CityBEM workflow operational

This commit is contained in:
saeed-rayegan 2024-06-25 15:15:12 -04:00
parent 1e34687496
commit 265bb1e759
5 changed files with 401 additions and 16 deletions

View File

@ -2,7 +2,7 @@
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="hub" jdkType="Python SDK" />
<orderEntry type="jdk" jdkName="C:\Users\sr283\miniconda3\envs\Hub" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

View File

@ -1,4 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="hub" project-jdk-type="Python SDK" />
<component name="Black">
<option name="sdkName" value="C:\Users\sr283\miniconda3\envs\Hub" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="C:\Users\sr283\miniconda3\envs\Hub" project-jdk-type="Python SDK" />
</project>

View File

@ -1,16 +1,106 @@
"""
export a city into Stl format
export a city into STL format. (Each building is a solid, suitable for RC models such as CityBEM)
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
Copyright © 2024 Concordia CERC group
Project Coder Saeed Rayegan sr283100@gmail.com
"""
from pathlib import Path
import numpy as np
from scipy.spatial import Delaunay
from hub.exports.formats.triangular import Triangular
class Stl(Triangular):
class Stl:
"""
Export to STL
Export to stl format
"""
def __init__(self, city, path):
super().__init__(city, path, 'stl', write_mode='wb')
self._city = city
self._path = path
self._export()
def _triangulate_stl(self, points_2d, height):
#This function requires a set of 2D points for triangulation
# Assuming vertices is a NumPy array
tri = Delaunay(points_2d)
triangles2D = points_2d[tri.simplices]
triangles3D = []
# Iterate through each triangle in triangles2D
for triangle in triangles2D:
# Extract the existing x and y coordinates
x1, y1 = triangle[0]
x2, y2 = triangle[1]
x3, y3 = triangle[2]
# Create a 3D point with the specified height
point3D=[[x1, height, y1],[x2, height, y2],[x3, height, y3]]
# Append the 3D points to the triangle list
triangles3D.append(point3D)
return triangles3D
def _ground(self, coordinate):
x = coordinate[0] - self._city.lower_corner[0]
y = coordinate[1] - self._city.lower_corner[1]
z = coordinate[2] - self._city.lower_corner[2]
return x, y, z
def _to_vertex_stl(self, coordinate):
x, y, z = self._ground(coordinate)
return [x, z, -y] # Return as a list # to match opengl expectations (check it later)
def _to_normal_vertex_stl(self, coordinates):
ground_vertex = []
for coordinate in coordinates:
x, y, z = self._ground(coordinate)
ground_vertex.append(np.array([x, y, z]))
# recalculate the normal to get grounded values
edge_1 = ground_vertex[1] - ground_vertex[0]
edge_2 = ground_vertex[2] - ground_vertex[0]
normal = np.cross(edge_1, edge_2)
normal = normal / np.linalg.norm(normal)
# Convert normal to list for easier handling in the write operation
return normal.tolist()
def _export(self):
if self._city.name is None:
self._city.name = 'unknown_city'
stl_name = f'{self._city.name}.stl'
stl_file_path = (Path(self._path).resolve() / stl_name).resolve()
with open(stl_file_path, 'w', encoding='utf-8') as stl:
for building in self._city.buildings:
stl.write(f"solid building{building.name}\n")
for surface in building.surfaces:
vertices = []
normal = self._to_normal_vertex_stl(surface.perimeter_polygon.coordinates) #the normal vector should be calculated for every surface
for coordinate in surface.perimeter_polygon.coordinates:
vertex = self._to_vertex_stl(coordinate)
if vertex not in vertices:
vertices.append(vertex)
vertices = np.array(vertices)
#After collecting the unique vertices of a surface, there is a need to identify if it is located on the roof, floor, or side walls
roofStatus=1 #multiplication of the height of all vertices in a surface
heightSum=0 #summation of the height of all vertices in a surface
for vertex in vertices:
roofStatus *= vertex[1]
heightSum += vertex[1]
if roofStatus>0:
#this surface is the roof (first and third elements of vertices should be passed to the triangulation function)
triangles=self._triangulate_stl(vertices[:, [0, 2]], vertices[0][1])
elif roofStatus==0 and heightSum==0:
# this surface is the floor
triangles=self._triangulate_stl(vertices[:, [0, 2]], vertices[0][1])
elif roofStatus==0 and heightSum>0:
# this surface is a vertical wall (no need for triangulation as it can be done manually)
triangles = [[vertices[0],vertices[1],vertices[2]], [vertices[2], vertices[3], vertices[0]]]
# write the facets (triangles) in the stl file
for triangle in triangles:
stl.write(f"facet normal {normal[0]} {normal[2]} {normal[1]}\n") #following the idea that y axis is the height
stl.write(" outer loop\n")
for vertex in triangle:
stl.write(f" vertex {vertex[0]} {vertex[1]} {vertex[2]}\n")
stl.write(" endloop\n")
stl.write("endfacet\n")
stl.write(f"endsolid building{building.name}\n")

35
main.py
View File

@ -1,6 +1,31 @@
from scripts.geojson_creator import process_geojson
from pathlib import Path
from scripts.ep_run_enrich import energy_plus_workflow
from scripts.CityBEM_run import CityBEM_workflow
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.imports.results_factory import ResultFactory
import hub.helpers.constants as cte
from hub.exports.exports_factory import ExportsFactory
# Specify the GeoJSON file path
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.001)
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
# Specify the output path for the PDF file
output_path = (Path(__file__).parent / 'out_files').resolve()
# Create city object from GeoJSON file
city = GeometryFactory('geojson',
path=file_path,
height_field='height',
year_of_construction_field='year_of_construction',
function_field='function',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
# Enrich city data
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
CityBEM_workflow(city) #run the city using a fast City-Building Energy Model, CityBEM
print ("test done")

267
scripts/CityBEM_run.py Normal file
View File

@ -0,0 +1,267 @@
import pandas as pd
import sys
import csv
import json
from shapely.geometry import Polygon
from pathlib import Path
import subprocess
from hub.exports.exports_factory import ExportsFactory
from hub.imports.weather.epw_weather_parameters import EpwWeatherParameters
sys.path.append('./')
def CityBEM_workflow(city):
"""
Main function to run the CityBEM under the CityLayer's hub.
:Note: City object contains necessary attributes for the CityBEM workflow.
"""
#general output path for the CityLayer's hub
out_path = Path(__file__).parent.parent / 'out_files'
#create a directory for running CityBEM under the main out_path
CityBEM_path = out_path / 'CityBEM_input_output'
if not CityBEM_path.exists():
CityBEM_path.mkdir(parents=True, exist_ok=True)
# Define the path to the GeoJSON file
file_path = Path(__file__).parent.parent / 'input_files' / 'output_buildings.geojson'
#load the geojson file (for now this is necessary, later, it should be removed to extract building usage type code, center lat and lon). Later, these should be added to the building class
with open(file_path, 'r') as f:
geojson_data = json.load(f)
#call functions to provide inputs for CityBEM and finally run CityBEM
export_geometry(city, CityBEM_path)
export_building_info(city, CityBEM_path,geojson_data)
export_weather_data(city, CityBEM_path)
export_comprehensive_building_data(city, CityBEM_path)
run_CityBEM(CityBEM_path)
def export_geometry(city, CityBEM_path):
"""
Export the STL geometry from the hub and rename the exported geometry to a proper name for CityBEM.
:param city: City object containing necessary attributes for the workflow.
:param CityBEM_path: Path where CityBEM input and output files are stored.
"""
ExportsFactory('stl', city, CityBEM_path).export()
hubGeometryName = city.name + '.stl'
#delete old files related to geometry if they exist
CityBEMGeometryPath1 = CityBEM_path / 'Input_City_scale_geometry_CityBEM.stl'
CityBEMGeometryPath2 = CityBEM_path / 'Input_City_scale_geometry_CityBEM.txt' #delete this file to ensure CityBEM generates a new one based on the new input geometry
if CityBEMGeometryPath1.exists():
CityBEMGeometryPath1.unlink()
if CityBEMGeometryPath2.exists():
CityBEMGeometryPath2.unlink()
(CityBEM_path / hubGeometryName).rename(CityBEM_path / CityBEMGeometryPath1)
print("CityBEM input geometry file named Input_City_scale_geometry_CityBEM.stl file has been created successfully")
def get_building_info(geojson_data, building_id):
for feature in geojson_data['features']:
if feature['id'] == building_id:
function_code = feature['properties']['function']
coordinates = feature['geometry']['coordinates'][0]
#calculate the center of the polygon
polygon = Polygon(coordinates)
center = polygon.centroid
return function_code, (center.x, center.y)
return None, None
def export_building_info(city, CityBEM_path, geojson_file):
"""
Generate the input building information file for CityBEM.
:param city: City object containing necessary attributes for the workflow.
:param CityBEM_path: Path where CityBEM input and output files are stored.
"""
buildingInfo_path = CityBEM_path / 'Input_City_scale_building_info.txt'
with open(buildingInfo_path, "w", newline="") as textfile: #here, "w" refers to write mode. This deletes everything inside the file if the file exists.
writer = csv.writer(textfile, delimiter="\t") #use tab delimiter for all CityBEM inputs
writer.writerow(["building_stl", "building_osm", "constructionYear", "codeUsageType", "centerLongitude", "centerLatitude"]) # Header
for building in city.buildings:
function_code, center_coordinates = get_building_info(geojson_file, int (building.name))
row = ["b" + building.name, "999999", str(building.year_of_construction), str(function_code), str(center_coordinates[0]), str(center_coordinates[1])]
#note: based on CityBEM legacy, using a number like "999999" means that the data is not known/available.
writer.writerow(row)
print("CityBEM input file named Input_City_scale_building_info.txt file has been created successfully")
def export_weather_data(city, CityBEM_path):
"""
Generate the input weather data file compatible to CityBEM.
:param city: City object containing necessary attributes for the workflow.
:param CityBEM_path: Path where CityBEM input and output files are stored.
"""
weatherParameters = EpwWeatherParameters(city)._weather_values
weatherParameters = pd.DataFrame(weatherParameters) #transfer the weather data to a DataFrame
with open(CityBEM_path / 'Input_weatherdata.txt', 'w') as textfile:
# write the header information
textfile.write('Weather_timestep(s)\t3600\n')
textfile.write('Weather_columns\t11\n') #so far, 11 columns can be extracted from the epw weather data.
textfile.write('Date\tTime\tGHI\tDNI\tDHI\tTa\tTD\tTG\tRH\tWS\tWD\n')
for _, row in weatherParameters.iterrows():
#form the Date and Time
Date = f"{int(row['year'])}-{int(row['month']):02d}-{int(row['day']):02d}"
Time = f"{int(row['hour']):02d}:{int(row['minute']):02d}"
#retrieve the weather data
GHI = row['global_horizontal_radiation_wh_m2']
DNI = row['direct_normal_radiation_wh_m2']
DHI = row['diffuse_horizontal_radiation_wh_m2']
Ta = row['dry_bulb_temperature_c']
TD = row['dew_point_temperature_c']
TG = row['dry_bulb_temperature_c']
RH = row['relative_humidity_perc']
WS = row['wind_speed_m_s']
WD = row['wind_direction_deg']
#write the data in tab-separated format into the text file
textfile.write(f"{Date}\t{Time}\t{GHI}\t{DNI}\t{DHI}\t{Ta}\t{TD}\t{TG}\t{RH}\t{WS}\t{WD}\n")
print("CityBEM input file named Input_weatherdata.txt file has been created successfully")
def export_comprehensive_building_data(city, CityBEM_path):
"""
Export all other information from buildings (both physical and thermal properties)
:param city: City object containing necessary attributes for the workflow.
:param CityBEM_path: Path where CityBEM input and output files are stored.
"""
with open(CityBEM_path / 'comprehensive_building_data.csv', 'w', newline='') as textfile:
writer = csv.writer(textfile, delimiter=',')
header_row=[
#building general information
"buildingName",
"constructionYear",
"function",
"roofType",
"maxHeight",
"storyHeight",
"storiesAboveGround",
"floorArea",
"volume",
"totalFloorArea",
#roof details
"roofThickness",
"roofExternalH",
"roofInternalH",
"roofUvalue",
"roofWWR",
#floor details
"floorThickness",
"floorExternalH",
"floorInternalH",
"floorUvalue",
"floorWWR",
#wall details
"wallThickness",
"wallExternalH",
"wallInternalH",
"wallUValue",
"wallWWRNorth",
"wallWWREast",
"wallWWRSouth",
"wallWWRWest",
#window details
"windowOverallUValue",
"windowGValue",
"windowFrameRatio",
#building thermal details
"thermalBridgesExtraLoses",
"infiltrationRateOff",
"infiltrationRateOn"
]
writer.writerow(header_row) #write the header row
#extract and write comprehensive building data from the CityLayer's hub
for building in city.buildings:
#data should be appended based on the order of the headers.
row=[]
row.append("b" + building.name)
row.append(building.year_of_construction)
row.append(building.function)
row.append(building.roof_type)
row.append(building.max_height)
row.append(building._storeys_above_ground)
row.append(building.average_storey_height)
row.append(building.floor_area)
row.append(building.volume)
# Initialize boundary rows
row_roof = [None, None, None, None, None]
row_ground = [None, None, None, None, None]
row_wall = [None, None, None, None, None]
wallCount = 0 # so far, the data for one wall represents all the walls
for internal_zone in building.internal_zones:
totalFloorArea = internal_zone.thermal_zones_from_internal_zones[0].total_floor_area
row.append(totalFloorArea) #append the last item in "building general information"
WWR = internal_zone.thermal_archetype.constructions[0].window_ratio #window to wall ratio for the walls
northWWR = float(WWR['north'])/100. #the values from the hub is in percent. The conversion is needed.
eastWWR = float(WWR['east'])/100.
southWWR = float(WWR['south'])/100.
westWWR = float(WWR['west'])/100.
windowOverallUValue = internal_zone.thermal_archetype.constructions[0].window_overall_u_value
windowGValue = internal_zone.thermal_archetype.constructions[0].window_g_value
windowFrameRatio = internal_zone.thermal_archetype.constructions[0].window_frame_ratio
thermalBridgesExtraLoses = internal_zone.thermal_archetype.extra_loses_due_to_thermal_bridges
infiltrationRateOff = internal_zone.thermal_archetype.infiltration_rate_for_ventilation_system_off
infiltrationRateOn = internal_zone.thermal_archetype.infiltration_rate_for_ventilation_system_on
for boundary in internal_zone.thermal_zones_from_internal_zones:
for thermal_boundary in boundary.thermal_boundaries:
if thermal_boundary.type == "Roof":
row_roof = [
thermal_boundary.thickness,
thermal_boundary.he,
thermal_boundary.hi,
thermal_boundary.u_value,
thermal_boundary.window_ratio
]
elif thermal_boundary.type == "Ground":
row_ground = [
thermal_boundary.thickness,
thermal_boundary.he,
thermal_boundary.hi,
thermal_boundary.u_value,
thermal_boundary.window_ratio
]
elif thermal_boundary.type == "Wall" and wallCount == 0:
wallCount += 1
row_wall = [
thermal_boundary.thickness,
thermal_boundary.he,
thermal_boundary.hi,
thermal_boundary.u_value,
northWWR,
eastWWR,
southWWR,
westWWR
]
row.extend(row_roof)
row.extend(row_ground)
row.extend(row_wall)
#append window details
row.append(windowOverallUValue)
row.append(windowGValue)
row.append(windowFrameRatio)
#append building thermal details
row.append(thermalBridgesExtraLoses)
row.append(infiltrationRateOff)
row.append(infiltrationRateOn)
writer.writerow(row)
def run_CityBEM(CityBEM_path):
"""
Run the CityBEM executable after all inputs are processed.
:param CityBEM_path: Path where CityBEM input and output files are stored.
"""
try:
print('CityBEM execution began:')
CityBEM_exe = CityBEM_path / 'CityBEM.exe' #path to the CityBEM executable
#check if the executable file exists
if not CityBEM_exe.exists():
print(f"Error: {CityBEM_exe} does not exist.")
subprocess.run(str(CityBEM_exe), check=True, cwd=str(CityBEM_path)) #execute the CityBEM executable
print("CityBEM executable has finished successfully.")
except Exception as ex:
print(ex)
print('error: ', ex)
print('[CityBEM simulation abort]')
sys.stdout.flush() #print all the running information on the screen