fix: bugs in costing solved
This commit is contained in:
parent
1e8d064080
commit
28c642bacd
|
@ -172,8 +172,8 @@ class MontrealNewCatalog(Catalog):
|
|||
lower_heating_value=lower_heating_value,
|
||||
lower_heating_value_unit=lower_heating_value_unit)
|
||||
fuels.append(fuel)
|
||||
heating_equipment_maintenance = float(entry['maintenance']['heating_equipment']['#text']) / 1000
|
||||
cooling_equipment_maintenance = float(entry['maintenance']['cooling_equipment']['#text']) / 1000
|
||||
heating_equipment_maintenance = float(entry['maintenance']['heating_equipment']['#text'])
|
||||
cooling_equipment_maintenance = float(entry['maintenance']['cooling_equipment']['#text'])
|
||||
photovoltaic_system_maintenance = float(entry['maintenance']['photovoltaic_system']['#text'])
|
||||
co2_emissions = float(entry['co2_cost']['#text'])
|
||||
_operational_cost = OperationalCost(fuels,
|
||||
|
|
|
@ -25,8 +25,8 @@
|
|||
<D_services>
|
||||
<D20_onsite_generation>
|
||||
<D2010_photovoltaic_system>
|
||||
<investment_cost cost_unit="currency/m2"> 800 </investment_cost>
|
||||
<reposition cost_unit="currency/m2"> 800 </reposition>
|
||||
<investment_cost cost_unit="currency/m2"> 0 </investment_cost>
|
||||
<reposition cost_unit="currency/m2"> 0 </reposition>
|
||||
<lifetime_equipment lifetime="years"> 25 </lifetime_equipment>
|
||||
</D2010_photovoltaic_system>
|
||||
</D20_onsite_generation>
|
||||
|
@ -63,7 +63,7 @@
|
|||
<lifetime_equipment lifetime="years"> 15 </lifetime_equipment>
|
||||
</D302070_natural_gas_boiler>
|
||||
<D302080_electrical_boiler>
|
||||
<investment_cost cost_unit="currency/kW"> 300 </investment_cost>
|
||||
<investment_cost cost_unit="currency/kW"> 350 </investment_cost>
|
||||
<reposition cost_unit="currency/kW"> 300 </reposition>
|
||||
<lifetime_equipment lifetime="years"> 15 </lifetime_equipment>
|
||||
</D302080_electrical_boiler>
|
||||
|
@ -318,7 +318,7 @@
|
|||
<maintenance>
|
||||
<heating_equipment cost_unit="currency/kW">40</heating_equipment>
|
||||
<cooling_equipment cost_unit="currency/kW">40</cooling_equipment>
|
||||
<photovoltaic_system cost_unit="currency/m2">1</photovoltaic_system>
|
||||
<photovoltaic_system cost_unit="currency/m2">0</photovoltaic_system>
|
||||
</maintenance>
|
||||
<co2_cost cost_unit="currency/kgCO2"> 30 </co2_cost>
|
||||
</operational_cost>
|
||||
|
|
28
main.py
28
main.py
|
@ -15,11 +15,12 @@ from scripts.energy_system_sizing import SystemSizing
|
|||
from scripts.energy_system_retrofit_results import system_results, new_system_results
|
||||
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
|
||||
from scripts.costs.cost import Cost
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV
|
||||
import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
# Specify the GeoJSON file path
|
||||
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.0001)
|
||||
file_path = (Path(__file__).parent.parent / 'input_files' / f'{geojson_file}')
|
||||
# geojson_file = process_geojson(x=-73.5953602192335, y=45.492414530022515, diff=0.001)
|
||||
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
|
||||
# Specify the output path for the PDF file
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
# Create city object from GeoJSON file
|
||||
|
@ -34,12 +35,7 @@ ConstructionFactory('nrcan', city).enrich()
|
|||
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
ExportsFactory('sra', city, output_path).export()
|
||||
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
|
||||
subprocess.run(['sra', str(sra_path)])
|
||||
ResultFactory('sra', city, output_path).enrich()
|
||||
energy_plus_workflow(city)
|
||||
ExportsFactory('obj', city, output_path).export()
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_systems_percentage)
|
||||
EnergySystemsFactory('montreal_custom', city).enrich()
|
||||
SystemSizing(city.buildings).montreal_custom()
|
||||
|
@ -48,15 +44,21 @@ random_assignation.call_random(city.buildings, random_assignation.residential_ne
|
|||
EnergySystemsFactory('montreal_future', city).enrich()
|
||||
for building in city.buildings:
|
||||
EnergySystemsSimulationFactory('archetype1', building=building, output_path=output_path).enrich()
|
||||
new_system = system_results(city.buildings)
|
||||
EnergySystemAnalysisReport(city, output_path).create_report(current_system, new_system)
|
||||
print(building.energy_consumption_breakdown[cte.ELECTRICITY][cte.COOLING] +
|
||||
building.energy_consumption_breakdown[cte.ELECTRICITY][cte.HEATING] +
|
||||
building.energy_consumption_breakdown[cte.ELECTRICITY][cte.DOMESTIC_HOT_WATER])
|
||||
new_system = new_system_results(city.buildings)
|
||||
# EnergySystemAnalysisReport(city, output_path).create_report(current_system, new_system)
|
||||
for building in city.buildings:
|
||||
costs = Cost(building=building, retrofit_scenario=SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV).life_cycle
|
||||
costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle
|
||||
costs.to_csv(output_path / f'{building.name}_lcc.csv')
|
||||
(costs.loc['global_operational_costs', f'Scenario {SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV}'].
|
||||
(costs.loc['global_operational_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].
|
||||
to_csv(output_path / f'{building.name}_op.csv'))
|
||||
costs.loc['global_capital_costs', f'Scenario {SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
output_path / f'{building.name}_cc.csv')
|
||||
costs.loc['global_maintenance_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
output_path / f'{building.name}_m.csv')
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -52,17 +52,17 @@ class SystemSizing:
|
|||
if cte.HEATING in demand_types:
|
||||
if len(generation_systems) == 1:
|
||||
for generation in generation_systems:
|
||||
generation.nominal_heat_output = building.heating_peak_load[cte.YEAR][0] / 3.6e6
|
||||
generation.nominal_heat_output = building.heating_peak_load[cte.YEAR][0] / 3600
|
||||
else:
|
||||
for generation in generation_systems:
|
||||
generation.nominal_heat_output = building.heating_peak_load[cte.YEAR][0] / (len(generation_systems) * 3.6e6)
|
||||
generation.nominal_heat_output = building.heating_peak_load[cte.YEAR][0] / (len(generation_systems) * 3600)
|
||||
elif cte.COOLING in demand_types:
|
||||
if len(generation_systems) == 1:
|
||||
for generation in generation_systems:
|
||||
generation.nominal_cooling_output = building.cooling_peak_load[cte.YEAR][0] / 3.6e6
|
||||
generation.nominal_cooling_output = building.cooling_peak_load[cte.YEAR][0] / 3600
|
||||
else:
|
||||
for generation in generation_systems:
|
||||
generation.nominal_heat_output = building.cooling_peak_load[cte.YEAR][0] / (len(generation_systems) * 3.6e6)
|
||||
generation.nominal_heat_output = building.cooling_peak_load[cte.YEAR][0] / (len(generation_systems) * 3600)
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -86,7 +86,7 @@ class Archetype1:
|
|||
cop_curve_coefficients[3] * t_out_fahrenheit +
|
||||
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
|
||||
hp_electricity[i + 1] = q_hp[i + 1] / hp_efficiency
|
||||
else:
|
||||
hp_cop[i + 1] = 0
|
||||
hp_electricity[i + 1] = 0
|
||||
|
@ -127,6 +127,7 @@ class Archetype1:
|
|||
def cooling_system_simulation(self):
|
||||
hp = self.hvac_sizing()[0]
|
||||
eer_curve_coefficients = [float(coefficient) for coefficient in hp.cooling_efficiency_curve.coefficients]
|
||||
cooling_efficiency = float(hp.cooling_efficiency)
|
||||
demand = self._hourly_heating_demand
|
||||
hp.source_temperature = self._t_out
|
||||
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_eer"]
|
||||
|
@ -159,7 +160,7 @@ class Archetype1:
|
|||
eer_curve_coefficients[3] * t_out_fahrenheit +
|
||||
eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit))
|
||||
hp_electricity[i] = q_hp[i] / hp_eer[i]
|
||||
hp_electricity[i] = q_hp[i] / cooling_efficiency
|
||||
else:
|
||||
hp_eer[i] = 0
|
||||
hp_electricity[i] = 0
|
||||
|
|
Loading…
Reference in New Issue
Block a user