flexibility/rule_based.py

89 lines
3.2 KiB
Python
Raw Normal View History

2024-09-03 17:35:09 -04:00
import math
import pandas as pd
data = pd.read_csv('new_file.csv')
demand = [0] + data['Q_tot_mpc'].to_list()
t_out = [0] + data['T_out'].to_list()
data['Datetime'] = pd.to_datetime(data['Datetime'])
p_electricity = data['Electricity_Price'].to_list()
cp = 4182 # J/kgK
# Heat Pump Sizing
hp_cap = max(demand) * 0.7 * 1000
hp_cop_curve_coefficients = [1.039924, 0.0146, 6e-06, -0.05026, 0.000635, -0.000154]
hp_nominal_efficiency = 2.5
hp_delta_t = 5
# TES Sizing
volume = round(max(demand) * 3.6e6 / (1000 * cp * 15))
height = 2
d = math.sqrt((4 * volume) / (math.pi * height))
ua = 0.28
variable_names = ["t_sup_hp", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "hp_cop", "hp_electricity",
"electricity_cost"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
t_sup_hp, t_tank, t_ret, m_ch, m_dis, q_hp, hp_cop, hp_electricity, electricity_cost = [variables[name] for name in variable_names]
t_tank[0] = 40
for i in range(len(demand) - 1):
t_tank[i + 1] = t_tank[i] + ((m_ch[i] * (t_sup_hp[i] - t_tank[i])) + (ua * (t_out[i] - t_tank[i])) / cp - m_dis[i] * (t_tank[i] - t_ret[i])) * (900 / (1000 * volume))
# hp operation and tank charging
if t_tank[i + 1] < 40:
q_hp[i + 1] = hp_cap
m_ch[i + 1] = q_hp[i + 1] / (cp * hp_delta_t)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cp)) + t_tank[i + 1]
elif 40 <= t_tank[i + 1] < 55 and q_hp[i] == 0:
q_hp[i + 1] = 0
m_ch[i + 1] = 0
t_sup_hp[i + 1] = t_tank[i + 1]
elif 40 <= t_tank[i + 1] < 55 and q_hp[i] > 0:
q_hp[i + 1] = hp_cap
m_ch[i + 1] = q_hp[i + 1] / (cp * hp_delta_t)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cp)) + t_tank[i + 1]
else:
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
if q_hp[i + 1] > 0:
t_out_fahrenheit = 1.8 * t_out[i] + 32
t_tank_fahrenheit = 1.8 * t_tank[i] + 32
hp_cop[i + 1] = (1 / (hp_cop_curve_coefficients[0] +
hp_cop_curve_coefficients[1] * t_tank_fahrenheit +
hp_cop_curve_coefficients[2] * t_tank_fahrenheit ** 2 +
hp_cop_curve_coefficients[3] * t_out_fahrenheit +
hp_cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
hp_cop_curve_coefficients[5] * t_tank_fahrenheit * t_out_fahrenheit)) * hp_nominal_efficiency
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
electricity_cost[i + 1] = hp_electricity[i + 1] * p_electricity[i + 1]
else:
hp_cop[i + 1] = 0
hp_electricity[i + 1] = 0
electricity_cost[i + 1] = 0
# storage discharging
if demand[i + 1] == 0:
m_dis[i + 1] = 0
t_ret[i + 1] = t_tank[i + 1]
else:
if demand[i + 1] > 0.5 * max(demand):
factor = 6
else:
factor = 4
m_dis[i + 1] = (max(demand) * 1000) / (cp * factor)
t_ret[i + 1] = t_tank[i + 1] - (demand[i + 1] * 1000) / (m_dis[i + 1] * cp)
output = pd.DataFrame(index=data['Datetime'])
output["demand"] = [x * 1000 for x in demand][1:]
output["q_hp"] = q_hp[1:]
output["hp_cop"] = hp_cop[1:]
output["hp_electricity_consumption"] = hp_electricity[1:]
output["m_ch"] = m_ch[1:]
output["m_dis"] = m_dis[1:]
output["t_sup_hp"] = t_sup_hp[1:]
output["t_tank"] = t_tank[1:]
output["t_return"] = t_ret[1:]
out_file = output.to_csv("results_rule_based.csv")