energy_system_modelling_wor.../scripts/random_assignation.py
s_ranjbar efac4c3948 Costing initiated
The classes and scripts of costs library are copied in scripts folder

fix: updating the energy system catalogue parameter importer

fix: units are fixed in the sizing and simulation modules

fix: adding costing workflow

feat: new function created to store current and new system analysis results

fix: updating the code to implement all the changes

feat: new attributes added to energy system catalogue

fix: samll bug in calculating capital cost of TES is solved

feat: a new method for calculating peak dhw demand is created in building class

fix: small bug in generation system class of CDM is fixed

fix: small issues in current system simulation and sizing modules are resolved

feat: new class called EnergySystemsSimulationFactory is created to handle all the system simulation models

fix: the operational cost class is modified and completed

fix: slight changes before merge
2024-05-01 15:18:52 -04:00

114 lines
5.0 KiB
Python

"""
This project aims to assign energy systems archetype names to Montreal buildings.
The random assignation is based on statistical information extracted from different sources, being:
- For residential buildings:
- SHEU 2015: https://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/menus/sheu/2015/tables.cfm
- For non-residential buildings:
- Montreal dataportal: https://dataportalforcities.org/north-america/canada/quebec/montreal
- https://www.eia.gov/consumption/commercial/data/2018/
"""
import json
import random
from hub.city_model_structure.building import Building
energy_systems_format = 'montreal_custom'
# parameters:
residential_systems_percentage = {'system 1 gas': 100,
'system 1 electricity': 0,
'system 2 gas': 0,
'system 2 electricity': 0,
'system 3 and 4 gas': 0,
'system 3 and 4 electricity': 0,
'system 5 gas': 0,
'system 5 electricity': 0,
'system 6 gas': 0,
'system 6 electricity': 0,
'system 8 gas': 0,
'system 8 electricity': 0}
residential_new_systems_percentage = {'PV+ASHP+GasBoiler+TES': 100,
'PV+4Pipe+DHW': 0,
'PV+ASHP+ElectricBoiler+TES': 0,
'PV+GSHP+GasBoiler+TES': 0,
'PV+GSHP+ElectricBoiler+TES': 0,
'PV+WSHP+GasBoiler+TES': 0,
'PV+WSHP+ElectricBoiler+TES': 0}
non_residential_systems_percentage = {'system 1 gas': 0,
'system 1 electricity': 0,
'system 2 gas': 0,
'system 2 electricity': 0,
'system 3 and 4 gas': 39,
'system 3 and 4 electricity': 36,
'system 5 gas': 0,
'system 5 electricity': 0,
'system 6 gas': 13,
'system 6 electricity': 12,
'system 8 gas': 0,
'system 8 electricity': 0}
def _retrieve_buildings(path, year_of_construction_field=None,
function_field=None, function_to_hub=None, aliases_field=None):
_buildings = []
with open(path, 'r', encoding='utf8') as json_file:
_geojson = json.loads(json_file.read())
for feature in _geojson['features']:
_building = {}
year_of_construction = None
if year_of_construction_field is not None:
year_of_construction = int(feature['properties'][year_of_construction_field])
function = None
if function_field is not None:
function = feature['properties'][function_field]
if function_to_hub is not None:
# use the transformation dictionary to retrieve the proper function
if function in function_to_hub:
function = function_to_hub[function]
building_name = ''
building_aliases = []
if 'id' in feature:
building_name = feature['id']
if aliases_field is not None:
for alias_field in aliases_field:
building_aliases.append(feature['properties'][alias_field])
_building['year_of_construction'] = year_of_construction
_building['function'] = function
_building['building_name'] = building_name
_building['building_aliases'] = building_aliases
_buildings.append(_building)
return _buildings
def call_random(_buildings: [Building], _systems_percentage):
_buildings_with_systems = []
_systems_distribution = []
_selected_buildings = list(range(0, len(_buildings)))
random.shuffle(_selected_buildings)
total = 0
maximum = 0
add_to = 0
for _system in _systems_percentage:
if _systems_percentage[_system] > 0:
number_of_buildings = round(_systems_percentage[_system] / 100 * len(_selected_buildings))
_systems_distribution.append({'system': _system, 'number': _systems_percentage[_system],
'number_of_buildings': number_of_buildings})
if number_of_buildings > maximum:
maximum = number_of_buildings
add_to = len(_systems_distribution) - 1
total += number_of_buildings
missing = 0
if total != len(_selected_buildings):
missing = len(_selected_buildings) - total
if missing != 0:
_systems_distribution[add_to]['number_of_buildings'] += missing
_position = 0
for case in _systems_distribution:
for i in range(0, case['number_of_buildings']):
_buildings[_selected_buildings[_position]].energy_systems_archetype_name = case['system']
_position += 1
return _buildings