CityBEM workflow operational

This commit is contained in:
saeed-rayegan 2024-06-25 15:15:12 -04:00
parent 1e34687496
commit 7ee9f03678
5 changed files with 307 additions and 15 deletions

View File

@ -2,7 +2,7 @@
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="hub" jdkType="Python SDK" />
<orderEntry type="jdk" jdkName="C:\Users\sr283\miniconda3\envs\Hub" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

View File

@ -1,4 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="hub" project-jdk-type="Python SDK" />
<component name="Black">
<option name="sdkName" value="C:\Users\sr283\miniconda3\envs\Hub" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="C:\Users\sr283\miniconda3\envs\Hub" project-jdk-type="Python SDK" />
</project>

View File

@ -1,16 +1,106 @@
"""
export a city into Stl format
export a city into STL format. (Each building is a solid, suitable for RC models such as CityBEM)
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
Copyright © 2024 Concordia CERC group
Project Coder Saeed Rayegan sr283100@gmail.com
"""
from pathlib import Path
import numpy as np
from scipy.spatial import Delaunay
from hub.exports.formats.triangular import Triangular
class Stl(Triangular):
class Stl:
"""
Export to STL
Export to stl format
"""
def __init__(self, city, path):
super().__init__(city, path, 'stl', write_mode='wb')
self._city = city
self._path = path
self._export()
def _triangulate_stl(self, points_2d, height):
#This function requires a set of 2D points for triangulation
# Assuming vertices is a NumPy array
tri = Delaunay(points_2d)
triangles2D = points_2d[tri.simplices]
triangles3D = []
# Iterate through each triangle in triangles2D
for triangle in triangles2D:
# Extract the existing x and y coordinates
x1, y1 = triangle[0]
x2, y2 = triangle[1]
x3, y3 = triangle[2]
# Create a 3D point with the specified height
point3D=[[x1, height, y1],[x2, height, y2],[x3, height, y3]]
# Append the 3D points to the triangle list
triangles3D.append(point3D)
return triangles3D
def _ground(self, coordinate):
x = coordinate[0] - self._city.lower_corner[0]
y = coordinate[1] - self._city.lower_corner[1]
z = coordinate[2] - self._city.lower_corner[2]
return x, y, z
def _to_vertex_stl(self, coordinate):
x, y, z = self._ground(coordinate)
return [x, z, -y] # Return as a list # to match opengl expectations (check it later)
def _to_normal_vertex_stl(self, coordinates):
ground_vertex = []
for coordinate in coordinates:
x, y, z = self._ground(coordinate)
ground_vertex.append(np.array([x, y, z]))
# recalculate the normal to get grounded values
edge_1 = ground_vertex[1] - ground_vertex[0]
edge_2 = ground_vertex[2] - ground_vertex[0]
normal = np.cross(edge_1, edge_2)
normal = normal / np.linalg.norm(normal)
# Convert normal to list for easier handling in the write operation
return normal.tolist()
def _export(self):
if self._city.name is None:
self._city.name = 'unknown_city'
stl_name = f'{self._city.name}.stl'
stl_file_path = (Path(self._path).resolve() / stl_name).resolve()
with open(stl_file_path, 'w', encoding='utf-8') as stl:
for building in self._city.buildings:
stl.write(f"solid building{building.name}\n")
for surface in building.surfaces:
vertices = []
normal = self._to_normal_vertex_stl(surface.perimeter_polygon.coordinates) #the normal vector should be calculated for every surface
for coordinate in surface.perimeter_polygon.coordinates:
vertex = self._to_vertex_stl(coordinate)
if vertex not in vertices:
vertices.append(vertex)
vertices = np.array(vertices)
#After collecting the unique vertices of a surface, there is a need to identify if it is located on the roof, floor, or side walls
roofStatus=1 #multiplication of the height of all vertices in a surface
heightSum=0 #summation of the height of all vertices in a surface
for vertex in vertices:
roofStatus *= vertex[1]
heightSum += vertex[1]
if roofStatus>0:
#this surface is the roof (first and third elements of vertices should be passed to the triangulation function)
triangles=self._triangulate_stl(vertices[:, [0, 2]], vertices[0][1])
elif roofStatus==0 and heightSum==0:
# this surface is the floor
triangles=self._triangulate_stl(vertices[:, [0, 2]], vertices[0][1])
elif roofStatus==0 and heightSum>0:
# this surface is a vertical wall (no need for triangulation as it can be done manually)
triangles = [[vertices[0],vertices[1],vertices[2]], [vertices[2], vertices[3], vertices[0]]]
# write the facets (triangles) in the stl file
for triangle in triangles:
stl.write(f"facet normal {normal[0]} {normal[2]} {normal[1]}\n") #following the idea that y axis is the height
stl.write(" outer loop\n")
for vertex in triangle:
stl.write(f" vertex {vertex[0]} {vertex[1]} {vertex[2]}\n")
stl.write(" endloop\n")
stl.write("endfacet\n")
stl.write(f"endsolid building{building.name}\n")

37
main.py
View File

@ -1,6 +1,35 @@
from scripts.geojson_creator import process_geojson
from pathlib import Path
from scripts.ep_run_enrich import energy_plus_workflow
from scripts.CityBEM_run import CityBEM_workflow
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.imports.results_factory import ResultFactory
from hub.exports.exports_factory import ExportsFactory
import csv
# Specify the GeoJSON file path
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.001)
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
# Specify the output path for the PDF file
output_path = (Path(__file__).parent / 'out_files').resolve()
# Create city object from GeoJSON file
city = GeometryFactory('geojson',
path=file_path,
height_field='height',
year_of_construction_field='year_of_construction',
function_field='function',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
# Enrich city data
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
ExportsFactory('obj', city, output_path).export()
ExportsFactory('stl', city, output_path).export()
WeatherFactory('epw', city).enrich()
CityBEM_workflow(city)
#energy_plus_workflow(city)
print('The CityBEM test workflow is done')

170
scripts/CityBEM_run.py Normal file
View File

@ -0,0 +1,170 @@
import pandas as pd
import sys
import csv
from pathlib import Path
import subprocess
from hub.helpers.dictionaries import Dictionaries
from hub.exports.exports_factory import ExportsFactory
from hub.imports.weather.epw_weather_parameters import EpwWeatherParameters
sys.path.append('./')
def CityBEM_workflow(city):
"""
Main function to run the CityBEM under the CityLayer's hub.
:Note: City object contains necessary attributes for the CityBEM workflow.
"""
#general output path for the CityLayer's hub
out_path = Path(__file__).parent.parent / 'out_files'
#create a directory for running CityBEM under the main out_path
CityBEM_path = out_path / 'CityBEM_input_output'
if not CityBEM_path.exists():
CityBEM_path.mkdir(parents=True, exist_ok=True)
#call functions to provide inputs for CityBEM and finally run CityBEM
export_geometry(city, CityBEM_path)
export_building_info(city, CityBEM_path)
export_weather_data(city, CityBEM_path)
export_comprehensive_building_data(city, CityBEM_path)
run_CityBEM(CityBEM_path)
def export_geometry(city, CityBEM_path):
"""
Export the STL geometry from the hub and rename the exported geometry to a proper name for CityBEM.
:param city: City object containing necessary attributes for the workflow.
:param CityBEM_path: Path where CityBEM input and output files are stored.
"""
ExportsFactory('stl', city, CityBEM_path).export()
hubGeometryName = city.name + '.stl'
#delete old files related to geometry if they exist
CityBEMGeometryPath1 = CityBEM_path / 'Input_City_scale_geometry_CityBEM.stl'
CityBEMGeometryPath2 = CityBEM_path / 'Input_City_scale_geometry_CityBEM.txt' #delete this file to ensure CityBEM generates a new one based on the new input geometry
if CityBEMGeometryPath1.exists():
CityBEMGeometryPath1.unlink()
if CityBEMGeometryPath2.exists():
CityBEMGeometryPath2.unlink()
(CityBEM_path / hubGeometryName).rename(CityBEM_path / CityBEMGeometryPath1)
print("CityBEM input geometry file named Input_City_scale_geometry_CityBEM.stl file has been created successfully")
def export_building_info(city, CityBEM_path):
"""
Generate the input building information file for CityBEM.
:param city: City object containing necessary attributes for the workflow.
:param CityBEM_path: Path where CityBEM input and output files are stored.
"""
buildingInfo_path = CityBEM_path / 'Input_City_scale_building_info.txt'
montreal_to_hub_function_dict = Dictionaries().montreal_function_to_hub_function
reverse_dict = {v: k for k, v in montreal_to_hub_function_dict.items()} #inverting the montreal_function_to_hub_function (this is not a good approach)
with open(buildingInfo_path, "w", newline="") as textfile: #here, "w" refers to write mode. This deletes if the file exists.
writer = csv.writer(textfile, delimiter="\t") #use tab delimiter for all CityBEM inputs
writer.writerow(["building_stl", "building_osm", "constructionYear", "codeUsageType", "centerLongitude", "centerLatitude"]) # Header
for building in city.buildings:
row = ["b" + building.name, "99999", str(building.year_of_construction), str(reverse_dict.get(building.function)), "-73.5688", "45.5018"]
writer.writerow(row)
print("CityBEM input file named Input_City_scale_building_info.txt file has been created successfully")
def export_weather_data(city, CityBEM_path):
"""
Generate the input weather data file compatible to CityBEM.
:param city: City object containing necessary attributes for the workflow.
:param CityBEM_path: Path where CityBEM input and output files are stored.
"""
weatherParameters = EpwWeatherParameters(city)._weather_values
weatherParameters = pd.DataFrame(weatherParameters) #transfer the weather data to a DataFrame
with open(CityBEM_path / 'Input_weatherdata.txt', 'w') as textfile:
# write the header information
textfile.write('Weather_timestep(s)\t3600\n')
textfile.write('Weather_columns\t11\n') #so far, 11 columns can be extracted from the epw weather data.
textfile.write('Date\tTime\tGHI\tDNI\tDHI\tTa\tTD\tTG\tRH\tWS\tWD\n')
for _, row in weatherParameters.iterrows():
#form the Date and Time
Date = f"{int(row['year'])}-{int(row['month']):02d}-{int(row['day']):02d}"
Time = f"{int(row['hour']):02d}:{int(row['minute']):02d}"
#retrieve the weather data
GHI = row['global_horizontal_radiation_wh_m2']
DNI = row['direct_normal_radiation_wh_m2']
DHI = row['diffuse_horizontal_radiation_wh_m2']
Ta = row['dry_bulb_temperature_c']
TD = row['dew_point_temperature_c']
TG = row['dry_bulb_temperature_c']
RH = row['relative_humidity_perc']
WS = row['wind_speed_m_s']
WD = row['wind_direction_deg']
#write the data in tab-separated format into the text file
textfile.write(f"{Date}\t{Time}\t{GHI}\t{DNI}\t{DHI}\t{Ta}\t{TD}\t{TG}\t{RH}\t{WS}\t{WD}\n")
print("CityBEM input file named Input_weatherdata.txt file has been created successfully")
def export_comprehensive_building_data(city, CityBEM_path):
"""
Export all other information from buildings (both physical and thermal properties)
:param city: City object containing necessary attributes for the workflow.
:param CityBEM_path: Path where CityBEM input and output files are stored.
"""
with open(CityBEM_path / 'comprehensive_building_data.csv', 'w', newline='') as textfile:
writer = csv.writer(textfile, delimiter=',')
header_row=["buildingName",
"constructionYear",
"function",
"roofType",
"maxHeight",
"storyHeight",
"storiesAboveGround",
"floorArea",
"volume",
"wallThickness",
"wallExternalH",
"wallInternalH",
"wallUValue"
]
writer.writerow(header_row) #write the header row
#write comprehensive building data from the CityLayer's hub
for building in city.buildings:
wallCount=0
for wall in building.walls:
if wallCount==0:
for thermalBoundary in wall.associated_thermal_boundaries:
wallThickness = thermalBoundary.thickness
wallExternalH=thermalBoundary.he
wallInternalH=thermalBoundary.hi
wallUValue=thermalBoundary.u_value
row = [
"b" + building.name,
building.year_of_construction,
building.function,
building.roof_type,
building.max_height,
building._storeys_above_ground,
building.average_storey_height,
building.floor_area,
building.volume,
wallThickness,
wallExternalH,
wallInternalH,
wallUValue
]
writer.writerow(row)
wallCount=wallCount+1
def run_CityBEM(CityBEM_path):
"""
Run the CityBEM executable after all inputs are processed.
:param CityBEM_path: Path where CityBEM input and output files are stored.
"""
try:
print('CityBEM execution began:')
CityBEM_exe = CityBEM_path / 'CityBEM.exe' #path to the CityBEM executable
#check if the executable file exists
if not CityBEM_exe.exists():
print(f"Error: {CityBEM_exe} does not exist.")
subprocess.run(str(CityBEM_exe), check=True, cwd=str(CityBEM_path)) #execute the CityBEM executable
print("CityBEM executable has finished successfully.")
except Exception as ex:
print(ex)
print('error: ', ex)
print('[CityBEM simulation abort]')
sys.stdout.flush() #print all the running information on the screen