summer_course_2024/helpers/geometry_helper.py

265 lines
8.8 KiB
Python
Raw Normal View History

2020-06-09 14:07:47 -04:00
"""
Geometry helper
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2020 Project Author Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
2020-11-26 09:26:55 -05:00
Contributors Pilar Monsalvete pilar_monsalvete@yahoo.es
2020-06-09 14:07:47 -04:00
"""
import sys
2020-05-19 17:00:15 -04:00
import math
import numpy as np
import open3d as o3d
import requests
from trimesh import Trimesh
from trimesh import intersections
from helpers.configuration_helper import ConfigurationHelper
2020-05-19 17:00:15 -04:00
2020-06-11 16:22:58 -04:00
class GeometryHelper:
"""
Geometry helper class
"""
def __init__(self, delta=0, area_delta=0):
2020-05-19 17:00:15 -04:00
self._delta = delta
self._area_delta = area_delta
2020-05-19 17:00:15 -04:00
@property
def config(self):
print(f'delta {self._delta} area {self._area_delta}')
@staticmethod
def adjacent_locations(location1, location2):
"""
Determine when two attributes may be adjacent or not based in the dis
:param location1:
:param location2:
:return: Boolean
"""
max_distance = ConfigurationHelper().max_location_distance_for_shared_walls
return GeometryHelper.distance_between_points(location1, location2) < max_distance
def almost_same_area(self, a1, a2):
"""
Compare two areas and decides if they are almost equal (absolute error under delta)
:param a1
:param a2
:return: Boolean
"""
if a1 == 0 or a2 == 0:
return False
delta = math.fabs(a1 - a2)
return delta <= self._area_delta
def almost_equal(self, v1, v2):
"""
Compare two points and decides if they are almost equal (quadratic error under delta)
:param v1: [x,y,z]
:param v2: [x,y,z]
:return: Boolean
"""
delta = self.distance_between_points(v1, v2)
2020-05-19 17:00:15 -04:00
return delta <= self._delta
def is_almost_same_surface(self, s1, s2):
"""
Compare two surfaces and decides if they are almost equal (quadratic error under delta)
:param s1: Surface
:param s2: Surface
:return: Boolean
"""
2020-06-22 13:26:50 -04:00
# delta is grads an need to be converted into radians
delta = np.rad2deg(self._delta)
difference = (s1.inclination - s2.inclination) % math.pi
if abs(difference) > delta:
return False
# s1 and s2 are at least almost parallel surfaces
2020-05-29 07:25:33 -04:00
# calculate distance point to plane using all the vertex
# select surface1 value for the point (X,Y,Z) where two of the values are 0
2020-06-03 16:56:17 -04:00
minimum_distance = self._delta + 1
2020-05-29 07:25:33 -04:00
parametric = s2.polygon.get_parametric()
n2 = s2.normal
2020-05-29 07:25:33 -04:00
for point in s1.points:
distance = abs(
(point[0] * parametric[0]) + (point[1] * parametric[1]) + (point[2] * parametric[2]) + parametric[3])
normal_module = math.sqrt(pow(n2[0], 2) + pow(n2[1], 2) + pow(n2[2], 2))
2020-06-03 16:56:17 -04:00
2020-05-29 07:25:33 -04:00
if normal_module == 0:
continue
distance = distance / normal_module
if distance < minimum_distance:
minimum_distance = distance
2020-06-03 16:56:17 -04:00
if minimum_distance <= self._delta:
break
2020-06-03 16:56:17 -04:00
if minimum_distance > self._delta or s1.intersect(s2) is None:
return False
else:
return True
2020-05-19 17:00:15 -04:00
@staticmethod
def to_points_matrix(points, remove_last=False):
"""
Transform a point vector into a point matrix
:param points: [x, y, z, x, y, z ...]
:param remove_last: Boolean
:return: [[x,y,z],[x,y,z]...]
"""
rows = points.size // 3
2020-05-19 17:00:15 -04:00
points = points.reshape(rows, 3)
if remove_last:
points = np.delete(points, rows - 1, 0)
2020-05-19 17:00:15 -04:00
return points
@staticmethod
def _segment_list_to_point_cloud(segment_list):
point_list = np.asarray(segment_list[0])
for segment in segment_list:
for new_point in segment:
found = False
for point in point_list:
same_point = np.allclose(new_point, point)
if same_point:
found = True
break
if not found:
point_list = np.concatenate((point_list, [new_point]))
return point_list
@staticmethod
def _point_cloud_to_mesh(point_list, normal_list):
# Return a mesh composed only by triangles
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(point_list)
pcd.normals = o3d.utility.Vector3dVector(normal_list)
distances = pcd.compute_nearest_neighbor_distance()
avg_dist = np.mean(distances)
radius = 3 * avg_dist
bpa_mesh = o3d.geometry.TriangleMesh().create_from_point_cloud_ball_pivoting(
pcd, o3d.utility.DoubleVector([radius, radius * 2]))
mesh_result = Trimesh(vertices=np.asarray(bpa_mesh.vertices), faces=np.asarray(bpa_mesh.triangles))
return mesh_result
@staticmethod
def _merge_meshes(mesh1, mesh2):
v_1 = mesh1.vertices
f_1 = mesh1.faces
v_2 = mesh2.vertices
f_2 = mesh2.faces
length = len(v_1)
v_merge = np.concatenate((v_1, v_2))
f_merge = np.asarray(f_1)
for item in f_2:
point1 = item.item(0) + length
point2 = item.item(1) + length
point3 = item.item(2) + length
surface = np.asarray([point1, point2, point3])
f_merge = np.concatenate((f_merge, [surface]))
mesh_merge = Trimesh(vertices=v_merge, faces=f_merge)
return mesh_merge
@staticmethod
def divide_mesh_by_plane(mesh, normal_plane, point_plane):
"""
Divide a mesh by a plane
:param mesh: Trimesh
:param normal_plane: [x, y, z]
:param point_plane: [x, y, z]
:return: [Trimesh]
"""
# The first mesh returns the positive side of the plane and the second the negative side.
# If the plane does not divide the mesh (i.e. it does not touch it or it is coplanar with one or more faces),
# then it returns only the original mesh.
normal_plane_opp = [None] * len(normal_plane)
for i in range(0, len(normal_plane)):
normal_plane_opp[i] = - normal_plane[i]
normal = [normal_plane, normal_plane_opp]
normal_opp = [normal_plane_opp, normal_plane]
mesh_final = []
for i in range(0, 2):
mesh_1 = intersections.slice_mesh_plane(mesh, normal[i], point_plane)
mesh_1_segments = intersections.mesh_plane(mesh, normal[i], point_plane)
mesh.difference(mesh_1, engine='blender')
quit()
if len(mesh_1_segments) <= 0 or len(mesh_1.faces) == len(mesh.faces):
mesh_final.append(mesh)
break
else:
2020-06-11 16:22:58 -04:00
points = GeometryHelper._segment_list_to_point_cloud(mesh_1_segments)
points_normals = [[None] * 3] * len(points)
for j in range(0, len(points_normals)):
points_normals[j] = normal_opp[i]
2020-06-11 16:22:58 -04:00
mesh_2 = GeometryHelper._point_cloud_to_mesh(points, points_normals)
mesh_final.append(GeometryHelper._merge_meshes(mesh_1, mesh_2))
return mesh_final
2020-06-22 13:26:50 -04:00
@staticmethod
def gml_surface_to_libs(surface):
if surface == 'WallSurface':
return 'Wall'
elif surface == 'GroundSurface':
return 'Ground'
else:
return 'Roof'
@staticmethod
def get_location(latitude, longitude):
url = 'https://nominatim.openstreetmap.org/reverse?lat={latitude}&lon={longitude}&format=json'
resp = requests.get(url.format(latitude=latitude, longitude=longitude))
if resp.status_code != 200:
# This means something went wrong.
raise Exception('GET /tasks/ {}'.format(resp.status_code))
else:
response = resp.json()
# todo: this is wrong, remove in the future
city = 'new_york_city'
country = 'us'
if 'city' in response['address']:
city = response['address']['city']
if 'country_code' in response['address']:
country = response['address']['country_code']
return [country, city]
@staticmethod
def create_mesh(surfaces):
point_list = []
# todo: ensure use almost equal in the points to avoid duplicated points
normal_list = []
for surface in surfaces:
for point in surface.points:
point_list.append(point)
normal_list.append(surface.normal)
pcd = o3d.geometry.PointCloud()
points = np.asarray(point_list)
normals = np.asarray(normal_list)
pcd.points = o3d.utility.Vector3dVector(points)
pcd.normals = o3d.utility.Vector3dVector(normals)
alpha = 0.5
tetra_mesh, pt_map = o3d.geometry.TetraMesh.create_from_point_cloud(pcd)
mesh = o3d.geometry.TriangleMesh().create_from_point_cloud_alpha_shape(pcd, alpha, tetra_mesh, pt_map)
mesh.compute_vertex_normals()
o3d.visualization.draw_geometries([mesh], mesh_show_back_face=True)
return Trimesh(vertices=np.asarray(mesh.vertices), faces=np.asarray(mesh.triangles))
@staticmethod
def distance_between_points(vertex1, vertex2):
power = 0
for dimension in range(0, len(vertex1)):
power += math.pow(vertex2[dimension]-vertex1[dimension], 2)
distance = math.sqrt(power)
return distance
@staticmethod
def angle_between_vectors(vec_1, vec_2):
if np.linalg.norm(vec_1) == 0 or np.linalg.norm(vec_2) == 0:
sys.stderr.write("Warning: impossible to calculate angle between planes' normal. Return 0\n")
return 0
alpha = math.acos(np.dot(vec_1, vec_2) / np.linalg.norm(vec_1) / np.linalg.norm(vec_2))
return alpha