diff --git a/hub/city_model_structure/building.py b/hub/city_model_structure/building.py
index ac284d29..132e7a5c 100644
--- a/hub/city_model_structure/building.py
+++ b/hub/city_model_structure/building.py
@@ -484,7 +484,7 @@ class Building(CityObject):
monthly_values = PeakLoads().peak_loads_from_hourly(self.domestic_hot_water_heat_demand[cte.HOUR])
if monthly_values is None:
return None
- results[cte.MONTH] = [x for x in monthly_values]
+ results[cte.MONTH] = [x / cte.WATTS_HOUR_TO_JULES for x in monthly_values]
results[cte.YEAR] = [max(monthly_values) / cte.WATTS_HOUR_TO_JULES]
return results
@@ -810,39 +810,16 @@ class Building(CityObject):
Get total electricity produced onsite in J
return: dict
"""
- orientation_losses_factor = {cte.MONTH: {'north': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
- 'east': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
- 'south': [2.137931, 1.645503, 1.320946, 1.107817, 0.993213, 0.945175,
- 0.967949, 1.065534, 1.24183, 1.486486, 1.918033, 2.210526],
- 'west': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]},
- cte.YEAR: {'north': [0],
- 'east': [0],
- 'south': [1.212544],
- 'west': [0]}
- }
-
- # Add other systems whenever new ones appear
- if self.energy_systems is None:
- return self._onsite_electrical_production
- for energy_system in self.energy_systems:
- for generation_system in energy_system.generation_systems:
- if generation_system.system_type == cte.PHOTOVOLTAIC:
- if generation_system.electricity_efficiency is not None:
- _efficiency = float(generation_system.electricity_efficiency)
- else:
- _efficiency = 0
- self._onsite_electrical_production = {}
- for _key in self.roofs[0].global_irradiance.keys():
- _results = [0 for _ in range(0, len(self.roofs[0].global_irradiance[_key]))]
- for surface in self.roofs:
- if _key in orientation_losses_factor:
- _results = [x + y * _efficiency * surface.perimeter_area
- * surface.solar_collectors_area_reduction_factor * z
- for x, y, z in zip(_results, surface.global_irradiance[_key],
- orientation_losses_factor[_key]['south'])]
- self._onsite_electrical_production[_key] = _results
return self._onsite_electrical_production
+ @onsite_electrical_production.setter
+ def onsite_electrical_production(self, value):
+ """
+ set onsite electrical production from external pv simulations
+ :return:
+ """
+ self._onsite_electrical_production = value
+
@property
def lower_corner(self):
"""
@@ -913,10 +890,3 @@ class Building(CityObject):
self._fuel_consumption_breakdown = fuel_breakdown
return self._fuel_consumption_breakdown
- @property
- def pv_generation(self) -> dict:
- return self._pv_generation
-
- @pv_generation.setter
- def pv_generation(self, value):
- self._pv_generation = value
diff --git a/hub/data/energy_systems/montreal_future_systems.xml b/hub/data/energy_systems/montreal_future_systems.xml
index 455235ae..b51c9488 100644
--- a/hub/data/energy_systems/montreal_future_systems.xml
+++ b/hub/data/energy_systems/montreal_future_systems.xml
@@ -1438,6 +1438,29 @@
27
+
+ 11
+ Central Heating System ŮŽASHP Gas-Boiler TES
+ schemas/ASHP+TES+GasBoiler.jpg
+
+ heating
+
+
+ 23
+ 16
+
+
+
+ 12
+ Unitary ASHP Cooling System
+ schemas/ASHP+TES+GasBoiler.jpg
+
+ cooling
+
+
+ 23
+
+
@@ -1528,6 +1551,23 @@
10
+
+ Central Heating+Unitary Cooling+Unitary DHW
+
+ 10
+ 11
+ 12
+
+
+
+ Central Heating+Unitary Cooling+Unitary DHW+PV
+
+ 7
+ 10
+ 11
+ 12
+
+
diff --git a/scripts/energy_system_sizing_and_simulation_factory.py b/scripts/energy_system_sizing_and_simulation_factory.py
index b0526e2c..9a0e14bb 100644
--- a/scripts/energy_system_sizing_and_simulation_factory.py
+++ b/scripts/energy_system_sizing_and_simulation_factory.py
@@ -8,6 +8,7 @@ Project Coder Saeed Ranjbar saeed.ranjbar@mail.concordia.ca
from scripts.system_simulation_models.archetype13 import Archetype13
from scripts.system_simulation_models.archetype13_stratified_tes import Archetype13Stratified
from scripts.system_simulation_models.archetype1 import Archetype1
+from scripts.system_simulation_models.archetypes14_15 import Archetype14_15
class EnergySystemsSimulationFactory:
@@ -36,6 +37,15 @@ class EnergySystemsSimulationFactory:
self._building.level_of_detail.energy_systems = 2
self._building.level_of_detail.energy_systems = 2
+ def _archetype14_15(self):
+ """
+ Enrich the city by using the sizing and simulation model developed for archetype14 and archetype15 of
+ montreal_future_systems
+ """
+ Archetype14_15(self._building, self._output_path).enrich_buildings()
+ self._building.level_of_detail.energy_systems = 2
+ self._building.level_of_detail.energy_systems = 2
+
def enrich(self):
"""
Enrich the city given to the class using the class given handler
diff --git a/scripts/pv_sizing_and_simulation.py b/scripts/pv_sizing_and_simulation.py
index 877a1499..6ef1a51d 100644
--- a/scripts/pv_sizing_and_simulation.py
+++ b/scripts/pv_sizing_and_simulation.py
@@ -49,18 +49,11 @@ class PVSizingSimulation(RadiationTilted):
available_roof = self.available_space()
inter_row_spacing = self.inter_row_spacing()
self.number_of_panels(available_roof, inter_row_spacing)
+ self.building.roofs[0].installed_solar_collector_area = pv_module_area * self.total_number_of_panels
system_efficiency = 0.2
- pv_hourly_production = [x * system_efficiency * self.total_number_of_panels * pv_module_area for x in radiation]
+ pv_hourly_production = [x * system_efficiency * self.total_number_of_panels * pv_module_area *
+ cte.WATTS_HOUR_TO_JULES for x in radiation]
self.building.onsite_electrical_production[cte.HOUR] = pv_hourly_production
self.building.onsite_electrical_production[cte.MONTH] = (
MonthlyValues.get_total_month(self.building.onsite_electrical_production[cte.HOUR]))
- self.building.onsite_electrical_production[cte.YEAR] = [sum(self.building.onsite_electrical_production[cte.MONTH])]
-
-
-
-
-
-
-
-
-
+ self.building.onsite_electrical_production[cte.YEAR] = [sum(self.building.onsite_electrical_production[cte.MONTH])]
\ No newline at end of file
diff --git a/scripts/random_assignation.py b/scripts/random_assignation.py
index f82ab89f..ac6eb454 100644
--- a/scripts/random_assignation.py
+++ b/scripts/random_assignation.py
@@ -29,7 +29,9 @@ residential_systems_percentage = {'system 1 gas': 100,
'system 8 electricity': 0}
residential_new_systems_percentage = {'PV+ASHP+GasBoiler+TES': 0,
- 'PV+4Pipe+DHW': 100,
+ 'PV+4Pipe+DHW': 0,
+ 'Central Heating+Unitary Cooling+Unitary DHW': 50,
+ 'Central Heating+Unitary Cooling+Unitary DHW+PV': 50,
'PV+ASHP+ElectricBoiler+TES': 0,
'PV+GSHP+GasBoiler+TES': 0,
'PV+GSHP+ElectricBoiler+TES': 0,
diff --git a/scripts/system_simulation_models/archetype13.py b/scripts/system_simulation_models/archetype13.py
index 786115db..5219af2f 100644
--- a/scripts/system_simulation_models/archetype13.py
+++ b/scripts/system_simulation_models/archetype13.py
@@ -19,7 +19,8 @@ class Archetype13:
self._domestic_hot_water_peak_load = building.domestic_hot_water_peak_load[cte.YEAR][0]
self._hourly_heating_demand = [demand / cte.HOUR_TO_SECONDS for demand in building.heating_demand[cte.HOUR]]
self._hourly_cooling_demand = [demand / cte.HOUR_TO_SECONDS for demand in building.cooling_demand[cte.HOUR]]
- self._hourly_dhw_demand = building.domestic_hot_water_heat_demand[cte.HOUR]
+ self._hourly_dhw_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in
+ building.domestic_hot_water_heat_demand[cte.HOUR]]
self._output_path = output_path
self._t_out = building.external_temperature[cte.HOUR]
self.results = {}
@@ -30,11 +31,12 @@ class Archetype13:
heat_pump = self._hvac_system.generation_systems[1]
boiler = self._hvac_system.generation_systems[0]
thermal_storage = boiler.energy_storage_systems[0]
- heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600)
- heat_pump.nominal_cooling_output = round(self._cooling_peak_load / 3600)
- boiler.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600)
+ heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load)
+ heat_pump.nominal_cooling_output = round(self._cooling_peak_load)
+ boiler.nominal_heat_output = round(0.5 * self._heating_peak_load)
thermal_storage.volume = round(
- (self._heating_peak_load * storage_factor) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
+ (self._heating_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
+ (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
return heat_pump, boiler, thermal_storage
def dhw_sizing(self):
diff --git a/scripts/system_simulation_models/archetypes14_15.py b/scripts/system_simulation_models/archetypes14_15.py
new file mode 100644
index 00000000..e3cf52d1
--- /dev/null
+++ b/scripts/system_simulation_models/archetypes14_15.py
@@ -0,0 +1,402 @@
+import math
+import hub.helpers.constants as cte
+import csv
+from hub.helpers.monthly_values import MonthlyValues
+
+
+class Archetype14_15:
+ def __init__(self, building, output_path):
+ self._building = building
+ self._name = building.name
+ if 'PV' in building.energy_systems_archetype_name:
+ i = 1
+ self._pv_system = building.energy_systems[0]
+ else:
+ i = 0
+ self._dhw_system = building.energy_systems[i]
+ self._heating_system = building.energy_systems[i + 1]
+ self._cooling_system = building.energy_systems[i + 2]
+ self._dhw_peak_flow_rate = (building.thermal_zones_from_internal_zones[0].total_floor_area *
+ building.thermal_zones_from_internal_zones[0].domestic_hot_water.peak_flow *
+ cte.WATER_DENSITY)
+ self._heating_peak_load = building.heating_peak_load[cte.YEAR][0]
+ self._cooling_peak_load = building.cooling_peak_load[cte.YEAR][0]
+ self._domestic_hot_water_peak_load = building.domestic_hot_water_peak_load[cte.YEAR][0]
+ self._hourly_heating_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in building.heating_demand[cte.HOUR]]
+ self._hourly_cooling_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in building.cooling_demand[cte.HOUR]]
+ self._hourly_dhw_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in
+ building.domestic_hot_water_heat_demand[cte.HOUR]]
+ self._output_path = output_path
+ self._t_out = building.external_temperature[cte.HOUR]
+ self.results = {}
+ self.dt = 900
+
+ def heating_system_sizing(self):
+ storage_factor = 3
+ heat_pump = self._heating_system.generation_systems[1]
+ heat_pump.source_temperature = self._t_out
+ boiler = self._heating_system.generation_systems[0]
+ thermal_storage = boiler.energy_storage_systems[0]
+ heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load)
+ boiler.nominal_heat_output = round(0.5 * self._heating_peak_load)
+ thermal_storage.volume = round(
+ (self._heating_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
+ (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
+ return heat_pump, boiler, thermal_storage
+
+ def cooling_system_sizing(self):
+ heat_pump = self._cooling_system.generation_systems[0]
+ heat_pump.nominal_cooling_output = heat_pump.nominal_cooling_output = round(self._cooling_peak_load)
+ heat_pump.source_temperature = self._t_out
+ return heat_pump
+
+
+ def dhw_system_sizing(self):
+ storage_factor = 3
+ dhw_hp = self._dhw_system.generation_systems[0]
+ dhw_hp.nominal_heat_output = round(0.7 * self._domestic_hot_water_peak_load)
+ dhw_hp.source_temperature = self._t_out
+ dhw_tes = dhw_hp.energy_storage_systems[0]
+ dhw_tes.volume = round(
+ (self._domestic_hot_water_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
+ (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 10))
+ return dhw_hp, dhw_tes
+
+ def heating_system_simulation(self):
+ hp, boiler, tes = self.heating_system_sizing()
+ cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
+ number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
+ demand = [0] + [x for x in self._hourly_heating_demand for _ in range(number_of_ts)]
+ t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
+ hp.source_temperature = self._t_out
+ variable_names = ["t_sup_hp", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "q_boiler", "hp_cop",
+ "hp_electricity", "boiler_gas_consumption", "t_sup_boiler", "boiler_energy_consumption",
+ "heating_consumption"]
+ num_hours = len(demand)
+ variables = {name: [0] * num_hours for name in variable_names}
+ (t_sup_hp, t_tank, t_ret, m_ch, m_dis, q_hp, q_boiler, hp_cop,
+ hp_electricity, boiler_gas_consumption, t_sup_boiler, boiler_energy_consumption, heating_consumption) = \
+ [variables[name] for name in variable_names]
+ t_tank[0] = 55
+ hp_heating_cap = hp.nominal_heat_output
+ boiler_heating_cap = boiler.nominal_heat_output
+ hp_delta_t = 5
+ boiler_efficiency = float(boiler.heat_efficiency)
+ v, h = float(tes.volume), float(tes.height)
+ r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
+ tes.layers)
+ u_tot = 1 / r_tot
+ d = math.sqrt((4 * v) / (math.pi * h))
+ a_side = math.pi * d * h
+ a_top = math.pi * d ** 2 / 4
+ ua = u_tot * (2 * a_top + a_side)
+ # storage temperature prediction
+ for i in range(len(demand) - 1):
+ t_tank[i + 1] = (t_tank[i] +
+ (m_ch[i] * (t_sup_boiler[i] - t_tank[i]) +
+ (ua * (t_out[i] - t_tank[i])) / cte.WATER_HEAT_CAPACITY -
+ m_dis[i] * (t_tank[i] - t_ret[i])) * (self.dt / (cte.WATER_DENSITY * v)))
+ # hp operation
+ if t_tank[i + 1] < 40:
+ q_hp[i + 1] = hp_heating_cap
+ m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
+ t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
+ elif 40 <= t_tank[i + 1] < 55 and q_hp[i] == 0:
+ q_hp[i + 1] = 0
+ m_ch[i + 1] = 0
+ t_sup_hp[i + 1] = t_tank[i + 1]
+ elif 40 <= t_tank[i + 1] < 55 and q_hp[i] > 0:
+ q_hp[i + 1] = hp_heating_cap
+ m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
+ t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
+ else:
+ q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
+ t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i + 1] + 32
+ t_out_fahrenheit = 1.8 * t_out[i + 1] + 32
+ if q_hp[i + 1] > 0:
+ hp_cop[i + 1] = (cop_curve_coefficients[0] +
+ cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
+ cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
+ cop_curve_coefficients[3] * t_out_fahrenheit +
+ cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
+ cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
+ hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
+ else:
+ hp_cop[i + 1] = 0
+ hp_electricity[i + 1] = 0
+ # boiler operation
+ if q_hp[i + 1] > 0:
+ if t_sup_hp[i + 1] < 45:
+ q_boiler[i + 1] = boiler_heating_cap
+ elif demand[i + 1] > 0.5 * self._heating_peak_load / self.dt:
+ q_boiler[i + 1] = 0.5 * boiler_heating_cap
+ boiler_energy_consumption[i + 1] = q_boiler[i + 1] / boiler_efficiency
+ boiler_gas_consumption[i + 1] = (q_boiler[i + 1] * self.dt) / (boiler_efficiency * cte.NATURAL_GAS_LHV)
+ t_sup_boiler[i + 1] = t_sup_hp[i + 1] + (q_boiler[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY))
+ # storage discharging
+ if demand[i + 1] == 0:
+ m_dis[i + 1] = 0
+ t_ret[i + 1] = t_tank[i + 1]
+ else:
+ if demand[i + 1] > 0.5 * self._heating_peak_load / cte.HOUR_TO_SECONDS:
+ factor = 8
+ else:
+ factor = 4
+ m_dis[i + 1] = self._heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor * cte.HOUR_TO_SECONDS)
+ t_ret[i + 1] = t_tank[i + 1] - demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
+ tes.temperature = []
+ hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
+ boiler_consumption_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in boiler_energy_consumption]
+ hp_hourly = []
+ boiler_hourly = []
+ boiler_sum = 0
+ hp_sum = 0
+ for i in range(1, len(demand)):
+ hp_sum += hp_electricity_j[i]
+ boiler_sum += boiler_consumption_j[i]
+ if (i - 1) % number_of_ts == 0:
+ tes.temperature.append(t_tank[i])
+ hp_hourly.append(hp_sum)
+ boiler_hourly.append(boiler_sum)
+ hp_sum = 0
+ boiler_sum = 0
+ hp.energy_consumption[cte.HEATING] = {}
+ hp.energy_consumption[cte.HEATING][cte.HOUR] = hp_hourly
+ hp.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
+ hp.energy_consumption[cte.HEATING][cte.HOUR])
+ hp.energy_consumption[cte.HEATING][cte.YEAR] = [
+ sum(hp.energy_consumption[cte.HEATING][cte.MONTH])]
+ boiler.energy_consumption[cte.HEATING] = {}
+ boiler.energy_consumption[cte.HEATING][cte.HOUR] = boiler_hourly
+ boiler.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
+ boiler.energy_consumption[cte.HEATING][cte.HOUR])
+ boiler.energy_consumption[cte.HEATING][cte.YEAR] = [
+ sum(boiler.energy_consumption[cte.HEATING][cte.MONTH])]
+
+ self.results['Heating Demand (W)'] = demand
+ self.results['HP Heat Output (W)'] = q_hp
+ self.results['HP Source Temperature'] = t_out
+ self.results['HP Supply Temperature'] = t_sup_hp
+ self.results['HP COP'] = hp_cop
+ self.results['HP Electricity Consumption (W)'] = hp_electricity
+ self.results['Boiler Heat Output (W)'] = q_boiler
+ self.results['Boiler Supply Temperature'] = t_sup_boiler
+ self.results['Boiler Gas Consumption'] = boiler_gas_consumption
+ self.results['TES Temperature'] = t_tank
+ self.results['TES Charging Flow Rate (kg/s)'] = m_ch
+ self.results['TES Discharge Flow Rate (kg/s)'] = m_dis
+ self.results['Heating Loop Return Temperature'] = t_ret
+ return hp_hourly, boiler_hourly
+
+ def cooling_system_simulation(self):
+ hp = self.cooling_system_sizing()
+ eer_curve_coefficients = [float(coefficient) for coefficient in hp.cooling_efficiency_curve.coefficients]
+ cooling_efficiency = float(hp.cooling_efficiency)
+ number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
+ demand = [0] + [x for x in self._hourly_cooling_demand for _ in range(number_of_ts)]
+ t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
+ hp.source_temperature = self._t_out
+ variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_eer"]
+ num_hours = len(demand)
+ variables = {name: [0] * num_hours for name in variable_names}
+ (t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_eer) = [variables[name] for name in variable_names]
+ t_ret[0] = 13
+
+ for i in range(1, len(demand)):
+ if demand[i] > 0:
+ m[i] = self._cooling_peak_load / (cte.WATER_HEAT_CAPACITY * 5 * cte.HOUR_TO_SECONDS)
+ if t_ret[i - 1] >= 13:
+ if demand[i] < 0.25 * self._cooling_peak_load / cte.HOUR_TO_SECONDS:
+ q_hp[i] = 0.25 * hp.nominal_cooling_output
+ elif demand[i] < 0.5 * self._cooling_peak_load / cte.HOUR_TO_SECONDS:
+ q_hp[i] = 0.5 * hp.nominal_cooling_output
+ else:
+ q_hp[i] = hp.nominal_cooling_output
+ t_sup_hp[i] = t_ret[i - 1] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
+ else:
+ q_hp[i] = 0
+ t_sup_hp[i] = t_ret[i - 1]
+ if m[i] == 0:
+ t_ret[i] = t_sup_hp[i]
+ else:
+ t_ret[i] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
+ else:
+ m[i] = 0
+ q_hp[i] = 0
+ t_sup_hp[i] = t_ret[i -1]
+ t_ret[i] = t_ret[i - 1]
+ t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
+ t_out_fahrenheit = 1.8 * t_out[i] + 32
+ if q_hp[i] > 0:
+ hp_eer[i] = (eer_curve_coefficients[0] +
+ eer_curve_coefficients[1] * t_sup_hp_fahrenheit +
+ eer_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
+ eer_curve_coefficients[3] * t_out_fahrenheit +
+ eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
+ eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
+ hp_electricity[i] = q_hp[i] / hp_eer[i]
+ else:
+ hp_eer[i] = 0
+ hp_electricity[i] = 0
+ hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
+ hp_hourly = []
+ hp_sum = 0
+ for i in range(1, len(demand)):
+ hp_sum += hp_electricity_j[i]
+ if (i - 1) % number_of_ts == 0:
+ hp_hourly.append(hp_sum)
+ hp_sum = 0
+ hp.energy_consumption[cte.COOLING] = {}
+ hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_hourly
+ hp.energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
+ hp.energy_consumption[cte.COOLING][cte.HOUR])
+ hp.energy_consumption[cte.COOLING][cte.YEAR] = [
+ sum(hp.energy_consumption[cte.COOLING][cte.MONTH])]
+ self.results['Cooling Demand (W)'] = demand
+ self.results['HP Cooling Output (W)'] = q_hp
+ self.results['HP Cooling Supply Temperature'] = t_sup_hp
+ self.results['HP Cooling COP'] = hp_eer
+ self.results['HP Electricity Consumption'] = hp_electricity
+ self.results['Cooling Loop Flow Rate (kg/s)'] = m
+ self.results['Cooling Loop Return Temperature'] = t_ret
+ return hp_hourly
+
+ def dhw_system_simulation(self):
+ hp, tes = self.dhw_system_sizing()
+ cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
+ number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
+ demand = [0] + [x for x in self._hourly_dhw_demand for _ in range(number_of_ts)]
+ t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
+ variable_names = ["t_sup_hp", "t_tank", "m_ch", "m_dis", "q_hp", "q_coil", "hp_cop",
+ "hp_electricity", "available hot water (m3)", "refill flow rate (kg/s)"]
+ num_hours = len(demand)
+ variables = {name: [0] * num_hours for name in variable_names}
+ (t_sup_hp, t_tank, m_ch, m_dis, m_refill, q_hp, q_coil, hp_cop, hp_electricity, v_dhw) = \
+ [variables[name] for name in variable_names]
+ t_tank[0] = 70
+ v_dhw[0] = tes.volume
+
+ hp_heating_cap = hp.nominal_heat_output
+ hp_delta_t = 8
+ v, h = float(tes.volume), float(tes.height)
+ r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
+ tes.layers)
+ u_tot = 1 / r_tot
+ d = math.sqrt((4 * v) / (math.pi * h))
+ a_side = math.pi * d * h
+ a_top = math.pi * d ** 2 / 4
+ ua = u_tot * (2 * a_top + a_side)
+ freshwater_temperature = 18
+ for i in range(len(demand) - 1):
+ delta_t_demand = demand[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
+ if t_tank[i] < 65:
+ q_hp[i] = hp_heating_cap
+ delta_t_hp = q_hp[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
+ if demand[i] > 0:
+ dhw_needed = (demand[i] * cte.HOUR_TO_SECONDS) / (cte.WATER_HEAT_CAPACITY * t_tank[i] * cte.WATER_DENSITY)
+ m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
+ m_refill[i] = m_dis[i]
+ delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (self.dt / (v * cte.WATER_DENSITY))
+ diff = delta_t_freshwater + delta_t_demand - delta_t_hp
+ if diff > 0:
+ if diff > 0:
+ power = diff * (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v) / self.dt
+ if power <= float(tes.heating_coil_capacity):
+ q_coil[i] = power
+ else:
+ q_coil[i] = float(tes.heating_coil_capacity)
+ delta_t_coil = q_coil[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
+
+ if q_hp[i] > 0:
+ m_ch[i] = q_hp[i] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
+ t_sup_hp[i] = (q_hp[i] / (m_ch[i] * cte.WATER_HEAT_CAPACITY)) + t_tank[i]
+ else:
+ m_ch[i] = 0
+ t_sup_hp[i] = t_tank[i]
+ t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
+ t_out_fahrenheit = 1.8 * t_out[i] + 32
+ if q_hp[i] > 0:
+ hp_cop[i] = (cop_curve_coefficients[0] +
+ cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
+ cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
+ cop_curve_coefficients[3] * t_out_fahrenheit +
+ cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
+ cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
+ hp_electricity[i] = q_hp[i] / hp_cop[i]
+ else:
+ hp_cop[i] = 0
+ hp_electricity[i] = 0
+
+ t_tank[i + 1] = t_tank[i] + (delta_t_hp - delta_t_freshwater - delta_t_demand + delta_t_coil)
+ tes.temperature = []
+ hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
+ heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
+ hp_hourly = []
+ coil_hourly = []
+ coil_sum = 0
+ hp_sum = 0
+ for i in range(1, len(demand)):
+ hp_sum += hp_electricity_j[i]
+ coil_sum += heating_coil_j[i]
+ if (i - 1) % number_of_ts == 0:
+ tes.temperature.append(t_tank[i])
+ hp_hourly.append(hp_sum)
+ coil_hourly.append(coil_sum)
+ hp_sum = 0
+ coil_sum = 0
+
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_hourly
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
+ hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
+ sum(hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
+ tes.heating_coil_energy_consumption = {}
+ tes.heating_coil_energy_consumption[cte.HOUR] = coil_hourly
+ tes.heating_coil_energy_consumption[cte.MONTH] = MonthlyValues.get_total_month(
+ tes.heating_coil_energy_consumption[cte.HOUR])
+ tes.heating_coil_energy_consumption[cte.YEAR] = [
+ sum(tes.heating_coil_energy_consumption[cte.MONTH])]
+ tes.temperature = t_tank
+
+ self.results['DHW Demand (W)'] = demand
+ self.results['DHW HP Heat Output (W)'] = q_hp
+ self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
+ self.results['DHW HP Source Temperature'] = t_out
+ self.results['DHW HP Supply Temperature'] = t_sup_hp
+ self.results['DHW HP COP'] = hp_cop
+ self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
+ self.results['DHW TES Temperature'] = t_tank
+ self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
+ self.results['DHW Flow Rate (kg/s)'] = m_dis
+ self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
+ self.results['Available Water in Tank (m3)'] = v_dhw
+ return hp_hourly, coil_hourly
+
+
+ def enrich_buildings(self):
+ hp_heating, boiler_consumption = self.heating_system_simulation()
+ hp_cooling = self.cooling_system_simulation()
+ hp_dhw, heating_coil = self.dhw_system_simulation()
+ heating_consumption = [hp_heating[i] + boiler_consumption[i] for i in range(len(hp_heating))]
+ dhw_consumption = [hp_dhw[i] + heating_coil[i] for i in range(len(hp_dhw))]
+ self._building.heating_consumption[cte.HOUR] = heating_consumption
+ self._building.heating_consumption[cte.MONTH] = (
+ MonthlyValues.get_total_month(self._building.heating_consumption[cte.HOUR]))
+ self._building.heating_consumption[cte.YEAR] = [sum(self._building.heating_consumption[cte.MONTH])]
+ self._building.cooling_consumption[cte.HOUR] = hp_cooling
+ self._building.cooling_consumption[cte.MONTH] = (
+ MonthlyValues.get_total_month(self._building.cooling_consumption[cte.HOUR]))
+ self._building.cooling_consumption[cte.YEAR] = [sum(self._building.cooling_consumption[cte.MONTH])]
+ self._building.domestic_hot_water_consumption[cte.HOUR] = dhw_consumption
+ self._building.domestic_hot_water_consumption[cte.MONTH] = (
+ MonthlyValues.get_total_month(self._building.domestic_hot_water_consumption[cte.HOUR]))
+ self._building.domestic_hot_water_consumption[cte.YEAR] = (
+ sum(self._building.domestic_hot_water_consumption[cte.MONTH]))
+ file_name = f'energy_system_simulation_results_{self._name}.csv'
+ with open(self._output_path / file_name, 'w', newline='') as csvfile:
+ output_file = csv.writer(csvfile)
+ # Write header
+ output_file.writerow(self.results.keys())
+ # Write data
+ output_file.writerows(zip(*self.results.values()))
diff --git a/tests/test_systems_catalog.py b/tests/test_systems_catalog.py
index 839107c2..612a8fe6 100644
--- a/tests/test_systems_catalog.py
+++ b/tests/test_systems_catalog.py
@@ -38,10 +38,10 @@ class TestSystemsCatalog(TestCase):
catalog = EnergySystemsCatalogFactory('montreal_future').catalog
catalog_categories = catalog.names()
- archetypes = catalog.names('archetypes')
- self.assertEqual(13, len(archetypes['archetypes']))
+ archetypes = catalog.names()
+ self.assertEqual(15, len(archetypes['archetypes']))
systems = catalog.names('systems')
- self.assertEqual(10, len(systems['systems']))
+ self.assertEqual(12, len(systems['systems']))
generation_equipments = catalog.names('generation_equipments')
self.assertEqual(27, len(generation_equipments['generation_equipments']))
with self.assertRaises(ValueError):