pv_workflow/example_codes/pv_system_assessment.py

85 lines
4.7 KiB
Python

from pathlib import Path
import subprocess
from building_modelling.ep_run_enrich import energy_plus_workflow
from building_modelling import random_assignation
from pv_assessment.pv_system_assessment import PvSystemAssessment
from pv_assessment.solar_calculator import SolarCalculator
from hub.imports.energy_systems_factory import EnergySystemsFactory
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.imports.results_factory import ResultFactory
from building_modelling.geojson_creator import process_geojson
from hub.exports.exports_factory import ExportsFactory
# Define paths for input and output directories, ensuring directories are created if they do not exist
main_path = Path(__file__).parent.parent.resolve()
input_files_path = (Path(__file__).parent.parent / 'input_files')
input_files_path.mkdir(parents=True, exist_ok=True)
output_path = (Path(__file__).parent.parent / 'out_files').resolve()
output_path.mkdir(parents=True, exist_ok=True)
# Define specific paths for outputs from EnergyPlus and SRA (Simplified Radiosity Algorith) and PV calculation processes
energy_plus_output_path = output_path / 'energy_plus_outputs'
energy_plus_output_path.mkdir(parents=True, exist_ok=True)
sra_output_path = output_path / 'sra_outputs'
sra_output_path.mkdir(parents=True, exist_ok=True)
pv_assessment_path = output_path / 'pv_outputs'
pv_assessment_path.mkdir(parents=True, exist_ok=True)
# Generate a GeoJSON file for city buildings based on latitude, longitude, and building dimensions
geojson_file_path = input_files_path / 'output_buildings.geojson'
# Initialize a city object from the geojson file, mapping building functions using a predefined dictionary
city = GeometryFactory(file_type='geojson',
path=geojson_file_path,
height_field='height',
year_of_construction_field='year_of_construction',
function_field='function',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
# Enrich city data with construction, usage, and weather information specific to the location
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
# Execute the EnergyPlus workflow to simulate building energy performance and generate output
energy_plus_workflow(city, energy_plus_output_path)
# Export the city data in SRA-compatible format to facilitate solar radiation assessment
ExportsFactory('sra', city, sra_output_path).export()
# Run SRA simulation using an external command, passing the generated SRA XML file path as input
sra_path = (sra_output_path / f'{city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
# Enrich city data with SRA simulation results for subsequent analysis
ResultFactory('sra', city, sra_output_path).enrich()
# Assign PV system archetype name to the buildings in city
random_assignation.call_random(city.buildings, random_assignation.residential_systems_percentage)
# Enrich city model with Montreal future systems parameters
EnergySystemsFactory('montreal_future', city).enrich()
# # Initialize solar calculation parameters (e.g., azimuth, altitude) and compute irradiance and solar angles
tilt_angle = 37
solar_parameters = SolarCalculator(city=city,
surface_azimuth_angle=180,
tilt_angle=tilt_angle,
standard_meridian=-75)
solar_angles = solar_parameters.solar_angles # Obtain solar angles for further analysis
solar_parameters.tilted_irradiance_calculator() # Calculate the solar radiation on a tilted surface
# # PV modelling building by building
#List of available PV modules ['RE400CAA Pure 2', 'RE410CAA Pure 2', 'RE420CAA Pure 2', 'RE430CAA Pure 2',
# 'REC600AA Pro M', 'REC610AA Pro M', 'REC620AA Pro M', 'REC630AA Pro M', 'REC640AA Pro M']
for building in city.buildings:
PvSystemAssessment(building=building,
pv_system=None,
battery=None,
tilt_angle=tilt_angle,
solar_angles=solar_angles,
pv_installation_type='rooftop',
simulation_model_type='explicit',
module_model_name=None,
inverter_efficiency=0.95,
system_catalogue_handler=None,
roof_percentage_coverage=0.75,
facade_coverage_percentage=0,
csv_output=True,
output_path=pv_assessment_path).enrich()