fix: DHW system optimization tested and confirmed

This commit is contained in:
Saeed Ranjbar 2024-11-12 09:32:09 +01:00
parent 2243e22866
commit 7944a36dbf
3 changed files with 63 additions and 3 deletions

View File

@ -38,7 +38,7 @@ class MultiObjectiveGeneticAlgorithm:
operators such as crossover and mutation rates.
"""
def __init__(self, population_size=50, generations=50, crossover_rate=0.9, mutation_rate=0.33,
def __init__(self, population_size=20, generations=20, crossover_rate=0.9, mutation_rate=0.33,
number_of_selected_solutions=None, optimization_scenario=None):
self.population_size = population_size
self.population = []
@ -804,9 +804,11 @@ class MultiObjectiveGeneticAlgorithm:
storage_type = storage_component['type']
capacity = storage_component['capacity']
volume = storage_component['volume']
heating_coil = storage_component['heating_coil_capacity']
selected_solutions[solution_type]['Storage Components'].append({'storage type': storage_type,
'capacity (W)': capacity,
'volume (m3)': volume})
'volume (m3)': volume,
'heating coil capacity (W)': heating_coil})
if 'energy-consumption' in self.optimization_scenario:
selected_solutions[solution_type]['total energy consumption kWh'] = individual['total_energy_consumption']
if 'cost' in self.optimization_scenario:

58
simulation_test.py Normal file
View File

@ -0,0 +1,58 @@
from pathlib import Path
import subprocess
from building_modelling.ep_run_enrich import energy_plus_workflow
from energy_system_modelling_package.energy_system_modelling_factories.montreal_energy_system_archetype_modelling_factory import \
MontrealEnergySystemArchetypesSimulationFactory
from energy_system_modelling_package.energy_system_modelling_factories.system_sizing_methods.genetic_algorithm.multi_objective_genetic_algorithm import MultiObjectiveGeneticAlgorithm
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.imports.results_factory import ResultFactory
import hub.helpers.constants as cte
from building_modelling.geojson_creator import process_geojson
from energy_system_modelling_package import random_assignation
from hub.imports.energy_systems_factory import EnergySystemsFactory
from energy_system_modelling_package.energy_system_modelling_factories.energy_system_sizing_factory import \
EnergySystemsSizingFactory
from energy_system_modelling_package.energy_system_retrofit.energy_system_retrofit_results import consumption_data, \
cost_data
from costing_package.cost import Cost
from costing_package.constants import *
from hub.exports.exports_factory import ExportsFactory
# Specify the GeoJSON file path
input_files_path = (Path(__file__).parent / 'input_files')
input_files_path.mkdir(parents=True, exist_ok=True)
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.00006)
geojson_file_path = input_files_path / 'output_buildings.geojson'
output_path = (Path(__file__).parent / 'out_files').resolve()
output_path.mkdir(parents=True, exist_ok=True)
energy_plus_output_path = output_path / 'energy_plus_outputs'
energy_plus_output_path.mkdir(parents=True, exist_ok=True)
simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve()
simulation_results_path.mkdir(parents=True, exist_ok=True)
sra_output_path = output_path / 'sra_outputs'
sra_output_path.mkdir(parents=True, exist_ok=True)
cost_analysis_output_path = output_path / 'cost_analysis'
cost_analysis_output_path.mkdir(parents=True, exist_ok=True)
city = GeometryFactory(file_type='geojson',
path=geojson_file_path,
height_field='height',
year_of_construction_field='year_of_construction',
function_field='function',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
ExportsFactory('sra', city, sra_output_path).export()
sra_path = (sra_output_path / f'{city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', city, sra_output_path).enrich()
energy_plus_workflow(city, energy_plus_output_path)
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
EnergySystemsFactory('montreal_future', city).enrich()
for building in city.buildings:
design_period_demands = MultiObjectiveGeneticAlgorithm(optimization_scenario='energy-consumption_cost').design_period_identification(city.buildings[0])
heating_demand = design_period_demands[cte.HEATING]['demands']

View File

@ -54,5 +54,5 @@ energy_plus_workflow(city, energy_plus_output_path)
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
EnergySystemsFactory('montreal_future', city).enrich()
for building in city.buildings:
energy_system = building.energy_systems[1]
energy_system = building.energy_systems[-1]
MultiObjectiveGeneticAlgorithm(optimization_scenario='energy-consumption_cost').solve_ga(building, energy_system)