feature: add simultinity factor calculations
This commit is contained in:
parent
335b316072
commit
c40900bd30
31
main.py
31
main.py
|
@ -0,0 +1,31 @@
|
|||
from pathlib import Path
|
||||
from scripts.district_heating_network.simultinity_factor import DemandShiftProcessor
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
import hub.helpers.constants as cte
|
||||
|
||||
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
|
||||
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
|
||||
# Create city object from GeoJSON file
|
||||
city = GeometryFactory('geojson',
|
||||
path=file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
|
||||
# Enrich city data
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
|
||||
energy_plus_workflow(city)
|
||||
|
||||
processor = DemandShiftProcessor(city)
|
||||
processor.process_demands()
|
64
scripts/district_heating_network/simultinity_factor.py
Normal file
64
scripts/district_heating_network/simultinity_factor.py
Normal file
|
@ -0,0 +1,64 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
|
||||
class DemandShiftProcessor:
|
||||
def __init__(self, city):
|
||||
self.city = city
|
||||
|
||||
def random_shift(self, series):
|
||||
shift_amount = np.random.randint(0, 2)
|
||||
return series.shift(shift_amount).fillna(series.shift(shift_amount - len(series)))
|
||||
|
||||
def process_demands(self):
|
||||
building_dfs = []
|
||||
|
||||
for building in self.city.buildings:
|
||||
df = self.convert_building_to_dataframe(building)
|
||||
df.set_index('Date/Time', inplace=True)
|
||||
shifted_demands = df.apply(self.random_shift, axis=0)
|
||||
self.update_building_demands(building, shifted_demands)
|
||||
building_dfs.append(shifted_demands)
|
||||
|
||||
combined_df = pd.concat(building_dfs, axis=1)
|
||||
self.calculate_and_set_simultaneity_factor(combined_df)
|
||||
|
||||
def convert_building_to_dataframe(self, building):
|
||||
data = {
|
||||
"Date/Time": self.generate_date_time_index(),
|
||||
"Heating_Demand": building.heating_demand["hour"],
|
||||
"Cooling_Demand": building.cooling_demand["hour"]
|
||||
}
|
||||
return pd.DataFrame(data)
|
||||
|
||||
def generate_date_time_index(self):
|
||||
# Generate hourly date time index for a full year in 2013
|
||||
date_range = pd.date_range(start="2013-01-01 00:00:00", end="2013-12-31 23:00:00", freq='H')
|
||||
return date_range.strftime('%m/%d %H:%M:%S').tolist()
|
||||
|
||||
def update_building_demands(self, building, shifted_demands):
|
||||
heating_shifted = shifted_demands["Heating_Demand"]
|
||||
cooling_shifted = shifted_demands["Cooling_Demand"]
|
||||
|
||||
building.heating_demand = self.calculate_new_demands(heating_shifted)
|
||||
building.cooling_demand = self.calculate_new_demands(cooling_shifted)
|
||||
|
||||
def calculate_new_demands(self, shifted_series):
|
||||
new_demand = {
|
||||
"hour": shifted_series.tolist(),
|
||||
"month": self.calculate_monthly_demand(shifted_series),
|
||||
"year": [shifted_series.sum()]
|
||||
}
|
||||
return new_demand
|
||||
|
||||
def calculate_monthly_demand(self, series):
|
||||
series.index = pd.to_datetime(series.index, format='%m/%d %H:%M:%S')
|
||||
monthly_demand = series.resample('M').sum()
|
||||
return monthly_demand.tolist()
|
||||
|
||||
def calculate_and_set_simultaneity_factor(self, combined_df):
|
||||
total_demand_original = combined_df.sum(axis=1)
|
||||
peak_total_demand_original = total_demand_original.max()
|
||||
individual_peak_demands = combined_df.max(axis=0)
|
||||
sum_individual_peak_demands = individual_peak_demands.sum()
|
||||
self.city.simultaneity_factor = peak_total_demand_original / sum_individual_peak_demands
|
Loading…
Reference in New Issue
Block a user