import pandas as pd from scripts.geojson_creator import process_geojson from pathlib import Path from hub.imports.geometry_factory import GeometryFactory from hub.helpers.dictionaries import Dictionaries from hub.imports.construction_factory import ConstructionFactory from hub.imports.usage_factory import UsageFactory from hub.imports.weather_factory import WeatherFactory from hub.imports.results_factory import ResultFactory from scripts import random_assignation from hub.imports.energy_systems_factory import EnergySystemsFactory from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory from scripts.costs.cost import Cost from scripts.costs.constants import SYSTEM_RETROFIT_AND_PV from hub.exports.exports_factory import ExportsFactory # Specify the GeoJSON file path location = [45.49034212153445, -73.61435648647083] geojson_file = process_geojson(x=location[1], y=location[0], diff=0.0001) file_path = (Path(__file__).parent / 'input_files' / 'processed_output -single_building.geojson') # Specify the output path for the PDF file output_path = (Path(__file__).parent / 'out_files').resolve() # Create city object from GeoJSON file city = GeometryFactory('geojson', path=file_path, height_field='height', year_of_construction_field='year_of_construction', function_field='function', function_to_hub=Dictionaries().montreal_function_to_hub_function).city # Enrich city data ConstructionFactory('nrcan', city).enrich() UsageFactory('nrcan', city).enrich() WeatherFactory('epw', city).enrich() ResultFactory('energy_plus_multiple_buildings', city, output_path).enrich() ExportsFactory('sra', city, output_path).export() random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage) EnergySystemsFactory('montreal_future', city).enrich() for building in city.buildings: EnergySystemsSimulationFactory('archetype13', building=building, output_path=output_path).enrich() sum_floor_area = 0 buildings_list = [] for building in city.buildings: buildings_list.append(building.name) df = pd.DataFrame(columns=['building_name', 'total_floor_area', 'investment_cost', 'lc CAPEX']) df['building_name'] = buildings_list for building in city.buildings: for thermal_zone in building.thermal_zones_from_internal_zones: sum_floor_area += thermal_zone.total_floor_area costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv( output_path / f'{building.name}_cc.csv') investment_cost = costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems'] lcc_capex = costs.loc['total_capital_costs_systems', f'Scenario {SYSTEM_RETROFIT_AND_PV}'] df.loc[df['building_name'] == building.name, 'total_floor_area'] = ( building.thermal_zones_from_internal_zones[0].total_floor_area) df.loc[df['building_name'] == building.name, 'investment_cost'] = investment_cost df.loc[df['building_name'] == building.name, 'lc CAPEX'] = lcc_capex df.to_csv(output_path / 'economic analysis.csv')