from pathlib import Path import subprocess from scripts.ep_run_enrich import energy_plus_workflow from hub.imports.geometry_factory import GeometryFactory from hub.helpers.dictionaries import Dictionaries from hub.imports.construction_factory import ConstructionFactory from hub.imports.usage_factory import UsageFactory from hub.imports.weather_factory import WeatherFactory from hub.imports.results_factory import ResultFactory from scripts.energy_system_retrofit_report import EnergySystemRetrofitReport from scripts.geojson_creator import process_geojson from scripts import random_assignation from hub.imports.energy_systems_factory import EnergySystemsFactory from scripts.energy_system_sizing import SystemSizing from scripts.solar_angles import CitySolarAngles from scripts.pv_sizing_and_simulation import PVSizingSimulation from scripts.energy_system_retrofit_results import consumption_data, cost_data from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory from scripts.costs.cost import Cost from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS import hub.helpers.constants as cte from hub.exports.exports_factory import ExportsFactory from scripts.pv_feasibility import pv_feasibility # Specify the GeoJSON file path input_files_path = (Path(__file__).parent / 'input_files') input_files_path.mkdir(parents=True, exist_ok=True) geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.0001) geojson_file_path = input_files_path / 'output_buildings.geojson' output_path = (Path(__file__).parent / 'out_files').resolve() output_path.mkdir(parents=True, exist_ok=True) energy_plus_output_path = output_path / 'energy_plus_outputs' energy_plus_output_path.mkdir(parents=True, exist_ok=True) simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve() simulation_results_path.mkdir(parents=True, exist_ok=True) sra_output_path = output_path / 'sra_outputs' sra_output_path.mkdir(parents=True, exist_ok=True) cost_analysis_output_path = output_path / 'cost_analysis' cost_analysis_output_path.mkdir(parents=True, exist_ok=True) city = GeometryFactory(file_type='geojson', path=geojson_file_path, height_field='height', year_of_construction_field='year_of_construction', function_field='function', function_to_hub=Dictionaries().montreal_function_to_hub_function).city ConstructionFactory('nrcan', city).enrich() UsageFactory('nrcan', city).enrich() WeatherFactory('epw', city).enrich() ExportsFactory('sra', city, sra_output_path).export() sra_path = (sra_output_path / f'{city.name}_sra.xml').resolve() subprocess.run(['sra', str(sra_path)]) ResultFactory('sra', city, sra_output_path).enrich() pv_feasibility(-73.5681295982132, 45.49218262677643, 0.0001, selected_buildings=city.buildings) energy_plus_workflow(city, energy_plus_output_path) solar_angles = CitySolarAngles(city.name, city.latitude, city.longitude, tilt_angle=45, surface_azimuth_angle=180).calculate random_assignation.call_random(city.buildings, random_assignation.residential_systems_percentage) EnergySystemsFactory('montreal_custom', city).enrich() SystemSizing(city.buildings).montreal_custom() current_status_energy_consumption = consumption_data(city) current_status_life_cycle_cost = {} for building in city.buildings: cost_retrofit_scenario = CURRENT_STATUS lcc_dataframe = Cost(building=building, retrofit_scenario=cost_retrofit_scenario, fuel_tariffs=['Electricity-D', 'Gas-Energir']).life_cycle lcc_dataframe.to_csv(cost_analysis_output_path / f'{building.name}_current_status_lcc.csv') current_status_life_cycle_cost[f'{building.name}'] = cost_data(building, lcc_dataframe, cost_retrofit_scenario) random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage) EnergySystemsFactory('montreal_future', city).enrich() for building in city.buildings: if 'PV' in building.energy_systems_archetype_name: ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]] pv_sizing_simulation = PVSizingSimulation(building, solar_angles, tilt_angle=45, module_height=1, module_width=2, ghi=ghi) pv_sizing_simulation.pv_output() if building.energy_systems_archetype_name == 'PV+4Pipe+DHW': EnergySystemsSimulationFactory('archetype13', building=building, output_path=simulation_results_path).enrich() retrofitted_energy_consumption = consumption_data(city) retrofitted_life_cycle_cost = {} for building in city.buildings: cost_retrofit_scenario = SYSTEM_RETROFIT_AND_PV lcc_dataframe = Cost(building=building, retrofit_scenario=cost_retrofit_scenario, fuel_tariffs=['Electricity-D', 'Gas-Energir']).life_cycle lcc_dataframe.to_csv(cost_analysis_output_path / f'{building.name}_retrofitted_lcc.csv') retrofitted_life_cycle_cost[f'{building.name}'] = cost_data(building, lcc_dataframe, cost_retrofit_scenario) for i in range(12): dhw_consumption = 0 for building in city.buildings: dhw_consumption += building.domestic_hot_water_consumption[cte.MONTH][i] / 3.6e6