feat: action plan code added

This commit is contained in:
Saeed Ranjbar 2024-12-05 15:28:01 +01:00
parent a143100b39
commit f48f118443
7 changed files with 8968 additions and 40 deletions

View File

@ -28,12 +28,12 @@ class ArchetypeCluster1:
def heating_system_simulation(self):
building_heating_hourly_consumption = []
boiler = self.building.energy_systems[1].generation_systems[0]
hp = self.building.energy_systems[1].generation_systems[1]
tes = self.building.energy_systems[1].generation_systems[0].energy_storage_systems[0]
boiler = self.building.energy_systems[0].generation_systems[0]
hp = self.building.energy_systems[0].generation_systems[1]
tes = self.building.energy_systems[0].generation_systems[0].energy_storage_systems[0]
heating_demand_joules = self.building.heating_demand[cte.HOUR]
heating_peak_load_watts = self.building.heating_peak_load[cte.YEAR][0]
upper_limit_tes_heating = 55
upper_limit_tes_heating = 45
outdoor_temperature = self.building.external_temperature[cte.HOUR]
results = HeatPumpBoilerTesHeating(hp=hp,
boiler=boiler,
@ -55,7 +55,7 @@ class ArchetypeCluster1:
return results, building_heating_hourly_consumption
def cooling_system_simulation(self):
hp = self.building.energy_systems[2].generation_systems[0]
hp = self.building.energy_systems[1].generation_systems[0]
cooling_demand_joules = self.building.cooling_demand[cte.HOUR]
cooling_peak_load = self.building.cooling_peak_load[cte.YEAR][0]
cutoff_temperature = 11

View File

@ -62,41 +62,54 @@ class HeatPumpBoilerTesHeating:
ambient_temperature=t_out[i],
dt=self.dt)
# hp operation
if t_tank[i + 1] < 40:
q_hp[i + 1] = hp.nominal_heat_output
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
elif 40 <= t_tank[i + 1] < self.upper_limit_tes and q_hp[i] == 0:
q_hp[i + 1] = 0
m_ch[i + 1] = 0
t_sup_hp[i + 1] = t_tank[i + 1]
elif 40 <= t_tank[i + 1] < self.upper_limit_tes and q_hp[i] > 0:
q_hp[i + 1] = hp.nominal_heat_output
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
else:
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
if q_hp[i + 1] > 0:
if hp.source_medium == cte.AIR and self.hp.supply_medium == cte.WATER:
hp_cop[i + 1] = self.hp_characteristics.air_to_water_cop(source_temperature[i + 1], t_tank[i + 1], mode=cte.HEATING)
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
else:
hp_cop[i + 1] = 0
hp_electricity[i + 1] = 0
# boiler operation
if q_hp[i + 1] > 0:
if t_sup_hp[i + 1] < 45:
q_boiler[i + 1] = boiler.nominal_heat_output
elif demand[i + 1] > 0.5 * self.heating_peak_load / self.dt:
q_boiler[i + 1] = 0.5 * boiler.nominal_heat_output
boiler_energy_consumption[i + 1] = q_boiler[i + 1] / float(boiler.heat_efficiency)
if boiler.fuel_type == cte.ELECTRICITY:
boiler_fuel_consumption[i + 1] = boiler_energy_consumption[i + 1]
if t_out[i + 1] > -20:
if t_tank[i + 1] < 40:
q_hp[i + 1] = hp.nominal_heat_output
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
elif 40 <= t_tank[i + 1] < self.upper_limit_tes and q_hp[i] == 0:
q_hp[i + 1] = 0
m_ch[i + 1] = 0
t_sup_hp[i + 1] = t_tank[i + 1]
elif 40 <= t_tank[i + 1] < self.upper_limit_tes and q_hp[i] > 0:
q_hp[i + 1] = hp.nominal_heat_output
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
else:
# TODO: Other fuels should be considered
boiler_fuel_consumption[i + 1] = (q_boiler[i + 1] * self.dt) / (
float(boiler.heat_efficiency) * cte.NATURAL_GAS_LHV)
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
if q_hp[i + 1] > 0:
if hp.source_medium == cte.AIR and self.hp.supply_medium == cte.WATER:
hp_cop[i + 1] = self.hp_characteristics.air_to_water_cop(source_temperature[i + 1], t_tank[i + 1], mode=cte.HEATING)
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
else:
hp_cop[i + 1] = 0
hp_electricity[i + 1] = 0
else:
q_hp[i + 1] = 0
t_sup_hp[i + 1] = t_tank[i + 1]
if t_tank[i + 1] < 40:
q_boiler[i + 1] = boiler.nominal_heat_output
m_ch[i + 1] = q_boiler[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
elif 40 <= t_tank[i + 1] < self.upper_limit_tes and q_boiler[i] == 0:
q_boiler[i + 1] = 0
m_ch[i + 1] = 0
elif 40 <= t_tank[i + 1] < self.upper_limit_tes and q_boiler[i] > 0:
q_boiler[i + 1] = boiler.nominal_heat_output
m_ch[i + 1] = q_boiler[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
else:
q_boiler[i + 1], m_ch[i + 1] = 0, 0
boiler_energy_consumption[i + 1] = q_boiler[i + 1] / float(boiler.heat_efficiency)
if boiler.fuel_type == cte.ELECTRICITY:
boiler_fuel_consumption[i + 1] = boiler_energy_consumption[i + 1]
else:
# TODO: Other fuels should be considered
boiler_fuel_consumption[i + 1] = (q_boiler[i + 1] * self.dt) / (
float(boiler.heat_efficiency) * cte.NATURAL_GAS_LHV)
if m_ch[i + 1] > 0:
t_sup_boiler[i + 1] = t_sup_hp[i + 1] + (q_boiler[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY))
else:
t_sup_boiler[i + 1] = t_sup_hp[i + 1]
# heating coil operation
if t_tank[i + 1] < 35:
q_coil[i + 1] = heating_coil_nominal_output

View File

@ -78,7 +78,7 @@ class PeakLoadSizing:
generation_system.nominal_cooling_output = design_load
else:
if demand_type == cte.HEATING or demand_type == cte.DOMESTIC_HOT_WATER:
generation_system.nominal_heat_output = round(((1 - default_primary_unit_percentage) * design_load /
generation_system.nominal_heat_output = round((default_primary_unit_percentage * design_load /
(len(energy_system.generation_systems) - 1)))
elif demand_type == cte.COOLING and cooling_equipments_number > 1:
generation_system.nominal_cooling_output = round(((1 - default_primary_unit_percentage) * design_load /

View File

@ -650,7 +650,7 @@
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>0.95</heat_efficiency>
<heat_efficiency>1</heat_efficiency>
<reversible>False</reversible>
<fuel_type>electricity</fuel_type>
<source_medium/>

8761
input_files/cbt_data.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,95 @@
{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
-73.64073884959656,
45.45877247795022
],
[
-73.64086100464694,
45.45862178887526
],
[
-73.64105216087044,
45.45869645702069
],
[
-73.64104414833393,
45.45871090890856
],
[
-73.64114029876905,
45.45874864437542
],
[
-73.64131199597576,
45.45853026004602
],
[
-73.6412181348363,
45.45849413020409
],
[
-73.64123314695125,
45.45847517640908
],
[
-73.64113756981872,
45.45843937477906
],
[
-73.64119661747132,
45.45836250649597
],
[
-73.64108252539663,
45.45831757886663
],
[
-73.64101346966737,
45.45840252013562
],
[
-73.6408593452855,
45.45834214866821
],
[
-73.64078214107344,
45.458449110498606
],
[
-73.64076509395674,
45.458468507887375
],
[
-73.64088276379393,
45.45851271533863
],
[
-73.64069790898249,
45.4587603867237
],
[
-73.64073884959656,
45.45877247795022
]
]
]
},
"id": 200054,
"properties": {
"name": "03065114",
"address": "rue Sherbrooke Ouest (MTL+MTO+WMT) 7141",
"function": "6821",
"height": 8,
"year_of_construction": 1916
}
}
]
}

59
loyola.py Normal file
View File

@ -0,0 +1,59 @@
from pathlib import Path
from energy_system_modelling_package.energy_system_modelling_factories.energy_system_sizing_factory import \
EnergySystemsSizingFactory
from energy_system_modelling_package.energy_system_modelling_factories.montreal_energy_system_archetype_modelling_factory import \
MontrealEnergySystemArchetypesSimulationFactory
from hub.imports.energy_systems_factory import EnergySystemsFactory
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
import pandas as pd
import hub.helpers.constants as cte
from costing_package.constants import *
from costing_package.cost import Cost
# Specify the GeoJSON file path
input_files_path = (Path(__file__).parent / 'input_files')
input_files_path.mkdir(parents=True, exist_ok=True)
geojson_file_path = input_files_path / 'rf_building.geojson'
output_path = (Path(__file__).parent / 'out_files').resolve()
output_path.mkdir(parents=True, exist_ok=True)
simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve()
simulation_results_path.mkdir(parents=True, exist_ok=True)
cost_analysis_output_path = output_path / 'cost_analysis'
cost_analysis_output_path.mkdir(parents=True, exist_ok=True)
city = GeometryFactory(file_type='geojson',
path=geojson_file_path,
height_field='height',
year_of_construction_field='year_of_construction',
function_field='function',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
demands = pd.read_csv(input_files_path / 'cbt_data.csv')
city.buildings[0].heating_demand[cte.HOUR] = [x * cte.WATTS_HOUR_TO_JULES * 1000 / 4 for x in demands['total'].to_list()]
city.buildings[0].cooling_demand[cte.HOUR] = [0] * 8760
city.buildings[0].domestic_hot_water_heat_demand[cte.HOUR] = [0] * 8760
city.buildings[0].lighting_electrical_demand[cte.HOUR] = [0] * 8760
city.buildings[0].lighting_electrical_demand[cte.YEAR] = [0]
city.buildings[0].appliances_electrical_demand[cte.YEAR] = [0]
city.buildings[0].appliances_electrical_demand[cte.HOUR] = [0] * 8760
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
for building in city.buildings:
building.energy_systems_archetype_name = ('Central Hydronic Air and Electricity Source Heating System with Unitary '
'Split and Air Source HP DHW')
EnergySystemsFactory('montreal_future', city).enrich()
EnergySystemsSizingFactory('peak_load_sizing', city).enrich()
for building in city.buildings:
MontrealEnergySystemArchetypesSimulationFactory(f'archetype_cluster_{building.energy_systems_archetype_cluster_id}',
building,
simulation_results_path).enrich()
for building in city.buildings:
cost_retrofit_scenario = SYSTEM_RETROFIT
lcc_dataframe = Cost(building=building,
retrofit_scenario=cost_retrofit_scenario,
fuel_tariffs=['Electricity-D', 'Gas-Energir']).life_cycle
lcc_dataframe.to_csv(cost_analysis_output_path / f'{building.name}_retrofitted_lcc.csv')
print('test')