import pandas as pd from scripts.geojson_creator import process_geojson from pathlib import Path import subprocess from scripts.ep_run_enrich import energy_plus_workflow from hub.imports.geometry_factory import GeometryFactory from hub.helpers.dictionaries import Dictionaries from hub.imports.construction_factory import ConstructionFactory from hub.imports.usage_factory import UsageFactory from hub.imports.weather_factory import WeatherFactory from hub.imports.results_factory import ResultFactory from scripts import random_assignation from hub.imports.energy_systems_factory import EnergySystemsFactory from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory from scripts.costs.cost import Cost from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV import hub.helpers.constants as cte from hub.exports.exports_factory import ExportsFactory from scripts.solar_angles import CitySolarAngles from scripts.pv_sizing_and_simulation import PVSizingSimulation # Specify the GeoJSON file path location = [45.49034212153445, -73.61435648647083] geojson_file = process_geojson(x=location[1], y=location[0], diff=0.0005) file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson') # Specify the output path for the PDF file output_path = (Path(__file__).parent / 'out_files').resolve() # Create city object from GeoJSON file city = GeometryFactory('geojson', path=file_path, height_field='height', year_of_construction_field='year_of_construction', function_field='function', function_to_hub=Dictionaries().montreal_function_to_hub_function).city # Enrich city data ConstructionFactory('nrcan', city).enrich() UsageFactory('nrcan', city).enrich() WeatherFactory('epw', city).enrich() ExportsFactory('sra', city, output_path).export() sra_path = (output_path / f'{city.name}_sra.xml').resolve() subprocess.run(['sra', str(sra_path)]) ResultFactory('sra', city, output_path).enrich() solar_angles = CitySolarAngles(city.name, city.latitude, city.longitude, tilt_angle=45, surface_azimuth_angle=180).calculate energy_plus_workflow(city) random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage) EnergySystemsFactory('montreal_future', city).enrich() for building in city.buildings: EnergySystemsSimulationFactory('archetype13', building=building, output_path=output_path).enrich() # ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]] # pv_sizing_simulation = PVSizingSimulation(building, # solar_angles, # tilt_angle=45, # module_height=1, # module_width=2, # ghi=ghi) sum_floor_area = 0 for building in city.buildings: for thermal_zone in building.thermal_zones_from_internal_zones: sum_floor_area += thermal_zone.total_floor_area costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle # costs.to_csv(output_path / f'{building.name}_lcc.csv') costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv( output_path / f'{building.name}_cc.csv') # (costs.loc['global_operational_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}']. # to_csv(output_path / f'{building.name}_op.csv')) # costs.loc['global_maintenance_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv( # output_path / f'{building.name}_m.csv') print(building.name) investment_cost = costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems'] lcc_capex = costs.loc['total_capital_costs_systems', f'Scenario {SYSTEM_RETROFIT_AND_PV}'] print(investment_cost) print(lcc_capex) print(sum_floor_area)