diff --git a/central.py b/central.py new file mode 100644 index 00000000..8b584208 --- /dev/null +++ b/central.py @@ -0,0 +1,75 @@ +import pandas as pd +from scripts.geojson_creator import process_geojson +from pathlib import Path +import subprocess +from scripts.ep_run_enrich import energy_plus_workflow +from hub.imports.geometry_factory import GeometryFactory +from hub.helpers.dictionaries import Dictionaries +from hub.imports.construction_factory import ConstructionFactory +from hub.imports.usage_factory import UsageFactory +from hub.imports.weather_factory import WeatherFactory +from hub.imports.results_factory import ResultFactory +from scripts import random_assignation +from hub.imports.energy_systems_factory import EnergySystemsFactory +from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory +from scripts.costs.cost import Cost +from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV +import hub.helpers.constants as cte +from hub.exports.exports_factory import ExportsFactory +from scripts.solar_angles import CitySolarAngles +from scripts.pv_sizing_and_simulation import PVSizingSimulation +# Specify the GeoJSON file path + +location = [45.49034212153445, -73.61435648647083] +geojson_file = process_geojson(x=location[1], y=location[0], diff=0.0001) +file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson') +# Specify the output path for the PDF file +output_path = (Path(__file__).parent / 'out_files').resolve() +# Create city object from GeoJSON file +city = GeometryFactory('geojson', + path=file_path, + height_field='height', + year_of_construction_field='year_of_construction', + function_field='function', + function_to_hub=Dictionaries().montreal_function_to_hub_function).city +# Enrich city data +ConstructionFactory('nrcan', city).enrich() + +UsageFactory('nrcan', city).enrich() +WeatherFactory('epw', city).enrich() +ResultFactory('energy_plus_multiple_buildings', city, output_path).enrich() +ExportsFactory('sra', city, output_path).export() +sra_path = (output_path / f'{city.name}_sra.xml').resolve() +subprocess.run(['sra', str(sra_path)]) +ResultFactory('sra', city, output_path).enrich() +solar_angles = CitySolarAngles(city.name, + city.latitude, + city.longitude, + tilt_angle=45, + surface_azimuth_angle=180).calculate +random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage) +EnergySystemsFactory('montreal_future', city).enrich() +for building in city.buildings: + EnergySystemsSimulationFactory('archetype13', building=building, output_path=output_path).enrich() + ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]] + pv_sizing_simulation = PVSizingSimulation(building, + solar_angles, + tilt_angle=45, + module_height=1, + module_width=2, + ghi=ghi) + +for building in city.buildings: + costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle + costs.to_csv(output_path / f'{building.name}_lcc.csv') + costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv( + output_path / f'{building.name}_cc.csv') + # (costs.loc['global_operational_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}']. + # to_csv(output_path / f'{building.name}_op.csv')) + # costs.loc['global_maintenance_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv( + # output_path / f'{building.name}_m.csv') + print(building.name) + investment_cost = costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems'] + lcc_capex = costs.loc['total_capital_costs_systems', f'Scenario {SYSTEM_RETROFIT_AND_PV}'] + print(investment_cost) + print(lcc_capex) diff --git a/main.py b/main.py index e69de29b..3921027d 100644 --- a/main.py +++ b/main.py @@ -0,0 +1,78 @@ +import pandas as pd +from scripts.geojson_creator import process_geojson +from pathlib import Path +import subprocess +from scripts.ep_run_enrich import energy_plus_workflow +from hub.imports.geometry_factory import GeometryFactory +from hub.helpers.dictionaries import Dictionaries +from hub.imports.construction_factory import ConstructionFactory +from hub.imports.usage_factory import UsageFactory +from hub.imports.weather_factory import WeatherFactory +from hub.imports.results_factory import ResultFactory +from scripts import random_assignation +from hub.imports.energy_systems_factory import EnergySystemsFactory +from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory +from scripts.costs.cost import Cost +from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV +import hub.helpers.constants as cte +from hub.exports.exports_factory import ExportsFactory +from scripts.solar_angles import CitySolarAngles +from scripts.pv_sizing_and_simulation import PVSizingSimulation +# Specify the GeoJSON file path +location = [45.49034212153445, -73.61435648647083] +geojson_file = process_geojson(x=location[1], y=location[0], diff=0.0005) +file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson') +# Specify the output path for the PDF file +output_path = (Path(__file__).parent / 'out_files').resolve() +# Create city object from GeoJSON file +city = GeometryFactory('geojson', + path=file_path, + height_field='height', + year_of_construction_field='year_of_construction', + function_field='function', + function_to_hub=Dictionaries().montreal_function_to_hub_function).city +# Enrich city data +ConstructionFactory('nrcan', city).enrich() + +UsageFactory('nrcan', city).enrich() +WeatherFactory('epw', city).enrich() +ExportsFactory('sra', city, output_path).export() +sra_path = (output_path / f'{city.name}_sra.xml').resolve() +subprocess.run(['sra', str(sra_path)]) +ResultFactory('sra', city, output_path).enrich() +solar_angles = CitySolarAngles(city.name, + city.latitude, + city.longitude, + tilt_angle=45, + surface_azimuth_angle=180).calculate +energy_plus_workflow(city) +random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage) +EnergySystemsFactory('montreal_future', city).enrich() +for building in city.buildings: + EnergySystemsSimulationFactory('archetype13', building=building, output_path=output_path).enrich() + # ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]] + # pv_sizing_simulation = PVSizingSimulation(building, + # solar_angles, + # tilt_angle=45, + # module_height=1, + # module_width=2, + # ghi=ghi) +sum_floor_area = 0 +for building in city.buildings: + for thermal_zone in building.thermal_zones_from_internal_zones: + sum_floor_area += thermal_zone.total_floor_area + costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle + # costs.to_csv(output_path / f'{building.name}_lcc.csv') + costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv( + output_path / f'{building.name}_cc.csv') + # (costs.loc['global_operational_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}']. + # to_csv(output_path / f'{building.name}_op.csv')) + # costs.loc['global_maintenance_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv( + # output_path / f'{building.name}_m.csv') + print(building.name) + investment_cost = costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems'] + lcc_capex = costs.loc['total_capital_costs_systems', f'Scenario {SYSTEM_RETROFIT_AND_PV}'] + print(investment_cost) + print(lcc_capex) + +print(sum_floor_area) \ No newline at end of file diff --git a/scripts/costs/total_maintenance_costs.py b/scripts/costs/total_maintenance_costs.py index 0f5b7dfc..7a11b9b6 100644 --- a/scripts/costs/total_maintenance_costs.py +++ b/scripts/costs/total_maintenance_costs.py @@ -57,14 +57,15 @@ class TotalMaintenanceCosts(CostBase): for energy_system in energy_systems: if cte.COOLING in energy_system.demand_types: for generation_system in energy_system.generation_systems: - if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR: - cooling_equipments['air_source_heat_pump'] = generation_system.nominal_cooling_output / 1000 - elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.GROUND: - cooling_equipments['ground_source_heat_pump'] = generation_system.nominal_cooling_output / 1000 - elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.WATER: - cooling_equipments['water_source_heat_pump'] = generation_system.nominal_cooling_output / 1000 - else: - cooling_equipments['general_cooling_equipment'] = generation_system.nominal_cooling_output / 1000 + if generation_system.fuel_type == cte.ELECTRICITY: + if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR: + cooling_equipments['air_source_heat_pump'] = generation_system.nominal_cooling_output / 1000 + elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.GROUND: + cooling_equipments['ground_source_heat_pump'] = generation_system.nominal_cooling_output / 1000 + elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.WATER: + cooling_equipments['water_source_heat_pump'] = generation_system.nominal_cooling_output / 1000 + else: + cooling_equipments['general_cooling_equipment'] = generation_system.nominal_cooling_output / 1000 if cte.HEATING in energy_system.demand_types: for generation_system in energy_system.generation_systems: if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR: @@ -94,7 +95,7 @@ class TotalMaintenanceCosts(CostBase): else: dhw_equipments['general_heating_equipment'] = generation_system.nominal_heat_output / 1000 - print(dhw_equipments) + for heating_equipment in heating_equipments: component = self.search_hvac_equipment(heating_equipment) maintenance_cost = component.maintenance[0] diff --git a/scripts/system_simulation_models/archetype13.py b/scripts/system_simulation_models/archetype13.py index 786115db..17a44c94 100644 --- a/scripts/system_simulation_models/archetype13.py +++ b/scripts/system_simulation_models/archetype13.py @@ -30,11 +30,11 @@ class Archetype13: heat_pump = self._hvac_system.generation_systems[1] boiler = self._hvac_system.generation_systems[0] thermal_storage = boiler.energy_storage_systems[0] - heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600) - heat_pump.nominal_cooling_output = round(self._cooling_peak_load / 3600) - boiler.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600) + heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load) + heat_pump.nominal_cooling_output = round(self._cooling_peak_load) + boiler.nominal_heat_output = round(0.5 * self._heating_peak_load) thermal_storage.volume = round( - (self._heating_peak_load * storage_factor) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25)) + (self._heating_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25)) return heat_pump, boiler, thermal_storage def dhw_sizing(self):