summer_course_2024/tests/test_results_import.py

96 lines
4.3 KiB
Python
Raw Normal View History

2023-04-27 10:59:03 -04:00
"""
TestExports test and validate the city export formats
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
"""
import subprocess
from pathlib import Path
from unittest import TestCase
2023-05-01 10:37:51 -04:00
2023-04-27 10:59:03 -04:00
import pandas as pd
2023-05-01 10:37:51 -04:00
import hub.helpers.constants as cte
from hub.exports.energy_building_exports_factory import EnergyBuildingsExportsFactory
from hub.exports.exports_factory import ExportsFactory
2023-04-27 10:59:03 -04:00
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
2023-05-01 10:37:51 -04:00
from hub.imports.geometry_factory import GeometryFactory
2023-04-27 10:59:03 -04:00
from hub.imports.results_factory import ResultFactory
2023-05-01 10:37:51 -04:00
from hub.imports.usage_factory import UsageFactory
2023-04-27 10:59:03 -04:00
class TestResultsImport(TestCase):
2023-04-27 10:59:03 -04:00
"""
TestImports class contains the unittest for import functionality
"""
def setUp(self) -> None:
"""
Test setup
:return: None
"""
self._example_path = (Path(__file__).parent / 'tests_data').resolve()
self._output_path = (Path(__file__).parent / 'tests_outputs').resolve()
file = 'test.geojson'
file_path = (self._example_path / file).resolve()
self._city = GeometryFactory('geojson',
path=file_path,
height_field='citygml_me',
year_of_construction_field='ANNEE_CONS',
function_field='CODE_UTILI',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
2023-04-27 10:59:03 -04:00
ConstructionFactory('nrcan', self._city).enrich()
UsageFactory('nrcan', self._city).enrich()
def test_sra_import(self):
ExportsFactory('sra', self._city, self._output_path).export()
2023-04-27 10:59:03 -04:00
sra_path = (self._output_path / f'{self._city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', self._city, self._output_path).enrich()
2023-04-27 13:31:00 -04:00
# Check that all the buildings have radiance in the surfaces
2023-04-27 10:59:03 -04:00
for building in self._city.buildings:
for surface in building.surfaces:
self.assertIsNotNone(surface.global_irradiance)
def test_meb_import(self):
2023-06-07 12:55:03 -04:00
ExportsFactory('sra', self._city, self._output_path).export()
2023-04-27 10:59:03 -04:00
sra_path = (self._output_path / f'{self._city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', self._city, self._output_path).enrich()
EnergyBuildingsExportsFactory('insel_monthly_energy_balance', self._city, self._output_path).export()
for building in self._city.buildings:
insel_path = (self._output_path / f'{building.name}.insel')
subprocess.run(['insel', str(insel_path)])
2023-04-27 13:31:00 -04:00
ResultFactory('insel_monthly_energy_balance', self._city, self._output_path).enrich()
# Check that all the buildings have heating and cooling values
2023-04-27 10:59:03 -04:00
for building in self._city.buildings:
self.assertIsNotNone(building.heating_demand[cte.MONTH][cte.INSEL_MEB])
self.assertIsNotNone(building.cooling_demand[cte.MONTH][cte.INSEL_MEB])
self.assertIsNotNone(building.heating_demand[cte.YEAR][cte.INSEL_MEB])
self.assertIsNotNone(building.cooling_demand[cte.YEAR][cte.INSEL_MEB])
2023-08-01 16:41:37 -04:00
self.assertIsNotNone(building.lighting_peak_load[cte.MONTH])
self.assertIsNotNone(building.lighting_peak_load[cte.YEAR])
self.assertIsNotNone(building.appliances_peak_load[cte.MONTH])
self.assertIsNotNone(building.appliances_peak_load[cte.YEAR])
2023-05-01 10:37:51 -04:00
def test_peak_loads(self):
# todo: this is not technically a import
2023-06-07 12:55:03 -04:00
ExportsFactory('sra', self._city, self._output_path).export()
2023-05-01 10:37:51 -04:00
sra_path = (self._output_path / f'{self._city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', self._city, self._output_path).enrich()
for building in self._city.buildings:
self.assertIsNotNone(building.heating_peak_load)
self.assertIsNotNone(building.cooling_peak_load)
values = [0 for _ in range(8760)]
values[0] = 1000
expected_monthly_list = [0 for _ in range(12)]
expected_monthly_list[0] = 1000
for building in self._city.buildings:
building.heating_demand[cte.HOUR] = pd.DataFrame(values, columns=['dummy'])
building.cooling_demand[cte.HOUR] = pd.DataFrame(values, columns=['dummy'])
2023-05-01 10:37:51 -04:00
self.assertIsNotNone(building.heating_peak_load)
self.assertIsNotNone(building.cooling_peak_load)