import cvxpy as cp import pandas as pd # Load data data = pd.read_csv('new_file_extended.csv') demand = data['Q_tot_mpc'].to_list() demand_watts = [x * 1000 for x in demand] t_out = data['T_out'].to_list() p_electricity = data['Electricity_Price'].to_list() data['Datetime'] = pd.to_datetime(data['Datetime']) cp_water = 4182 # J/kgK # Heat Pump Sizing hp_heating_cap = max(demand_watts) * 0.7 hp_nominal_cop = 2.5 hp_delta_t = 5 hp_cop_curve_coefficients = [1.039924, 0.0146, 6e-06, -0.05026, 0.000635, -0.000154] # TES Sizing tank_volume = round(max(demand_watts) * 3.6e3 / (1000 * cp_water * 15)) ua = 0.28 time_step_size = 900 # Time step size in seconds (15 minutes) control_horizon = 24 # Control horizon (96 time steps = 24 hours) initial_temperature = 40 lower_limit = 40 upper_limit = 55 variable_names = ["t_sup_hp", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "hp_cop", "hp_electricity", "electricity_cost"] num_hours = len(demand) variables = {name: [0] * num_hours for name in variable_names} t_sup_hp, t_tank, t_ret, m_ch, m_dis, q_hp, hp_cop, hp_electricity, electricity_cost = [variables[name] for name in variable_names] t_tank[0] = 40 # Define the optimization function def optimize_heating_system(heating_demand, initial_tank_temp, electricity_price, time_step_size=900, cp_water=4182, volume=tank_volume, hp_nominal_efficiency=hp_nominal_cop, hp_cap=hp_heating_cap, lower_limit_tes=lower_limit, upper_limit_tes=upper_limit): time_horizon = len(heating_demand) # Define problem variables storage_charge = cp.Variable(time_horizon, nonneg=True) # Energy from heat pump to tank storage_discharge = cp.Variable(time_horizon, nonneg=True) # Energy from tank to house heat_pump_energy = cp.Variable(time_horizon, nonneg=True) # Heat pump energy tank_temperature = cp.Variable(time_horizon) # Tank temperature (°C) # Calculate the change in tank temperature temperature_change = (time_step_size / (1000 * volume * cp_water)) * (storage_charge[:-1] - storage_discharge[:-1]) # Calculate the electricity cost electricity_cost = ((heat_pump_energy[:-1] * time_step_size) / (hp_nominal_efficiency * 3600)) @ electricity_price[ :-1] # Define the objective function objective = cp.Minimize(cp.sum_squares(heating_demand - storage_discharge)) + cp.Minimize( cp.sum(electricity_cost)) + cp.Minimize(cp.sum(heat_pump_energy)) # Define the constraints constraints = [heat_pump_energy <= hp_cap, tank_temperature >= lower_limit_tes, tank_temperature <= upper_limit_tes, tank_temperature[0] == initial_tank_temp, storage_charge <= heat_pump_energy] # Specify the tank temperature in the next time step constraints.extend( [tank_temperature[i + 1] == tank_temperature[i] + temperature_change[i] for i in range(time_horizon - 1)]) # Create the optimization problem problem = cp.Problem(objective, constraints) # Solve the problem problem.solve(solver=cp.GUROBI) # Get the optimized values optimized_storage_charge = storage_charge.value optimized_storage_discharge = storage_discharge.value optimized_heat_pump_energy = heat_pump_energy.value optimized_tank_temperature = tank_temperature.value return optimized_heat_pump_energy, optimized_storage_discharge, optimized_tank_temperature # Rolling optimization loop for j in range(len(demand_watts) - control_horizon): # Adjust loop to avoid exceeding data length # Ensure that we don't exceed the data length end_time_step = min(j + control_horizon, len(demand_watts)) # Adjust the slicing window to the available data demand_window = demand_watts[j:end_time_step] p_electricity_window = p_electricity[j:end_time_step] initial_tank_temperature = t_tank[j] # Call the optimization function with adjusted window size hp_output, storage_output, storage_temperature = optimize_heating_system(demand_window, initial_tank_temperature, p_electricity_window) # Perform necessary calculations using the first values from the optimization output q_hp[j] = hp_output[0] if q_hp[j] > 0: m_ch[j] = q_hp[j] / (cp_water * hp_delta_t) t_sup_hp[j] = (q_hp[j] / (m_ch[j] * cp_water)) + t_tank[j] t_out_fahrenheit = 1.8 * t_out[j] + 32 t_tank_fahrenheit = 1.8 * t_tank[j] + 32 hp_cop[j] = (1 / (hp_cop_curve_coefficients[0] + hp_cop_curve_coefficients[1] * t_tank_fahrenheit + hp_cop_curve_coefficients[2] * t_tank_fahrenheit ** 2 + hp_cop_curve_coefficients[3] * t_out_fahrenheit + hp_cop_curve_coefficients[4] * t_out_fahrenheit ** 2 + hp_cop_curve_coefficients[5] * t_tank_fahrenheit * t_out_fahrenheit)) * hp_nominal_cop hp_electricity[j] = q_hp[j] / hp_cop[j] electricity_cost[j] = hp_electricity[j] * p_electricity[j] / 4000 # Update storage discharge and tank temperature for next step if storage_output[0] > 0.5 * max(demand_window): factor = 6 else: factor = 4 m_dis[j] = (max(demand_window)) / (cp_water * factor) t_ret[j] = t_tank[j] - (demand_watts[j]) / (m_dis[j] * cp_water) t_tank[j + 1] = t_tank[j] + ((m_ch[j] * (t_sup_hp[j] - t_tank[j])) + (ua * (t_out[j] - t_tank[j])) / cp_water - m_dis[j] * (t_tank[j] - t_ret[j])) * (time_step_size / (1000 * tank_volume)) # Output results to a CSV file output = pd.DataFrame(index=data['Datetime']) output["demand"] = demand_watts output["q_hp"] = q_hp output["hp_cop"] = hp_cop output["hp_electricity_consumption"] = hp_electricity output["electricity_cost"] = electricity_cost output["m_ch"] = m_ch output["m_dis"] = m_dis output["t_sup_hp"] = t_sup_hp output["t_tank"] = t_tank output["t_return"] = t_ret output.to_csv("results_rolling_window.csv")