from pathlib import Path from building_modelling.ep_run_enrich import energy_plus_workflow from hub.imports.geometry_factory import GeometryFactory from hub.helpers.dictionaries import Dictionaries from hub.imports.construction_factory import ConstructionFactory from hub.imports.usage_factory import UsageFactory from hub.imports.weather_factory import WeatherFactory from enrich_demand import enrich import pandas as pd # Directory management input_files_path = (Path(__file__).parent / 'input_files') input_files_path.mkdir(parents=True, exist_ok=True) geojson_file_path = input_files_path / 'Lachine_Geojson_Mixed_Use.geojson' output_path = (Path(__file__).parent / 'out_files').resolve() output_path.mkdir(parents=True, exist_ok=True) energy_plus_output_path = output_path / 'energy_plus_outputs' energy_plus_output_path.mkdir(parents=True, exist_ok=True) simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve() simulation_results_path.mkdir(parents=True, exist_ok=True) sra_output_path = output_path / 'sra_outputs' sra_output_path.mkdir(parents=True, exist_ok=True) cost_analysis_output_path = output_path / 'cost_analysis' cost_analysis_output_path.mkdir(parents=True, exist_ok=True)]) lachine_output_path = output_path / 'lachine_outputs' # Create City from HUB to run EP_Workflow city_ep_workflow = GeometryFactory( file_type='geojson', path=geojson_file_path, height_field='maximum_roof_height', year_of_construction_field='year_built', function_field='building_type', function_to_hub=Dictionaries().montreal_function_to_hub_function ).city ConstructionFactory('nrcan', city_ep_workflow).enrich() UsageFactory('nrcan', city_ep_workflow).enrich() WeatherFactory('epw', city_ep_workflow).enrich() energy_plus_workflow(city_ep_workflow, energy_plus_output_path) # Create City from HUB to use Grasshopper results city_grasshopper = GeometryFactory( file_type='geojson', path=geojson_file_path, height_field='maximum_roof_height', year_of_construction_field='year_built', function_field='building_type', function_to_hub=Dictionaries().montreal_function_to_hub_function ).city ConstructionFactory('nrcan', city_grasshopper).enrich() UsageFactory('nrcan', city_grasshopper).enrich() WeatherFactory('epw', city_grasshopper).enrich() enrich(city_grasshopper) # Collect data from city_ep_workflow ep_building_data = [] for building in city_ep_workflow.buildings: building_name = building.name # Get total floor area total_floor_area = 0 for zone in building.thermal_zones_from_internal_zones: total_floor_area += zone.total_floor_area # Assuming area is in m^2 # Get yearly heating demand in Joules yearly_heating_demand_J = building.heating_demand['year'][0] # Should be a single value # Convert to kWh yearly_heating_demand_kWh = yearly_heating_demand_J / 3.6e6 # Compute heating demand intensity (kWh/m²) heating_demand_intensity = yearly_heating_demand_kWh / total_floor_area if total_floor_area > 0 else 0 # Get yearly cooling demand in Joules yearly_cooling_demand_J = building.cooling_demand['year'][0] # Should be a single value # Convert to kWh yearly_cooling_demand_kWh = yearly_cooling_demand_J / 3.6e6 # Compute cooling demand intensity (kWh/m²) cooling_demand_intensity = yearly_cooling_demand_kWh / total_floor_area if total_floor_area > 0 else 0 # Append data to list ep_building_data.append({ 'Building Name': building_name, 'Yearly Heating Demand EP (kWh)': yearly_heating_demand_kWh, 'Demand Intensity Heating EP (kWh/m²)': heating_demand_intensity, 'Yearly Cooling Demand EP (kWh)': yearly_cooling_demand_kWh, 'Demand Intensity Cooling EP (kWh/m²)': cooling_demand_intensity, 'Total Floor Area (m²)': total_floor_area }) # Collect data from city_grasshopper grasshopper_building_data = [] for building in city_grasshopper.buildings: building_name = building.name # Get total floor area total_floor_area = 0 for zone in building.thermal_zones_from_internal_zones: total_floor_area += zone.total_floor_area # Assuming area is in m^2 # Get yearly heating demand in Joules yearly_heating_demand_J = building.heating_demand['year'][0] # Should be a single value # Convert to kWh yearly_heating_demand_kWh = yearly_heating_demand_J / 3.6e6 # Compute heating demand intensity (kWh/m²) heating_demand_intensity = yearly_heating_demand_kWh / total_floor_area if total_floor_area > 0 else 0 # Get yearly cooling demand in Joules yearly_cooling_demand_J = building.cooling_demand['year'][0] # Should be a single value # Convert to kWh yearly_cooling_demand_kWh = yearly_cooling_demand_J / 3.6e6 # Compute cooling demand intensity (kWh/m²) cooling_demand_intensity = yearly_cooling_demand_kWh / total_floor_area if total_floor_area > 0 else 0 # Append data to list grasshopper_building_data.append({ 'Building Name': building_name, 'Yearly Heating Demand Grasshopper (kWh)': yearly_heating_demand_kWh, 'Demand Intensity Heating Grasshopper (kWh/m²)': heating_demand_intensity, 'Yearly Cooling Demand Grasshopper (kWh)': yearly_cooling_demand_kWh, 'Demand Intensity Cooling Grasshopper (kWh/m²)': cooling_demand_intensity }) # Create DataFrames ep_df = pd.DataFrame(ep_building_data) grasshopper_df = pd.DataFrame(grasshopper_building_data) # Merge DataFrames on 'Building Name' and 'Total Floor Area (m²)' # Since Total Floor Area should be the same for both, we can use it from ep_df merged_df = pd.merge(ep_df, grasshopper_df, on='Building Name') # Rearrange columns if needed merged_df = merged_df[[ 'Building Name', 'Yearly Heating Demand EP (kWh)', 'Demand Intensity Heating EP (kWh/m²)', 'Yearly Cooling Demand EP (kWh)', 'Demand Intensity Cooling EP (kWh/m²)', 'Yearly Heating Demand Grasshopper (kWh)', 'Demand Intensity Heating Grasshopper (kWh/m²)', 'Yearly Cooling Demand Grasshopper (kWh)', 'Demand Intensity Cooling Grasshopper (kWh/m²)', 'Total Floor Area (m²)' ]] # Write to Excel output_excel_path = lachine_output_path / 'building_heating_cooling_demands.xlsx' merged_df.to_excel(output_excel_path, index=False)