import csv from pathlib import Path from building_modelling.ep_run_enrich import energy_plus_workflow from energy_system_modelling_package.energy_system_modelling_factories.energy_system_sizing_factory import \ EnergySystemsSizingFactory from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.heat_pump_boiler_tes_heating import \ HeatPumpBoilerTesHeating from hub.imports.geometry_factory import GeometryFactory from hub.helpers.dictionaries import Dictionaries from hub.imports.construction_factory import ConstructionFactory from hub.imports.usage_factory import UsageFactory from hub.imports.weather_factory import WeatherFactory import hub.helpers.constants as cte from building_modelling.geojson_creator import process_geojson from energy_system_modelling_package import random_assignation from hub.imports.energy_systems_factory import EnergySystemsFactory # Specify the GeoJSON file path input_files_path = (Path(__file__).parent / 'input_files') input_files_path.mkdir(parents=True, exist_ok=True) geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.00006) geojson_file_path = input_files_path / 'output_buildings.geojson' output_path = (Path(__file__).parent / 'out_files').resolve() output_path.mkdir(parents=True, exist_ok=True) energy_plus_output_path = output_path / 'energy_plus_outputs' energy_plus_output_path.mkdir(parents=True, exist_ok=True) simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve() simulation_results_path.mkdir(parents=True, exist_ok=True) sra_output_path = output_path / 'sra_outputs' sra_output_path.mkdir(parents=True, exist_ok=True) cost_analysis_output_path = output_path / 'cost_analysis' cost_analysis_output_path.mkdir(parents=True, exist_ok=True) city = GeometryFactory(file_type='geojson', path=geojson_file_path, height_field='height', year_of_construction_field='year_of_construction', function_field='function', function_to_hub=Dictionaries().montreal_function_to_hub_function).city ConstructionFactory('nrcan', city).enrich() UsageFactory('nrcan', city).enrich() WeatherFactory('epw', city).enrich() energy_plus_workflow(city, energy_plus_output_path) random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage) EnergySystemsFactory('montreal_future', city).enrich() EnergySystemsSizingFactory('peak_load_sizing', city).enrich() hp = city.buildings[0].energy_systems[1].generation_systems[1] boiler = city.buildings[0].energy_systems[1].generation_systems[0] tes = city.buildings[0].energy_systems[1].generation_systems[0].energy_storage_systems[0] # Step 1: Calculate daily demands daily_demands = [sum(city.buildings[0].heating_demand[cte.HOUR][i:i + 24]) for i in range(0, len(city.buildings[0].heating_demand[cte.HOUR]), 24)] # Step 2: Find the day with maximum demand max_day_index = daily_demands.index(max(daily_demands)) # Step 3: Extract the hourly demands for the day before, the day with max demand, and the day after # Ensure you don't go out of bounds if max_day_index is 0 or the last day if max_day_index > 0 and max_day_index < len(daily_demands) - 1: start_index = (max_day_index - 1) * 24 end_index = (max_day_index + 2) * 24 three_day_demands = city.buildings[0].heating_demand[cte.HOUR][start_index:end_index] elif max_day_index == 0: # If max is the first day, just include day 1 and day 2 start_index = max_day_index * 24 end_index = (max_day_index + 2) * 24 three_day_demands = city.buildings[0].heating_demand[cte.HOUR][start_index:end_index] else: # If max is the last day, just include the last two days start_index = (max_day_index - 1) * 24 end_index = len(city.buildings[0].heating_demand[cte.HOUR]) three_day_demands = city.buildings[0].heating_demand[cte.HOUR][start_index:end_index] results = HeatPumpBoilerTesHeating(hp=hp, boiler=boiler, tes=tes, hourly_heating_demand_joules=three_day_demands, heating_peak_load_watts=max(three_day_demands), upper_limit_tes=55, outdoor_temperature=city.buildings[0].external_temperature[cte.HOUR], dt=900).simulation() heating_eui = city.buildings[0].heating_demand[cte.YEAR][0] / ( city.buildings[0].thermal_zones_from_internal_zones[0].total_floor_area * 3.6e6) file_name = f'energy_system_simulation_results_{city.buildings[0].name}.csv' with open(simulation_results_path / file_name, 'w', newline='') as csvfile: output_file = csv.writer(csvfile) # Write header output_file.writerow(results.keys()) # Write data output_file.writerows(zip(*results.values()))