diff --git a/scripts/district_heating_network/simultinity_factor.py b/scripts/district_heating_network/simultinity_factor.py new file mode 100644 index 00000000..e9e4d470 --- /dev/null +++ b/scripts/district_heating_network/simultinity_factor.py @@ -0,0 +1,64 @@ +import pandas as pd +import numpy as np + + +class DemandShiftProcessor: + def __init__(self, city): + self.city = city + + def random_shift(self, series): + shift_amount = np.random.randint(0, 2) + return series.shift(shift_amount).fillna(series.shift(shift_amount - len(series))) + + def process_demands(self): + building_dfs = [] + + for building in self.city.buildings: + df = self.convert_building_to_dataframe(building) + df.set_index('Date/Time', inplace=True) + shifted_demands = df.apply(self.random_shift, axis=0) + self.update_building_demands(building, shifted_demands) + building_dfs.append(shifted_demands) + + combined_df = pd.concat(building_dfs, axis=1) + self.calculate_and_set_simultaneity_factor(combined_df) + + def convert_building_to_dataframe(self, building): + data = { + "Date/Time": self.generate_date_time_index(), + "Heating_Demand": building.heating_demand["hour"], + "Cooling_Demand": building.cooling_demand["hour"] + } + return pd.DataFrame(data) + + def generate_date_time_index(self): + # Generate hourly date time index for a full year in 2013 + date_range = pd.date_range(start="2013-01-01 00:00:00", end="2013-12-31 23:00:00", freq='H') + return date_range.strftime('%m/%d %H:%M:%S').tolist() + + def update_building_demands(self, building, shifted_demands): + heating_shifted = shifted_demands["Heating_Demand"] + cooling_shifted = shifted_demands["Cooling_Demand"] + + building.heating_demand = self.calculate_new_demands(heating_shifted) + building.cooling_demand = self.calculate_new_demands(cooling_shifted) + + def calculate_new_demands(self, shifted_series): + new_demand = { + "hour": shifted_series.tolist(), + "month": self.calculate_monthly_demand(shifted_series), + "year": [shifted_series.sum()] + } + return new_demand + + def calculate_monthly_demand(self, series): + series.index = pd.to_datetime(series.index, format='%m/%d %H:%M:%S') + monthly_demand = series.resample('M').sum() + return monthly_demand.tolist() + + def calculate_and_set_simultaneity_factor(self, combined_df): + total_demand_original = combined_df.sum(axis=1) + peak_total_demand_original = total_demand_original.max() + individual_peak_demands = combined_df.max(axis=0) + sum_individual_peak_demands = individual_peak_demands.sum() + self.city.simultaneity_factor = peak_total_demand_original / sum_individual_peak_demands