feature: add simultinity factor calculations

This commit is contained in:
Majid Rezaei 2024-06-23 18:27:31 -04:00
parent 335b316072
commit fd096a9949
2 changed files with 117 additions and 0 deletions

54
main.py
View File

@ -0,0 +1,54 @@
from scripts.geojson_creator import process_geojson
from pathlib import Path
import subprocess
from simultinity_factor import DemandShiftProcessor
from scripts.ep_run_enrich import energy_plus_workflow
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.imports.results_factory import ResultFactory
from scripts.energy_system_analysis_report import EnergySystemAnalysisReport
from scripts import random_assignation
from hub.imports.energy_systems_factory import EnergySystemsFactory
from scripts.energy_system_sizing import SystemSizing
from scripts.energy_system_retrofit_results import system_results, new_system_results
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
from scripts.costs.cost import Cost
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV
import hub.helpers.constants as cte
from hub.exports.exports_factory import ExportsFactory
# Specify the GeoJSON file path
# location = [45.49034212153445, -73.61435648647083]
# geojson_file = process_geojson(x=location[1], y=location[0], diff=0.0005)
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
# Specify the output path for the PDF file
output_path = (Path(__file__).parent / 'out_files').resolve()
# Create city object from GeoJSON file
city = GeometryFactory('geojson',
path=file_path,
height_field='height',
year_of_construction_field='year_of_construction',
function_field='function',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
# Enrich city data
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
energy_plus_workflow(city)
for building in city.buildings:
print(building.heating_demand[cte.MONTH])
print(building.cooling_demand[cte.MONTH])
processor = DemandShiftProcessor(city)
processor.process_demands()
print(city.simultaneity_factor)
for building in city.buildings:
print(building.heating_demand[cte.MONTH])
print(building.cooling_demand[cte.MONTH])

63
simultinity_factor.py Normal file
View File

@ -0,0 +1,63 @@
import pandas as pd
import numpy as np
class DemandShiftProcessor:
def __init__(self, city):
self.city = city
def random_shift(self, series):
shift_amount = np.random.randint(0, 2)
return series.shift(shift_amount).fillna(series.shift(shift_amount - len(series)))
def process_demands(self):
building_dfs = []
for building in self.city.buildings:
df = self.convert_building_to_dataframe(building)
df.set_index('Date/Time', inplace=True)
shifted_demands = df.apply(self.random_shift, axis=0)
self.update_building_demands(building, shifted_demands)
building_dfs.append(shifted_demands)
combined_df = pd.concat(building_dfs, axis=1)
self.calculate_and_set_simultaneity_factor(combined_df)
def convert_building_to_dataframe(self, building):
data = {
"Date/Time": self.generate_date_time_index(),
"Heating_Demand": building.heating_demand["hour"],
"Cooling_Demand": building.cooling_demand["hour"]
}
return pd.DataFrame(data)
def generate_date_time_index(self):
# Generate hourly date time index for a full year in 2024
date_range = pd.date_range(start="2013-01-01 00:00:00", end="2013-12-31 23:00:00", freq='H')
return date_range.strftime('%m/%d %H:%M:%S').tolist()
def update_building_demands(self, building, shifted_demands):
heating_shifted = shifted_demands["Heating_Demand"]
cooling_shifted = shifted_demands["Cooling_Demand"]
building.heating_demand = self.calculate_new_demands(heating_shifted)
building.cooling_demand = self.calculate_new_demands(cooling_shifted)
def calculate_new_demands(self, shifted_series):
new_demand = {
"hour": shifted_series.tolist(),
"month": self.calculate_monthly_demand(shifted_series),
"year": [shifted_series.sum()]
}
return new_demand
def calculate_monthly_demand(self, series):
series.index = pd.to_datetime(series.index, format='%m/%d %H:%M:%S')
monthly_demand = series.resample('M').sum()
return monthly_demand.tolist()
def calculate_and_set_simultaneity_factor(self, combined_df):
total_demand_original = combined_df.sum(axis=1)
peak_total_demand_original = total_demand_original.max()
individual_peak_demands = combined_df.max(axis=0)
sum_individual_peak_demands = individual_peak_demands.sum()
self.city.simultaneity_factor = peak_total_demand_original / sum_individual_peak_demands