feature: add district heating network sizing workflow
Reviewed-on: https://nextgenerations-cities.encs.concordia.ca/gitea/s_ranjbar/energy_system_modelling_workflow/pulls/18
This commit is contained in:
commit
9af87fe482
111
district_heating_network.py
Normal file
111
district_heating_network.py
Normal file
@ -0,0 +1,111 @@
|
||||
from scripts.district_heating_network.directory_manager import DirectoryManager
|
||||
import subprocess
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from scripts.energy_system_retrofit_report import EnergySystemRetrofitReport
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from scripts import random_assignation
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from scripts.energy_system_sizing import SystemSizing
|
||||
from scripts.solar_angles import CitySolarAngles
|
||||
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||
from scripts.energy_system_retrofit_results import consumption_data, cost_data
|
||||
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
|
||||
from scripts.costs.cost import Cost
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS
|
||||
import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.pv_feasibility import pv_feasibility
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from scripts.district_heating_network.district_heating_network_creator import DistrictHeatingNetworkCreator
|
||||
from scripts.district_heating_network.district_heating_factory import DistrictHeatingFactory
|
||||
import json
|
||||
|
||||
#%% --------------------------------------------------------------------------------------------------------------------
|
||||
# Manage File Path
|
||||
base_path = "./"
|
||||
dir_manager = DirectoryManager(base_path)
|
||||
|
||||
# Input files directory
|
||||
input_files_path = dir_manager.create_directory('input_files')
|
||||
geojson_file_path = input_files_path / 'output_buildings.geojson'
|
||||
pipe_data_file = input_files_path / 'pipe_data.json'
|
||||
|
||||
# Output files directory
|
||||
output_path = dir_manager.create_directory('out_files')
|
||||
|
||||
# Subdirectories for output files
|
||||
energy_plus_output_path = dir_manager.create_directory('out_files/energy_plus_outputs')
|
||||
simulation_results_path = dir_manager.create_directory('out_files/simulation_results')
|
||||
sra_output_path = dir_manager.create_directory('out_files/sra_outputs')
|
||||
cost_analysis_output_path = dir_manager.create_directory('out_files/cost_analysis')
|
||||
|
||||
#%% --------------------------------------------------------------------------------------------------------------------
|
||||
# Area Under Study
|
||||
location = [45.4934614681437, -73.57982834742518]
|
||||
|
||||
#%% --------------------------------------------------------------------------------------------------------------------
|
||||
# Create geojson of buildings
|
||||
process_geojson(x=location[1], y=location[0], diff=0.001)
|
||||
|
||||
#%% --------------------------------------------------------------------------------------------------------------------
|
||||
# Create ciry and run energyplus workflow
|
||||
city = GeometryFactory(file_type='geojson',
|
||||
path=geojson_file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
|
||||
# SRA
|
||||
ExportsFactory('sra', city, output_path).export()
|
||||
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
|
||||
subprocess.run(['sra', str(sra_path)])
|
||||
ResultFactory('sra', city, output_path).enrich()
|
||||
|
||||
# EP Workflow
|
||||
energy_plus_workflow(city, energy_plus_output_path)
|
||||
|
||||
#%% --------------------------------------------------------------------------------------------------------------------
|
||||
# District Heating Network Creator
|
||||
central_plant_locations = [(-73.57812571080625, 45.49499447346277)] # Add at least one location
|
||||
|
||||
roads_file = "./input_files/roads.json"
|
||||
|
||||
dhn_creator = DistrictHeatingNetworkCreator(geojson_file_path, roads_file, central_plant_locations)
|
||||
|
||||
network_graph = dhn_creator.run()
|
||||
|
||||
#%% --------------------------------------------------------------------------------------------------------------------
|
||||
# Pipe and pump sizing
|
||||
|
||||
with open(pipe_data_file, 'r') as f:
|
||||
pipe_data = json.load(f)
|
||||
|
||||
factory = DistrictHeatingFactory(
|
||||
city=city,
|
||||
graph=network_graph,
|
||||
supply_temperature=80 + 273, # in Kelvin
|
||||
return_temperature=60 + 273, # in Kelvin
|
||||
simultaneity_factor=0.9
|
||||
)
|
||||
|
||||
factory.enrich()
|
||||
factory.sizing()
|
||||
factory.calculate_diameters_and_costs(pipe_data)
|
||||
pipe_groups, total_cost = factory.analyze_costs()
|
||||
|
||||
# Save the pipe groups with total costs to a CSV file
|
||||
factory.save_pipe_groups_to_csv('pipe_groups.csv')
|
||||
|
||||
#%% --------------------------------------------------------------------------------------------------------------------
|
||||
|
191
input_files/pipe_data.json
Normal file
191
input_files/pipe_data.json
Normal file
@ -0,0 +1,191 @@
|
||||
[
|
||||
{
|
||||
"DN": 16,
|
||||
"inner_diameter": 16.1,
|
||||
"outer_diameter": 21.3,
|
||||
"thickness": 2.6,
|
||||
"cost_per_meter": 320
|
||||
},
|
||||
{
|
||||
"DN": 20,
|
||||
"inner_diameter": 21.7,
|
||||
"outer_diameter": 26.9,
|
||||
"thickness": 2.6,
|
||||
"cost_per_meter": 320
|
||||
},
|
||||
{
|
||||
"DN": 25,
|
||||
"inner_diameter": 27.3,
|
||||
"outer_diameter": 33.7,
|
||||
"thickness": 3.2,
|
||||
"cost_per_meter": 320
|
||||
},
|
||||
{
|
||||
"DN": 32,
|
||||
"inner_diameter": 37.2,
|
||||
"outer_diameter": 42.4,
|
||||
"thickness": 2.6,
|
||||
"cost_per_meter": 350
|
||||
},
|
||||
{
|
||||
"DN": 40,
|
||||
"inner_diameter": 43.1,
|
||||
"outer_diameter": 48.3,
|
||||
"thickness": 2.6,
|
||||
"cost_per_meter": 375
|
||||
},
|
||||
{
|
||||
"DN": 50,
|
||||
"inner_diameter": 54.5,
|
||||
"outer_diameter": 60.3,
|
||||
"thickness": 2.9,
|
||||
"cost_per_meter": 400
|
||||
},
|
||||
{
|
||||
"DN": 65,
|
||||
"inner_diameter": 70.3,
|
||||
"outer_diameter": 76.1,
|
||||
"thickness": 2.9,
|
||||
"cost_per_meter": 450
|
||||
},
|
||||
{
|
||||
"DN": 80,
|
||||
"inner_diameter": 82.5,
|
||||
"outer_diameter": 88.9,
|
||||
"thickness": 3.2,
|
||||
"cost_per_meter": 480
|
||||
},
|
||||
{
|
||||
"DN": 90,
|
||||
"inner_diameter": 100.8,
|
||||
"outer_diameter": 108,
|
||||
"thickness": 3.6,
|
||||
"cost_per_meter": 480
|
||||
},
|
||||
{
|
||||
"DN": 100,
|
||||
"inner_diameter": 107.1,
|
||||
"outer_diameter": 114.3,
|
||||
"thickness": 3.6,
|
||||
"cost_per_meter": 550
|
||||
},
|
||||
{
|
||||
"DN": 110,
|
||||
"inner_diameter": 125.8,
|
||||
"outer_diameter": 133,
|
||||
"thickness": 3.6,
|
||||
"cost_per_meter": 550
|
||||
},
|
||||
{
|
||||
"DN": 125,
|
||||
"inner_diameter": 132.5,
|
||||
"outer_diameter": 139.7,
|
||||
"thickness": 3.6,
|
||||
"cost_per_meter": 630
|
||||
},
|
||||
{
|
||||
"DN": 140,
|
||||
"inner_diameter": 151,
|
||||
"outer_diameter": 159,
|
||||
"thickness": 4,
|
||||
"cost_per_meter": 700
|
||||
},
|
||||
{
|
||||
"DN": 150,
|
||||
"inner_diameter": 160.3,
|
||||
"outer_diameter": 168.3,
|
||||
"thickness": 4,
|
||||
"cost_per_meter": 700
|
||||
},
|
||||
{
|
||||
"DN": 180,
|
||||
"inner_diameter": 184.7,
|
||||
"outer_diameter": 193.7,
|
||||
"thickness": 4.5,
|
||||
"cost_per_meter": 700
|
||||
},
|
||||
{
|
||||
"DN": 200,
|
||||
"inner_diameter": 210.1,
|
||||
"outer_diameter": 219.1,
|
||||
"thickness": 4.5,
|
||||
"cost_per_meter": 860
|
||||
},
|
||||
{
|
||||
"DN": 250,
|
||||
"inner_diameter": 263,
|
||||
"outer_diameter": 273,
|
||||
"thickness": 5,
|
||||
"cost_per_meter": 860
|
||||
},
|
||||
{
|
||||
"DN": 300,
|
||||
"inner_diameter": 312.7,
|
||||
"outer_diameter": 323.9,
|
||||
"thickness": 5.6,
|
||||
"cost_per_meter": 860
|
||||
},
|
||||
{
|
||||
"DN": 350,
|
||||
"inner_diameter": 344.4,
|
||||
"outer_diameter": 355.6,
|
||||
"thickness": 5.6,
|
||||
"cost_per_meter": 860
|
||||
},
|
||||
{
|
||||
"DN": 400,
|
||||
"inner_diameter": 393.8,
|
||||
"outer_diameter": 406.4,
|
||||
"thickness": 6.3,
|
||||
"cost_per_meter": 860
|
||||
},
|
||||
{
|
||||
"DN": 450,
|
||||
"inner_diameter": 444.4,
|
||||
"outer_diameter": 457,
|
||||
"thickness": 6.3,
|
||||
"cost_per_meter": 860
|
||||
},
|
||||
{
|
||||
"DN": 500,
|
||||
"inner_diameter": 495.4,
|
||||
"outer_diameter": 508,
|
||||
"thickness": 6.3,
|
||||
"cost_per_meter": 860
|
||||
},
|
||||
{
|
||||
"DN": 600,
|
||||
"inner_diameter": 595.8,
|
||||
"outer_diameter": 610,
|
||||
"thickness": 7.1,
|
||||
"cost_per_meter": 860
|
||||
},
|
||||
{
|
||||
"DN": 700,
|
||||
"inner_diameter": 696.8,
|
||||
"outer_diameter": 711,
|
||||
"thickness": 7.1,
|
||||
"cost_per_meter": 860
|
||||
},
|
||||
{
|
||||
"DN": 800,
|
||||
"inner_diameter": 797,
|
||||
"outer_diameter": 813,
|
||||
"thickness": 8,
|
||||
"cost_per_meter": 860
|
||||
},
|
||||
{
|
||||
"DN": 900,
|
||||
"inner_diameter": 894,
|
||||
"outer_diameter": 914,
|
||||
"thickness": 10,
|
||||
"cost_per_meter": 860
|
||||
},
|
||||
{
|
||||
"DN": 1000,
|
||||
"inner_diameter": 996,
|
||||
"outer_diameter": 1016,
|
||||
"thickness": 10,
|
||||
"cost_per_meter": 860
|
||||
}
|
||||
]
|
1585013
input_files/roads.json
Normal file
1585013
input_files/roads.json
Normal file
File diff suppressed because it is too large
Load Diff
43
main.py
43
main.py
@ -1,4 +1,5 @@
|
||||
from pathlib import Path
|
||||
from scripts.district_heating_network.directory_manager import DirectoryManager
|
||||
import subprocess
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
@ -22,23 +23,31 @@ import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.pv_feasibility import pv_feasibility
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
# Specify the GeoJSON file path
|
||||
data = {}
|
||||
input_files_path = (Path(__file__).parent / 'input_files')
|
||||
input_files_path.mkdir(parents=True, exist_ok=True)
|
||||
geojson_file = process_geojson(x=-73.58001358793511, y=45.496445294438715, diff=0.0001)
|
||||
from scripts.district_heating_network.district_heating_network_creator import DistrictHeatingNetworkCreator
|
||||
from scripts.district_heating_network.road_processor import road_processor
|
||||
from scripts.district_heating_network.district_heating_factory import DistrictHeatingFactory
|
||||
|
||||
base_path = Path(__file__).parent
|
||||
dir_manager = DirectoryManager(base_path)
|
||||
|
||||
# Input files directory
|
||||
input_files_path = dir_manager.create_directory('input_files')
|
||||
geojson_file_path = input_files_path / 'output_buildings.geojson'
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
energy_plus_output_path = output_path / 'energy_plus_outputs'
|
||||
energy_plus_output_path.mkdir(parents=True, exist_ok=True)
|
||||
simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve()
|
||||
simulation_results_path.mkdir(parents=True, exist_ok=True)
|
||||
sra_output_path = output_path / 'sra_outputs'
|
||||
sra_output_path.mkdir(parents=True, exist_ok=True)
|
||||
cost_analysis_output_path = output_path / 'cost_analysis'
|
||||
cost_analysis_output_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Output files directory
|
||||
output_path = dir_manager.create_directory('out_files')
|
||||
|
||||
# Subdirectories for output files
|
||||
energy_plus_output_path = dir_manager.create_directory('out_files/energy_plus_outputs')
|
||||
simulation_results_path = dir_manager.create_directory('out_files/simulation_results')
|
||||
sra_output_path = dir_manager.create_directory('out_files/sra_outputs')
|
||||
cost_analysis_output_path = dir_manager.create_directory('out_files/cost_analysis')
|
||||
|
||||
# Select city area
|
||||
location = [45.53067276979674, -73.70234652694087]
|
||||
process_geojson(x=location[1], y=location[0], diff=0.001)
|
||||
|
||||
# Create city object
|
||||
city = GeometryFactory(file_type='geojson',
|
||||
path=geojson_file_path,
|
||||
height_field='height',
|
||||
@ -83,4 +92,4 @@ UsageFactory('nrcan', city).enrich()
|
||||
# # Save the plot
|
||||
# plt.savefig('plot_nrcan.png', bbox_inches='tight')
|
||||
# plt.close()
|
||||
print('test')
|
||||
print('test')
|
||||
|
@ -14,7 +14,7 @@ import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||
# Specify the GeoJSON file path
|
||||
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.0005)
|
||||
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.0001)
|
||||
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
|
||||
# Specify the output path for the PDF file
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
@ -34,7 +34,7 @@ ExportsFactory('sra', city, output_path).export()
|
||||
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
|
||||
subprocess.run(['sra', str(sra_path)])
|
||||
ResultFactory('sra', city, output_path).enrich()
|
||||
energy_plus_workflow(city)
|
||||
energy_plus_workflow(city, output_path=output_path)
|
||||
solar_angles = CitySolarAngles(city.name,
|
||||
city.latitude,
|
||||
city.longitude,
|
||||
|
16
scripts/district_heating_network/directory_manager.py
Normal file
16
scripts/district_heating_network/directory_manager.py
Normal file
@ -0,0 +1,16 @@
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class DirectoryManager:
|
||||
def __init__(self, base_path):
|
||||
self.base_path = Path(base_path)
|
||||
self.directories = {}
|
||||
|
||||
def create_directory(self, relative_path):
|
||||
full_path = self.base_path / relative_path
|
||||
full_path.mkdir(parents=True, exist_ok=True)
|
||||
self.directories[relative_path] = full_path
|
||||
return full_path
|
||||
|
||||
def get_directory(self, relative_path):
|
||||
return self.directories.get(relative_path, None)
|
248
scripts/district_heating_network/district_heating_factory.py
Normal file
248
scripts/district_heating_network/district_heating_factory.py
Normal file
@ -0,0 +1,248 @@
|
||||
import CoolProp.CoolProp as CP
|
||||
import math
|
||||
import logging
|
||||
import numpy as np
|
||||
import csv
|
||||
|
||||
|
||||
class DistrictHeatingFactory:
|
||||
"""
|
||||
DistrictHeatingFactory class
|
||||
|
||||
This class is responsible for managing the district heating network, including
|
||||
enriching the network graph with building data, calculating flow rates,
|
||||
sizing pipes, and analyzing costs.
|
||||
"""
|
||||
|
||||
def __init__(self, city, graph, supply_temperature, return_temperature, simultaneity_factor):
|
||||
"""
|
||||
Initialize the DistrictHeatingFactory object.
|
||||
|
||||
:param city: The city object containing buildings and their heating demands.
|
||||
:param graph: The network graph representing the district heating network.
|
||||
:param supply_temperature: The supply temperature of the heating fluid in the network (°C).
|
||||
:param return_temperature: The return temperature of the heating fluid in the network (°C).
|
||||
:param simultaneity_factor: The simultaneity factor used to adjust flow rates for non-building pipes.
|
||||
"""
|
||||
self._city = city
|
||||
self._network_graph = graph
|
||||
self._supply_temperature = supply_temperature
|
||||
self._return_temperature = return_temperature
|
||||
self.simultaneity_factor = simultaneity_factor
|
||||
self.fluid = "Water" # The fluid used in the heating network
|
||||
|
||||
def enrich(self):
|
||||
"""
|
||||
Enrich the network graph nodes with the whole building object from the city buildings.
|
||||
|
||||
This method associates each building node in the network graph with its corresponding
|
||||
building object from the city, allowing access to heating demand data during calculations.
|
||||
"""
|
||||
for node_id, node_attrs in self._network_graph.nodes(data=True):
|
||||
if node_attrs.get('type') == 'building':
|
||||
building_name = node_attrs.get('name')
|
||||
building_found = False
|
||||
for building in self._city.buildings:
|
||||
if building.name == building_name:
|
||||
self._network_graph.nodes[node_id]['building_obj'] = building
|
||||
building_found = True
|
||||
break
|
||||
if not building_found:
|
||||
logging.error(msg=f"Building with name '{building_name}' not found in city.")
|
||||
|
||||
def calculate_flow_rates(self, A, Gext):
|
||||
"""
|
||||
Solve the linear system to find the flow rates in each branch.
|
||||
|
||||
:param A: The incidence matrix representing the network connections.
|
||||
:param Gext: The external flow rates for each node in the network.
|
||||
:return: The calculated flow rates for each edge, or None if an error occurs.
|
||||
"""
|
||||
try:
|
||||
G = np.linalg.lstsq(A, Gext, rcond=None)[0]
|
||||
return G
|
||||
except np.linalg.LinAlgError as e:
|
||||
logging.error(f"Error solving the linear system: {e}")
|
||||
return None
|
||||
|
||||
def switch_nodes(self, A, edge_index, node_index, edge):
|
||||
"""
|
||||
Switch the in and out nodes for the given edge in the incidence matrix A.
|
||||
|
||||
:param A: The incidence matrix representing the network connections.
|
||||
:param edge_index: The index of edges in the incidence matrix.
|
||||
:param node_index: The index of nodes in the incidence matrix.
|
||||
:param edge: The edge (u, v) to switch.
|
||||
"""
|
||||
u, v = edge
|
||||
i = node_index[u]
|
||||
j = node_index[v]
|
||||
k = edge_index[edge]
|
||||
A[i, k], A[j, k] = -A[i, k], -A[j, k]
|
||||
|
||||
def sizing(self):
|
||||
"""
|
||||
Calculate the hourly mass flow rates, assign them to the edges, and determine the pipe diameters.
|
||||
|
||||
This method generates the flow rates for each hour, adjusting the incidence matrix as needed to
|
||||
ensure all flow rates are positive. It also applies the simultaneity factor to non-building pipes.
|
||||
"""
|
||||
num_nodes = self._network_graph.number_of_nodes()
|
||||
num_edges = self._network_graph.number_of_edges()
|
||||
A = np.zeros((num_nodes, num_edges)) # Initialize incidence matrix
|
||||
node_index = {node: i for i, node in enumerate(self._network_graph.nodes())}
|
||||
edge_index = {edge: i for i, edge in enumerate(self._network_graph.edges())}
|
||||
|
||||
# Initialize mass flow rate attribute for each edge
|
||||
for u, v, data in self._network_graph.edges(data=True):
|
||||
self._network_graph.edges[u, v]['mass_flow_rate'] = {"hour": [], "peak": None}
|
||||
|
||||
# Get the length of the hourly demand for the first building (assuming all buildings have the same length)
|
||||
building = next(iter(self._city.buildings))
|
||||
num_hours = len(building.heating_demand['hour'])
|
||||
|
||||
# Loop through each hour to generate Gext and solve AG = Gext
|
||||
for hour in range(8760):
|
||||
Gext = np.zeros(num_nodes)
|
||||
|
||||
# Calculate the hourly mass flow rates for each edge and fill Gext
|
||||
for edge in self._network_graph.edges(data=True):
|
||||
u, v, data = edge
|
||||
for node in [u, v]:
|
||||
if self._network_graph.nodes[node].get('type') == 'building':
|
||||
building = self._network_graph.nodes[node].get('building_obj')
|
||||
if building and "hour" in building.heating_demand:
|
||||
hourly_demand = building.heating_demand["hour"][hour] # Get demand for current hour
|
||||
specific_heat_capacity = CP.PropsSI('C', 'T', (self._supply_temperature + self._return_temperature) / 2,
|
||||
'P', 101325, self.fluid)
|
||||
mass_flow_rate = hourly_demand / 3600 / (
|
||||
specific_heat_capacity * (self._supply_temperature - self._return_temperature))
|
||||
Gext[node_index[node]] += mass_flow_rate
|
||||
|
||||
# Update incidence matrix A
|
||||
i = node_index[u]
|
||||
j = node_index[v]
|
||||
k = edge_index[(u, v)]
|
||||
A[i, k] = 1
|
||||
A[j, k] = -1
|
||||
|
||||
# Solve for G (flow rates)
|
||||
G = self.calculate_flow_rates(A, Gext)
|
||||
if G is None:
|
||||
return
|
||||
|
||||
# Check for negative flow rates and adjust A accordingly
|
||||
iterations = 0
|
||||
max_iterations = num_edges * 2
|
||||
while any(flow_rate < 0 for flow_rate in G) and iterations < max_iterations:
|
||||
for idx, flow_rate in enumerate(G):
|
||||
if flow_rate < 0:
|
||||
G[idx] = -G[idx] # Invert the sign directly
|
||||
iterations += 1
|
||||
|
||||
# Store the final flow rates in the edges for this hour
|
||||
for idx, (edge, flow_rate) in enumerate(zip(self._network_graph.edges(), G)):
|
||||
u, v = edge
|
||||
if not (self._network_graph.nodes[u].get('type') == 'building' or self._network_graph.nodes[v].get(
|
||||
'type') == 'building'):
|
||||
flow_rate *= self.simultaneity_factor # Apply simultaneity factor for non-building pipes
|
||||
data = self._network_graph.edges[u, v]
|
||||
data['mass_flow_rate']["hour"].append(flow_rate) # Append the calculated flow rate
|
||||
|
||||
# Calculate the peak flow rate for each edge
|
||||
for u, v, data in self._network_graph.edges(data=True):
|
||||
data['mass_flow_rate']['peak'] = max(data['mass_flow_rate']['hour'])
|
||||
|
||||
def calculate_diameters_and_costs(self, pipe_data):
|
||||
"""
|
||||
Calculate the diameter and costs of the pipes based on the maximum flow rate in each edge.
|
||||
|
||||
:param pipe_data: A list of dictionaries containing pipe specifications, including inner diameters
|
||||
and costs per meter for different nominal diameters (DN).
|
||||
"""
|
||||
for u, v, data in self._network_graph.edges(data=True):
|
||||
flow_rate = data.get('mass_flow_rate', {}).get('peak')
|
||||
if flow_rate is not None:
|
||||
try:
|
||||
# Calculate the density of the fluid
|
||||
density = CP.PropsSI('D', 'T', (self._supply_temperature + self._return_temperature) / 2, 'P', 101325,
|
||||
self.fluid)
|
||||
velocity = 0.9 # Desired fluid velocity in m/s
|
||||
# Calculate the diameter of the pipe required for the given flow rate
|
||||
diameter = math.sqrt((4 * abs(flow_rate)) / (density * velocity * math.pi)) * 1000 # Convert to mm
|
||||
self._network_graph.edges[u, v]['diameter'] = diameter
|
||||
|
||||
# Match to the closest nominal diameter from the pipe data
|
||||
closest_pipe = self.match_nominal_diameter(diameter, pipe_data)
|
||||
self._network_graph.edges[u, v]['nominal_diameter'] = closest_pipe['DN']
|
||||
self._network_graph.edges[u, v]['cost_per_meter'] = closest_pipe['cost_per_meter']
|
||||
except Exception as e:
|
||||
logging.error(f"Error calculating diameter or matching nominal diameter for edge ({u}, {v}): {e}")
|
||||
|
||||
def match_nominal_diameter(self, diameter, pipe_data):
|
||||
"""
|
||||
Match the calculated diameter to the closest nominal diameter.
|
||||
|
||||
:param diameter: The calculated diameter of the pipe (in mm).
|
||||
:param pipe_data: A list of dictionaries containing pipe specifications, including inner diameters
|
||||
and costs per meter for different nominal diameters (DN).
|
||||
:return: The dictionary representing the pipe with the closest nominal diameter.
|
||||
"""
|
||||
closest_pipe = min(pipe_data, key=lambda x: abs(x['inner_diameter'] - diameter))
|
||||
return closest_pipe
|
||||
|
||||
def analyze_costs(self):
|
||||
"""
|
||||
Analyze the costs based on the nominal diameters of the pipes.
|
||||
|
||||
This method calculates the total cost of piping for each nominal diameter group
|
||||
and returns a summary of the grouped pipes and the total cost.
|
||||
|
||||
:return: A tuple containing the grouped pipe data and the total cost of piping.
|
||||
"""
|
||||
pipe_groups = {}
|
||||
total_cost = 0 # Initialize total cost
|
||||
|
||||
for u, v, data in self._network_graph.edges(data=True):
|
||||
dn = data.get('nominal_diameter')
|
||||
if dn is not None:
|
||||
pipe_length = self._network_graph.edges[u, v].get('length', 1) * 2 # Multiply by 2 for supply and return
|
||||
cost_per_meter = data.get('cost_per_meter', 0)
|
||||
|
||||
if dn not in pipe_groups:
|
||||
pipe_groups[dn] = {
|
||||
'DN': dn,
|
||||
'total_length': 0,
|
||||
'cost_per_meter': cost_per_meter
|
||||
}
|
||||
pipe_groups[dn]['total_length'] += pipe_length
|
||||
group_cost = pipe_length * cost_per_meter
|
||||
total_cost += group_cost # Add to total cost
|
||||
|
||||
# Calculate total cost for each group
|
||||
for group in pipe_groups.values():
|
||||
group['total_cost'] = group['total_length'] * group['cost_per_meter']
|
||||
|
||||
return pipe_groups, total_cost # Return both the grouped data and total cost
|
||||
|
||||
def save_pipe_groups_to_csv(self, filename):
|
||||
"""
|
||||
Save the pipe groups and their total lengths to a CSV file.
|
||||
|
||||
:param filename: The name of the CSV file to save the data to.
|
||||
"""
|
||||
pipe_groups, _ = self.analyze_costs()
|
||||
|
||||
with open(filename, mode='w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
# Write the header
|
||||
writer.writerow(["Nominal Diameter (DN)", "Total Length (m)", "Cost per Meter", "Total Cost"])
|
||||
|
||||
# Write the data for each pipe group
|
||||
for group in pipe_groups.values():
|
||||
writer.writerow([
|
||||
group['DN'],
|
||||
group['total_length'],
|
||||
group['cost_per_meter'],
|
||||
group['total_cost']
|
||||
])
|
@ -0,0 +1,372 @@
|
||||
import json
|
||||
import math
|
||||
import logging
|
||||
import matplotlib.pyplot as plt
|
||||
import networkx as nx
|
||||
from shapely.geometry import Polygon, Point, LineString
|
||||
from typing import List, Tuple
|
||||
from rtree import index
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
||||
logging.getLogger("numexpr").setLevel(logging.ERROR)
|
||||
|
||||
def haversine(lon1, lat1, lon2, lat2):
|
||||
"""
|
||||
Calculate the great-circle distance between two points
|
||||
on the Earth specified by their longitude and latitude.
|
||||
"""
|
||||
R = 6371000 # Radius of the Earth in meters
|
||||
phi1 = math.radians(lat1)
|
||||
phi2 = math.radians(lat2)
|
||||
delta_phi = math.radians(lat2 - lat1)
|
||||
delta_lambda = math.radians(lon2 - lon1)
|
||||
|
||||
a = math.sin(delta_phi / 2.0) ** 2 + \
|
||||
math.cos(phi1) * math.cos(phi2) * \
|
||||
math.sin(delta_lambda / 2.0) ** 2
|
||||
|
||||
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
|
||||
return R * c # Output distance in meters
|
||||
|
||||
class DistrictHeatingNetworkCreator:
|
||||
def __init__(self, buildings_file: str, roads_file: str, central_plant_locations: List[Tuple[float, float]]):
|
||||
"""
|
||||
Initialize the class with paths to the buildings and roads data files, and central plant locations.
|
||||
|
||||
:param buildings_file: Path to the GeoJSON file containing building data.
|
||||
:param roads_file: Path to the GeoJSON file containing roads data.
|
||||
:param central_plant_locations: List of tuples containing the coordinates of central plant locations.
|
||||
"""
|
||||
if len(central_plant_locations) < 1:
|
||||
raise ValueError("The list of central plant locations must have at least one member.")
|
||||
|
||||
self.buildings_file = buildings_file
|
||||
self.roads_file = roads_file
|
||||
self.central_plant_locations = central_plant_locations
|
||||
|
||||
def run(self) -> nx.Graph:
|
||||
"""
|
||||
Main method to execute the district heating network creation process.
|
||||
:return: NetworkX graph with nodes and edges representing the network.
|
||||
"""
|
||||
try:
|
||||
self._load_and_process_data()
|
||||
self._find_nearest_roads()
|
||||
self._find_nearest_points()
|
||||
self._break_down_roads()
|
||||
self._create_graph()
|
||||
self._create_mst()
|
||||
self._iteratively_remove_edges()
|
||||
self._add_centroids_to_mst()
|
||||
self._convert_edge_weights_to_meters()
|
||||
self._create_final_network_graph()
|
||||
return self.network_graph
|
||||
except Exception as e:
|
||||
logging.error(f"Error during network creation: {e}")
|
||||
raise
|
||||
|
||||
def _load_and_process_data(self):
|
||||
"""
|
||||
Load and process the building and road data.
|
||||
"""
|
||||
try:
|
||||
# Load building data
|
||||
with open(self.buildings_file, 'r') as file:
|
||||
city = json.load(file)
|
||||
|
||||
self.centroids = []
|
||||
self.building_names = []
|
||||
self.building_positions = []
|
||||
buildings = city['features']
|
||||
for building in buildings:
|
||||
coordinates = building['geometry']['coordinates'][0]
|
||||
building_polygon = Polygon(coordinates)
|
||||
centroid = building_polygon.centroid
|
||||
self.centroids.append(centroid)
|
||||
self.building_names.append(str(building['id']))
|
||||
self.building_positions.append((centroid.x, centroid.y))
|
||||
|
||||
# Add central plant locations as centroids
|
||||
for i, loc in enumerate(self.central_plant_locations, start=1):
|
||||
centroid = Point(loc)
|
||||
self.centroids.append(centroid)
|
||||
self.building_names.append(f'central_plant_{i}')
|
||||
self.building_positions.append((centroid.x, centroid.y))
|
||||
|
||||
# Load road data
|
||||
with open(self.roads_file, 'r') as file:
|
||||
roads = json.load(file)
|
||||
|
||||
line_features = [feature for feature in roads['features'] if feature['geometry']['type'] == 'LineString']
|
||||
|
||||
self.lines = [LineString(feature['geometry']['coordinates']) for feature in line_features]
|
||||
self.cleaned_lines = [LineString([line.coords[0], line.coords[-1]]) for line in self.lines]
|
||||
except Exception as e:
|
||||
logging.error(f"Error loading and processing data: {e}")
|
||||
raise
|
||||
|
||||
def _find_nearest_roads(self):
|
||||
"""
|
||||
Find the nearest road for each building centroid.
|
||||
"""
|
||||
try:
|
||||
self.closest_roads = []
|
||||
unique_roads_set = set()
|
||||
|
||||
# Create spatial index for roads
|
||||
idx = index.Index()
|
||||
for pos, line in enumerate(self.cleaned_lines):
|
||||
idx.insert(pos, line.bounds)
|
||||
|
||||
for centroid in self.centroids:
|
||||
min_distance = float('inf')
|
||||
closest_road = None
|
||||
for pos in idx.nearest(centroid.bounds, 10):
|
||||
road = self.cleaned_lines[pos]
|
||||
distance = road.distance(centroid)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
closest_road = road
|
||||
|
||||
if closest_road and closest_road.wkt not in unique_roads_set:
|
||||
unique_roads_set.add(closest_road.wkt)
|
||||
self.closest_roads.append(closest_road)
|
||||
except Exception as e:
|
||||
logging.error(f"Error finding nearest roads: {e}")
|
||||
raise
|
||||
|
||||
def _find_nearest_points(self):
|
||||
"""
|
||||
Find the nearest point on each closest road for each centroid.
|
||||
"""
|
||||
|
||||
def find_nearest_point_on_line(point: Point, line: LineString) -> Point:
|
||||
return line.interpolate(line.project(point))
|
||||
|
||||
try:
|
||||
self.nearest_points = []
|
||||
for centroid in self.centroids:
|
||||
min_distance = float('inf')
|
||||
closest_road = None
|
||||
for road in self.closest_roads:
|
||||
distance = centroid.distance(road)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
closest_road = road
|
||||
|
||||
if closest_road:
|
||||
nearest_point = find_nearest_point_on_line(centroid, closest_road)
|
||||
self.nearest_points.append(nearest_point)
|
||||
except Exception as e:
|
||||
logging.error(f"Error finding nearest points: {e}")
|
||||
raise
|
||||
|
||||
def _break_down_roads(self):
|
||||
"""
|
||||
Break down roads into segments connecting nearest points.
|
||||
"""
|
||||
|
||||
def break_down_roads(closest_roads: List[LineString], nearest_points_list: List[Point]) -> List[LineString]:
|
||||
new_segments = []
|
||||
for road in closest_roads:
|
||||
coords = list(road.coords)
|
||||
points_on_road = [point for point in nearest_points_list if road.distance(point) < 0.000000001]
|
||||
sorted_points = sorted(points_on_road, key=lambda point: road.project(point))
|
||||
sorted_points.insert(0, Point(coords[0]))
|
||||
sorted_points.append(Point(coords[-1]))
|
||||
for i in range(len(sorted_points) - 1):
|
||||
segment = LineString([sorted_points[i], sorted_points[i + 1]])
|
||||
new_segments.append(segment)
|
||||
return new_segments
|
||||
|
||||
try:
|
||||
self.new_segments = break_down_roads(self.closest_roads, self.nearest_points)
|
||||
self.cleaned_lines = [line for line in self.cleaned_lines if line not in self.closest_roads]
|
||||
self.cleaned_lines.extend(self.new_segments)
|
||||
except Exception as e:
|
||||
logging.error(f"Error breaking down roads: {e}")
|
||||
raise
|
||||
|
||||
def _create_graph(self):
|
||||
"""
|
||||
Create a NetworkX graph from the cleaned lines.
|
||||
"""
|
||||
try:
|
||||
self.G = nx.Graph()
|
||||
for line in self.cleaned_lines:
|
||||
coords = list(line.coords)
|
||||
for i in range(len(coords) - 1):
|
||||
u = coords[i]
|
||||
v = coords[i + 1]
|
||||
self.G.add_edge(u, v, weight=Point(coords[i]).distance(Point(coords[i + 1])))
|
||||
except Exception as e:
|
||||
logging.error(f"Error creating graph: {e}")
|
||||
raise
|
||||
|
||||
def _create_mst(self):
|
||||
"""
|
||||
Create a Minimum Spanning Tree (MST) from the graph.
|
||||
"""
|
||||
|
||||
def find_paths_between_nearest_points(g: nx.Graph, nearest_points: List[Point]) -> List[Tuple]:
|
||||
edges = []
|
||||
for i, start_point in enumerate(nearest_points):
|
||||
start = (start_point.x, start_point.y)
|
||||
for end_point in nearest_points[i + 1:]:
|
||||
end = (end_point.x, end_point.y)
|
||||
if nx.has_path(g, start, end):
|
||||
path = nx.shortest_path(g, source=start, target=end, weight='weight')
|
||||
path_edges = list(zip(path[:-1], path[1:]))
|
||||
edges.extend((u, v, g[u][v]['weight']) for u, v in path_edges)
|
||||
return edges
|
||||
|
||||
try:
|
||||
edges = find_paths_between_nearest_points(self.G, self.nearest_points)
|
||||
h = nx.Graph()
|
||||
h.add_weighted_edges_from(edges)
|
||||
mst = nx.minimum_spanning_tree(h, weight='weight')
|
||||
final_edges = []
|
||||
for u, v in mst.edges():
|
||||
if nx.has_path(self.G, u, v):
|
||||
path = nx.shortest_path(self.G, source=u, target=v, weight='weight')
|
||||
path_edges = list(zip(path[:-1], path[1:]))
|
||||
final_edges.extend((x, y, self.G[x][y]['weight']) for x, y in path_edges)
|
||||
self.final_mst = nx.Graph()
|
||||
self.final_mst.add_weighted_edges_from(final_edges)
|
||||
except Exception as e:
|
||||
logging.error(f"Error creating MST: {e}")
|
||||
raise
|
||||
|
||||
def _iteratively_remove_edges(self):
|
||||
"""
|
||||
Iteratively remove edges that do not have any nearest points and have one end with only one connection.
|
||||
Also remove nodes that don't have any connections and street nodes with only one connection.
|
||||
"""
|
||||
nearest_points_tuples = [(point.x, point.y) for point in self.nearest_points]
|
||||
|
||||
def find_edges_to_remove(graph: nx.Graph) -> List[Tuple]:
|
||||
edges_to_remove = []
|
||||
for u, v, d in graph.edges(data=True):
|
||||
if u not in nearest_points_tuples and v not in nearest_points_tuples:
|
||||
if graph.degree(u) == 1 or graph.degree(v) == 1:
|
||||
edges_to_remove.append((u, v, d))
|
||||
return edges_to_remove
|
||||
|
||||
def find_nodes_to_remove(graph: nx.Graph) -> List[Tuple]:
|
||||
nodes_to_remove = []
|
||||
for node in graph.nodes():
|
||||
if graph.degree(node) == 0:
|
||||
nodes_to_remove.append(node)
|
||||
return nodes_to_remove
|
||||
|
||||
try:
|
||||
edges_to_remove = find_edges_to_remove(self.final_mst)
|
||||
self.final_mst_steps = [list(self.final_mst.edges(data=True))]
|
||||
|
||||
while edges_to_remove or find_nodes_to_remove(self.final_mst):
|
||||
self.final_mst.remove_edges_from(edges_to_remove)
|
||||
nodes_to_remove = find_nodes_to_remove(self.final_mst)
|
||||
self.final_mst.remove_nodes_from(nodes_to_remove)
|
||||
edges_to_remove = find_edges_to_remove(self.final_mst)
|
||||
self.final_mst_steps.append(list(self.final_mst.edges(data=True)))
|
||||
|
||||
def find_single_connection_street_nodes(graph: nx.Graph) -> List[Tuple]:
|
||||
single_connection_street_nodes = []
|
||||
for node in graph.nodes():
|
||||
if node not in nearest_points_tuples and graph.degree(node) == 1:
|
||||
single_connection_street_nodes.append(node)
|
||||
return single_connection_street_nodes
|
||||
|
||||
single_connection_street_nodes = find_single_connection_street_nodes(self.final_mst)
|
||||
|
||||
while single_connection_street_nodes:
|
||||
for node in single_connection_street_nodes:
|
||||
neighbors = list(self.final_mst.neighbors(node))
|
||||
self.final_mst.remove_node(node)
|
||||
for neighbor in neighbors:
|
||||
if self.final_mst.degree(neighbor) == 0:
|
||||
self.final_mst.remove_node(neighbor)
|
||||
single_connection_street_nodes = find_single_connection_street_nodes(self.final_mst)
|
||||
self.final_mst_steps.append(list(self.final_mst.edges(data=True)))
|
||||
except Exception as e:
|
||||
logging.error(f"Error iteratively removing edges: {e}")
|
||||
raise
|
||||
|
||||
def _add_centroids_to_mst(self):
|
||||
"""
|
||||
Add centroids to the final MST graph and connect them to their associated node on the graph.
|
||||
"""
|
||||
try:
|
||||
for i, centroid in enumerate(self.centroids):
|
||||
building_name = self.building_names[i]
|
||||
pos = (centroid.x, centroid.y)
|
||||
node_type = 'building' if 'central_plant' not in building_name else 'generation'
|
||||
self.final_mst.add_node(pos, type=node_type, name=building_name, pos=pos)
|
||||
|
||||
nearest_point = None
|
||||
min_distance = float('inf')
|
||||
for node in self.final_mst.nodes():
|
||||
if self.final_mst.nodes[node].get('type') != 'building' and self.final_mst.nodes[node].get('type') != 'generation':
|
||||
distance = centroid.distance(Point(node))
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
nearest_point = node
|
||||
|
||||
if nearest_point:
|
||||
self.final_mst.add_edge(pos, nearest_point, weight=min_distance)
|
||||
except Exception as e:
|
||||
logging.error(f"Error adding centroids to MST: {e}")
|
||||
raise
|
||||
|
||||
def _convert_edge_weights_to_meters(self):
|
||||
"""
|
||||
Convert all edge weights in the final MST graph to meters using the Haversine formula.
|
||||
"""
|
||||
try:
|
||||
for u, v, data in self.final_mst.edges(data=True):
|
||||
distance = haversine(u[0], u[1], v[0], v[1])
|
||||
self.final_mst[u][v]['weight'] = distance
|
||||
except Exception as e:
|
||||
logging.error(f"Error converting edge weights to meters: {e}")
|
||||
raise
|
||||
|
||||
def _create_final_network_graph(self):
|
||||
"""
|
||||
Create the final network graph with the required attributes from the final MST.
|
||||
"""
|
||||
self.network_graph = nx.Graph()
|
||||
node_id = 1
|
||||
node_mapping = {}
|
||||
for node in self.final_mst.nodes:
|
||||
pos = node
|
||||
if 'type' in self.final_mst.nodes[node]:
|
||||
if self.final_mst.nodes[node]['type'] == 'building':
|
||||
name = self.final_mst.nodes[node]['name']
|
||||
node_type = 'building'
|
||||
elif self.final_mst.nodes[node]['type'] == 'generation':
|
||||
name = self.final_mst.nodes[node]['name']
|
||||
node_type = 'generation'
|
||||
else:
|
||||
name = f'junction_{node_id}'
|
||||
node_type = 'junction'
|
||||
self.network_graph.add_node(node_id, name=name, type=node_type, pos=pos)
|
||||
node_mapping[node] = node_id
|
||||
node_id += 1
|
||||
for u, v, data in self.final_mst.edges(data=True):
|
||||
u_new = node_mapping[u]
|
||||
v_new = node_mapping[v]
|
||||
length = data['weight']
|
||||
self.network_graph.add_edge(u_new, v_new, length=length)
|
||||
|
||||
def plot_network_graph(self):
|
||||
"""
|
||||
Plot the network graph using matplotlib and networkx.
|
||||
"""
|
||||
plt.figure(figsize=(15, 10))
|
||||
pos = {node: data['pos'] for node, data in self.network_graph.nodes(data=True)}
|
||||
nx.draw_networkx_nodes(self.network_graph, pos, node_color='blue', node_size=50)
|
||||
nx.draw_networkx_edges(self.network_graph, pos, edge_color='gray')
|
||||
plt.title('District Heating Network Graph')
|
||||
plt.axis('off')
|
||||
plt.show()
|
56
scripts/district_heating_network/road_processor.py
Normal file
56
scripts/district_heating_network/road_processor.py
Normal file
@ -0,0 +1,56 @@
|
||||
from pathlib import Path
|
||||
from shapely.geometry import Polygon, Point, shape
|
||||
import json
|
||||
|
||||
|
||||
def road_processor(x, y, diff):
|
||||
"""
|
||||
Processes a .JSON file to find roads that have at least one node within a specified polygon.
|
||||
|
||||
Parameters:
|
||||
x (float): The x-coordinate of the center of the selection box.
|
||||
y (float): The y-coordinate of the center of the selection box.
|
||||
diff (float): The half-width of the selection box.
|
||||
|
||||
Returns:
|
||||
str: The file path of the output GeoJSON file containing the selected roads.
|
||||
"""
|
||||
diff += 2 * diff
|
||||
# Define the selection polygon
|
||||
selection_box = Polygon([
|
||||
[x + diff, y - diff],
|
||||
[x - diff, y - diff],
|
||||
[x - diff, y + diff],
|
||||
[x + diff, y + diff]
|
||||
])
|
||||
|
||||
# Define input and output file paths
|
||||
geojson_file = Path("./input_files/roads.json").resolve()
|
||||
output_file = Path('./input_files/output_roads.geojson').resolve()
|
||||
|
||||
# Initialize a list to store the roads in the region
|
||||
roads_in_region = []
|
||||
|
||||
# Read the GeoJSON file
|
||||
with open(geojson_file, 'r') as file:
|
||||
roads = json.load(file)
|
||||
line_features = [feature for feature in roads['features'] if feature['geometry']['type'] == 'LineString']
|
||||
|
||||
# Check each road feature
|
||||
for feature in line_features:
|
||||
road_shape = shape(feature['geometry'])
|
||||
# Check if any node of the road is inside the selection box
|
||||
if any(selection_box.contains(Point(coord)) for coord in road_shape.coords):
|
||||
roads_in_region.append(feature)
|
||||
|
||||
# Create a new GeoJSON structure with the selected roads
|
||||
output_geojson = {
|
||||
"type": "FeatureCollection",
|
||||
"features": roads_in_region
|
||||
}
|
||||
|
||||
# Write the selected roads to the output file
|
||||
with open(output_file, 'w') as outfile:
|
||||
json.dump(output_geojson, outfile)
|
||||
|
||||
return output_file
|
@ -1,54 +0,0 @@
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from scripts.energy_system_retrofit_report import EnergySystemRetrofitReport
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from scripts import random_assignation
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from scripts.energy_system_sizing import SystemSizing
|
||||
from scripts.solar_angles import CitySolarAngles
|
||||
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||
from scripts.energy_system_retrofit_results import consumption_data, cost_data
|
||||
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
|
||||
from scripts.costs.cost import Cost
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS
|
||||
import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.pv_feasibility import pv_feasibility
|
||||
|
||||
# Specify the GeoJSON file path
|
||||
input_files_path = (Path(__file__).parent / 'input_files')
|
||||
input_files_path.mkdir(parents=True, exist_ok=True)
|
||||
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.0001)
|
||||
geojson_file_path = input_files_path / 'output_buildings.geojson'
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
energy_plus_output_path = output_path / 'energy_plus_outputs'
|
||||
energy_plus_output_path.mkdir(parents=True, exist_ok=True)
|
||||
simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve()
|
||||
simulation_results_path.mkdir(parents=True, exist_ok=True)
|
||||
sra_output_path = output_path / 'sra_outputs'
|
||||
sra_output_path.mkdir(parents=True, exist_ok=True)
|
||||
cost_analysis_output_path = output_path / 'cost_analysis'
|
||||
cost_analysis_output_path.mkdir(parents=True, exist_ok=True)
|
||||
city = GeometryFactory(file_type='geojson',
|
||||
path=geojson_file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
energy_plus_workflow(city, energy_plus_output_path)
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
|
||||
EnergySystemsFactory('montreal_future', city).enrich()
|
||||
for building in city.buildings:
|
||||
EnergySystemsSimulationFactory('archetype1', building=building, output_path=simulation_results_path).enrich()
|
||||
|
Loading…
Reference in New Issue
Block a user