * hp.nominal_cooling_output
|
||||
elif demand[i] < 0.5 * self._cooling_peak_load / cte.HOUR_TO_SECONDS:
|
||||
q_hp[i] = 0.5 * hp.nominal_cooling_output
|
||||
else:
|
||||
q_hp[i] = hp.nominal_cooling_output
|
||||
t_sup_hp[i] = t_ret[i - 1] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
else:
|
||||
q_hp[i] = 0
|
||||
t_sup_hp[i] = t_ret[i - 1]
|
||||
if m[i] == 0:
|
||||
t_ret[i] = t_sup_hp[i]
|
||||
else:
|
||||
t_ret[i] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
else:
|
||||
m[i] = 0
|
||||
q_hp[i] = 0
|
||||
t_sup_hp[i] = t_ret[i -1]
|
||||
t_ret[i] = t_ret[i - 1]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i] + 32
|
||||
if q_hp[i] > 0:
|
||||
hp_eer[i] = (eer_curve_coefficients[0] +
|
||||
eer_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
eer_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[3] * t_out_fahrenheit +
|
||||
eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i] = q_hp[i] / hp_eer[i]
|
||||
else:
|
||||
hp_eer[i] = 0
|
||||
hp_electricity[i] = 0
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
hp_hourly = []
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand)):
|
||||
hp_sum += hp_electricity_j[i]
|
||||
if (i - 1) % number_of_ts == 0:
|
||||
hp_hourly.append(hp_sum)
|
||||
hp_sum = 0
|
||||
hp.energy_consumption[cte.COOLING] = {}
|
||||
hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.COOLING][cte.HOUR])
|
||||
hp.energy_consumption[cte.COOLING][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.COOLING][cte.MONTH])]
|
||||
self.results['Cooling Demand (W)'] = demand
|
||||
self.results['HP Cooling Output (W)'] = q_hp
|
||||
self.results['HP Cooling Supply Temperature'] = t_sup_hp
|
||||
self.results['HP Cooling COP'] = hp_eer
|
||||
self.results['HP Electricity Consumption'] = hp_electricity
|
||||
self.results['Cooling Loop Flow Rate (kg/s)'] = m
|
||||
self.results['Cooling Loop Return Temperature'] = t_ret
|
||||
return hp_hourly
|
||||
|
||||
def dhw_system_simulation(self):
|
||||
hp, tes = self.dhw_system_sizing()
|
||||
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
|
||||
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
|
||||
demand = [0] + [x for x in self._hourly_dhw_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
variable_names = ["t_sup_hp", "t_tank", "m_ch", "m_dis", "q_hp", "q_coil", "hp_cop",
|
||||
"hp_electricity", "available hot water (m3)", "refill flow rate (kg/s)"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t_tank, m_ch, m_dis, m_refill, q_hp, q_coil, hp_cop, hp_electricity, v_dhw) = \
|
||||
[variables[name] for name in variable_names]
|
||||
t_tank[0] = 70
|
||||
v_dhw[0] = tes.volume
|
||||
|
||||
hp_heating_cap = hp.nominal_heat_output
|
||||
hp_delta_t = 8
|
||||
v, h = float(tes.volume), float(tes.height)
|
||||
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
|
||||
tes.layers)
|
||||
u_tot = 1 / r_tot
|
||||
d = math.sqrt((4 * v) / (math.pi * h))
|
||||
a_side = math.pi * d * h
|
||||
a_top = math.pi * d ** 2 / 4
|
||||
ua = u_tot * (2 * a_top + a_side)
|
||||
freshwater_temperature = 18
|
||||
for i in range(len(demand) - 1):
|
||||
delta_t_demand = demand[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if t_tank[i] < 65:
|
||||
q_hp[i] = hp_heating_cap
|
||||
delta_t_hp = q_hp[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if demand[i] > 0:
|
||||
dhw_needed = (demand[i] * cte.HOUR_TO_SECONDS) / (cte.WATER_HEAT_CAPACITY * t_tank[i] * cte.WATER_DENSITY)
|
||||
m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
|
||||
m_refill[i] = m_dis[i]
|
||||
delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (self.dt / (v * cte.WATER_DENSITY))
|
||||
diff = delta_t_freshwater + delta_t_demand - delta_t_hp
|
||||
if diff > 0:
|
||||
if diff > 0:
|
||||
power = diff * (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v) / self.dt
|
||||
if power <= float(tes.heating_coil_capacity):
|
||||
q_coil[i] = power
|
||||
else:
|
||||
q_coil[i] = float(tes.heating_coil_capacity)
|
||||
delta_t_coil = q_coil[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
|
||||
if q_hp[i] > 0:
|
||||
m_ch[i] = q_hp[i] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
|
||||
t_sup_hp[i] = (q_hp[i] / (m_ch[i] * cte.WATER_HEAT_CAPACITY)) + t_tank[i]
|
||||
else:
|
||||
m_ch[i] = 0
|
||||
t_sup_hp[i] = t_tank[i]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i] + 32
|
||||
if q_hp[i] > 0:
|
||||
hp_cop[i] = (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[3] * t_out_fahrenheit +
|
||||
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i] = q_hp[i] / hp_cop[i]
|
||||
else:
|
||||
hp_cop[i] = 0
|
||||
hp_electricity[i] = 0
|
||||
|
||||
t_tank[i + 1] = t_tank[i] + (delta_t_hp - delta_t_freshwater - delta_t_demand + delta_t_coil)
|
||||
tes.temperature = []
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
|
||||
hp_hourly = []
|
||||
coil_hourly = []
|
||||
coil_sum = 0
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand)):
|
||||
hp_sum += hp_electricity_j[i]
|
||||
coil_sum += heating_coil_j[i]
|
||||
if (i - 1) % number_of_ts == 0:
|
||||
tes.temperature.append(t_tank[i])
|
||||
hp_hourly.append(hp_sum)
|
||||
coil_hourly.append(coil_sum)
|
||||
hp_sum = 0
|
||||
coil_sum = 0
|
||||
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
|
||||
tes.heating_coil_energy_consumption = {}
|
||||
tes.heating_coil_energy_consumption[cte.HOUR] = coil_hourly
|
||||
tes.heating_coil_energy_consumption[cte.MONTH] = MonthlyValues.get_total_month(
|
||||
tes.heating_coil_energy_consumption[cte.HOUR])
|
||||
tes.heating_coil_energy_consumption[cte.YEAR] = [
|
||||
sum(tes.heating_coil_energy_consumption[cte.MONTH])]
|
||||
tes.temperature = t_tank
|
||||
|
||||
self.results['DHW Demand (W)'] = demand
|
||||
self.results['DHW HP Heat Output (W)'] = q_hp
|
||||
self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
|
||||
self.results['DHW HP Source Temperature'] = t_out
|
||||
self.results['DHW HP Supply Temperature'] = t_sup_hp
|
||||
self.results['DHW HP COP'] = hp_cop
|
||||
self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
|
||||
self.results['DHW TES Temperature'] = t_tank
|
||||
self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
|
||||
self.results['DHW Flow Rate (kg/s)'] = m_dis
|
||||
self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
|
||||
self.results['Available Water in Tank (m3)'] = v_dhw
|
||||
return hp_hourly, coil_hourly
|
||||
|
||||
|
||||
def enrich_buildings(self):
|
||||
hp_heating, boiler_consumption = self.heating_system_simulation()
|
||||
hp_cooling = self.cooling_system_simulation()
|
||||
hp_dhw, heating_coil = self.dhw_system_simulation()
|
||||
heating_consumption = [hp_heating[i] + boiler_consumption[i] for i in range(len(hp_heating))]
|
||||
dhw_consumption = [hp_dhw[i] + heating_coil[i] for i in range(len(hp_dhw))]
|
||||
self._building.heating_consumption[cte.HOUR] = heating_consumption
|
||||
self._building.heating_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.heating_consumption[cte.HOUR]))
|
||||
self._building.heating_consumption[cte.YEAR] = [sum(self._building.heating_consumption[cte.MONTH])]
|
||||
self._building.cooling_consumption[cte.HOUR] = hp_cooling
|
||||
self._building.cooling_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.cooling_consumption[cte.HOUR]))
|
||||
self._building.cooling_consumption[cte.YEAR] = [sum(self._building.cooling_consumption[cte.MONTH])]
|
||||
self._building.domestic_hot_water_consumption[cte.HOUR] = dhw_consumption
|
||||
self._building.domestic_hot_water_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.domestic_hot_water_consumption[cte.HOUR]))
|
||||
self._building.domestic_hot_water_consumption[cte.YEAR] = (
|
||||
sum(self._building.domestic_hot_water_consumption[cte.MONTH]))
|
||||
file_name = f'energy_system_simulation_results_{self._name}.csv'
|
||||
with open(self._output_path / file_name, 'w', newline='') as csvfile:
|
||||
output_file = csv.writer(csvfile)
|
||||
# Write header
|
||||
output_file.writerow(self.results.keys())
|
||||
# Write data
|
||||
output_file.writerows(zip(*self.results.values()))
|
67
simulation_result_test.py
Normal file
67
simulation_result_test.py
Normal file
@ -0,0 +1,67 @@
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from scripts.energy_system_retrofit_report import EnergySystemRetrofitReport
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from scripts import random_assignation
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from scripts.energy_system_sizing import SystemSizing
|
||||
from scripts.solar_angles import CitySolarAngles
|
||||
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||
from scripts.energy_system_retrofit_results import consumption_data, cost_data
|
||||
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
|
||||
from scripts.costs.cost import Cost
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS
|
||||
import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.pv_feasibility import pv_feasibility
|
||||
|
||||
# Specify the GeoJSON file path
|
||||
input_files_path = (Path(__file__).parent / 'input_files')
|
||||
input_files_path.mkdir(parents=True, exist_ok=True)
|
||||
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.0001)
|
||||
geojson_file_path = input_files_path / 'output_buildings.geojson'
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
energy_plus_output_path = output_path / 'energy_plus_outputs'
|
||||
energy_plus_output_path.mkdir(parents=True, exist_ok=True)
|
||||
simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve()
|
||||
simulation_results_path.mkdir(parents=True, exist_ok=True)
|
||||
sra_output_path = output_path / 'sra_outputs'
|
||||
sra_output_path.mkdir(parents=True, exist_ok=True)
|
||||
cost_analysis_output_path = output_path / 'cost_analysis'
|
||||
cost_analysis_output_path.mkdir(parents=True, exist_ok=True)
|
||||
city = GeometryFactory(file_type='geojson',
|
||||
path=geojson_file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
energy_plus_workflow(city, energy_plus_output_path)
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_systems_percentage)
|
||||
EnergySystemsFactory('montreal_custom', city).enrich()
|
||||
SystemSizing(city.buildings).montreal_custom()
|
||||
for i in range(12):
|
||||
monthly_cooling = 0
|
||||
for building in city.buildings:
|
||||
monthly_cooling += building.cooling_consumption[cte.MONTH][i] / (cte.WATTS_HOUR_TO_JULES * 1000)
|
||||
print(monthly_cooling)
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
|
||||
EnergySystemsFactory('montreal_future', city).enrich()
|
||||
for building in city.buildings:
|
||||
if building.energy_systems_archetype_name == 'PV+4Pipe+DHW':
|
||||
EnergySystemsSimulationFactory('archetype13', building=building, output_path=simulation_results_path).enrich()
|
||||
for i in range(12):
|
||||
monthly_cooling = 0
|
||||
for building in city.buildings:
|
||||
monthly_cooling += building.cooling_consumption[cte.MONTH][i] / (cte.WATTS_HOUR_TO_JULES * 1000)
|
||||
print(monthly_cooling)
|
@ -81,7 +81,7 @@ class TestConstructionFactory(TestCase):
|
||||
self.assertEqual(len(building.external_temperature), 0, 'building external temperature is calculated')
|
||||
self.assertEqual(len(building.global_horizontal), 0, 'building global horizontal is calculated')
|
||||
self.assertEqual(len(building.diffuse), 0, 'building diffuse is calculated')
|
||||
self.assertEqual(len(building.beam), 0, 'building beam is calculated')
|
||||
self.assertEqual(len(building.direct_normal), 0, 'building beam is calculated')
|
||||
self.assertIsNotNone(building.lower_corner, 'building lower corner is none')
|
||||
self.assertEqual(len(building.sensors), 0, 'building sensors are assigned')
|
||||
self.assertIsNotNone(building.internal_zones, 'no internal zones created')
|
||||
|
@ -52,7 +52,7 @@ class TestGeometryFactory(TestCase):
|
||||
self.assertEqual(len(building.external_temperature), 0, 'building external temperature is calculated')
|
||||
self.assertEqual(len(building.global_horizontal), 0, 'building global horizontal is calculated')
|
||||
self.assertEqual(len(building.diffuse), 0, 'building diffuse is calculated')
|
||||
self.assertEqual(len(building.beam), 0, 'building beam is calculated')
|
||||
self.assertEqual(len(building.direct_normal), 0, 'building beam is calculated')
|
||||
self.assertIsNotNone(building.lower_corner, 'building lower corner is none')
|
||||
self.assertEqual(len(building.sensors), 0, 'building sensors are assigned')
|
||||
self.assertIsNotNone(building.internal_zones, 'no internal zones created')
|
||||
|
@ -38,10 +38,10 @@ class TestSystemsCatalog(TestCase):
|
||||
catalog = EnergySystemsCatalogFactory('montreal_future').catalog
|
||||
|
||||
catalog_categories = catalog.names()
|
||||
archetypes = catalog.names('archetypes')
|
||||
self.assertEqual(13, len(archetypes['archetypes']))
|
||||
archetypes = catalog.names()
|
||||
self.assertEqual(15, len(archetypes['archetypes']))
|
||||
systems = catalog.names('systems')
|
||||
self.assertEqual(10, len(systems['systems']))
|
||||
self.assertEqual(12, len(systems['systems']))
|
||||
generation_equipments = catalog.names('generation_equipments')
|
||||
self.assertEqual(27, len(generation_equipments['generation_equipments']))
|
||||
with self.assertRaises(ValueError):
|
||||
|
@ -44,7 +44,7 @@ class TestUsageFactory(TestCase):
|
||||
self.assertEqual(len(building.external_temperature), 0, 'building external temperature is calculated')
|
||||
self.assertEqual(len(building.global_horizontal), 0, 'building global horizontal is calculated')
|
||||
self.assertEqual(len(building.diffuse), 0, 'building diffuse is calculated')
|
||||
self.assertEqual(len(building.beam), 0, 'building beam is calculated')
|
||||
self.assertEqual(len(building.direct_normal), 0, 'building beam is calculated')
|
||||
self.assertIsNotNone(building.lower_corner, 'building lower corner is none')
|
||||
self.assertEqual(len(building.sensors), 0, 'building sensors are assigned')
|
||||
self.assertIsNotNone(building.internal_zones, 'no internal zones created')
|
||||
|
Loading…
Reference in New Issue
Block a user