feature: add simultinity factor calculations

This commit is contained in:
Majid Rezaei 2024-06-23 18:27:31 -04:00 committed by Majid Rezaei
parent 20a801626a
commit 3f2358e6e5
2 changed files with 147 additions and 0 deletions

83
main.py
View File

@ -0,0 +1,83 @@
from pathlib import Path
from scripts.district_heating_network.directory_manager import DirectoryManager
import subprocess
from scripts.ep_run_enrich import energy_plus_workflow
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
import hub.helpers.constants as cte
from hub.exports.exports_factory import ExportsFactory
from scripts.pv_feasibility import pv_feasibility
import matplotlib.pyplot as plt
from scripts.district_heating_network.district_heating_network_creator import DistrictHeatingNetworkCreator
from scripts.district_heating_network.road_processor import road_processor
from scripts.district_heating_network.district_heating_factory import DistrictHeatingFactory
base_path = Path(__file__).parent
dir_manager = DirectoryManager(base_path)
# Input files directory
input_files_path = dir_manager.create_directory('input_files')
geojson_file_path = input_files_path / 'output_buildings.geojson'
# Output files directory
output_path = dir_manager.create_directory('out_files')
# Subdirectories for output files
energy_plus_output_path = dir_manager.create_directory('out_files/energy_plus_outputs')
simulation_results_path = dir_manager.create_directory('out_files/simulation_results')
sra_output_path = dir_manager.create_directory('out_files/sra_outputs')
cost_analysis_output_path = dir_manager.create_directory('out_files/cost_analysis')
# Select city area
location = [45.53067276979674, -73.70234652694087]
process_geojson(x=location[1], y=location[0], diff=0.001)
# Create city object
city = GeometryFactory(file_type='geojson',
path=geojson_file_path,
height_field='height',
year_of_construction_field='year_of_construction',
function_field='function',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
# WeatherFactory('epw', city).enrich()
# energy_plus_workflow(city, energy_plus_output_path)
# data[f'{city.buildings[0].function}'] = city.buildings[0].heating_demand[cte.YEAR][0] / 3.6e9
# city.buildings[0].function = cte.COMMERCIAL
# ConstructionFactory('nrcan', city).enrich()
# UsageFactory('nrcan', city).enrich()
# energy_plus_workflow(city, energy_plus_output_path)
# data[f'{city.buildings[0].function}'] = city.buildings[0].heating_demand[cte.YEAR][0] / 3.6e9
# city.buildings[0].function = cte.MEDIUM_OFFICE
# ConstructionFactory('nrcan', city).enrich()
# UsageFactory('nrcan', city).enrich()
# energy_plus_workflow(city, energy_plus_output_path)
# data[f'{city.buildings[0].function}'] = city.buildings[0].heating_demand[cte.YEAR][0] / 3.6e9
# categories = list(data.keys())
# values = list(data.values())
# # Plotting
# fig, ax = plt.subplots(figsize=(10, 6), dpi=96)
# fig.suptitle('Impact of different usages on yearly heating demand', fontsize=16, weight='bold', alpha=.8)
# ax.bar(categories, values, color=['#2196f3', '#ff5a5f', '#4caf50'], width=0.6, zorder=2)
# ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
# ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
# ax.set_xlabel('Building Type', fontsize=12, labelpad=10)
# ax.set_ylabel('Energy Consumption (MWh)', fontsize=14, labelpad=10)
# ax.yaxis.set_major_locator(plt.MaxNLocator(integer=True))
# ax.set_xticks(np.arange(len(categories)))
# ax.set_xticklabels(categories, rotation=45, ha='right')
# ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=0)
# ax.spines[['top', 'left', 'bottom']].set_visible(False)
# ax.spines['right'].set_linewidth(1.1)
# # Set a white background
# fig.patch.set_facecolor('white')
# # Adjust the margins around the plot area
# plt.subplots_adjust(left=0.1, right=0.9, top=0.85, bottom=0.25)
# # Save the plot
# plt.savefig('plot_nrcan.png', bbox_inches='tight')
# plt.close()
print('test')

View File

@ -0,0 +1,64 @@
import pandas as pd
import numpy as np
class DemandShiftProcessor:
def __init__(self, city):
self.city = city
def random_shift(self, series):
shift_amount = np.random.randint(0, 2)
return series.shift(shift_amount).fillna(series.shift(shift_amount - len(series)))
def process_demands(self):
building_dfs = []
for building in self.city.buildings:
df = self.convert_building_to_dataframe(building)
df.set_index('Date/Time', inplace=True)
shifted_demands = df.apply(self.random_shift, axis=0)
self.update_building_demands(building, shifted_demands)
building_dfs.append(shifted_demands)
combined_df = pd.concat(building_dfs, axis=1)
self.calculate_and_set_simultaneity_factor(combined_df)
def convert_building_to_dataframe(self, building):
data = {
"Date/Time": self.generate_date_time_index(),
"Heating_Demand": building.heating_demand["hour"],
"Cooling_Demand": building.cooling_demand["hour"]
}
return pd.DataFrame(data)
def generate_date_time_index(self):
# Generate hourly date time index for a full year in 2013
date_range = pd.date_range(start="2013-01-01 00:00:00", end="2013-12-31 23:00:00", freq='H')
return date_range.strftime('%m/%d %H:%M:%S').tolist()
def update_building_demands(self, building, shifted_demands):
heating_shifted = shifted_demands["Heating_Demand"]
cooling_shifted = shifted_demands["Cooling_Demand"]
building.heating_demand = self.calculate_new_demands(heating_shifted)
building.cooling_demand = self.calculate_new_demands(cooling_shifted)
def calculate_new_demands(self, shifted_series):
new_demand = {
"hour": shifted_series.tolist(),
"month": self.calculate_monthly_demand(shifted_series),
"year": [shifted_series.sum()]
}
return new_demand
def calculate_monthly_demand(self, series):
series.index = pd.to_datetime(series.index, format='%m/%d %H:%M:%S')
monthly_demand = series.resample('M').sum()
return monthly_demand.tolist()
def calculate_and_set_simultaneity_factor(self, combined_df):
total_demand_original = combined_df.sum(axis=1)
peak_total_demand_original = total_demand_original.max()
individual_peak_demands = combined_df.max(axis=0)
sum_individual_peak_demands = individual_peak_demands.sum()
self.city.simultaneity_factor = peak_total_demand_original / sum_individual_peak_demands