59 lines
2.7 KiB
Python
59 lines
2.7 KiB
Python
|
import math
|
||
|
|
||
|
from scripts.radiation_tilted import RadiationTilted
|
||
|
import hub.helpers.constants as cte
|
||
|
from hub.helpers.monthly_values import MonthlyValues
|
||
|
|
||
|
|
||
|
class PVSizingSimulation(RadiationTilted):
|
||
|
def __init__(self, building, solar_angles, tilt_angle, module_height, module_width, ghi):
|
||
|
super().__init__(building, solar_angles, tilt_angle, ghi)
|
||
|
self.module_height = module_height
|
||
|
self.module_width = module_width
|
||
|
self.total_number_of_panels = 0
|
||
|
self.enrich()
|
||
|
|
||
|
def available_space(self):
|
||
|
roof_area = self.building.roofs[0].perimeter_area
|
||
|
maintenance_factor = 0.1
|
||
|
orientation_factor = 0.2
|
||
|
if self.building.function == cte.RESIDENTIAL:
|
||
|
mechanical_equipment_factor = 0.2
|
||
|
else:
|
||
|
mechanical_equipment_factor = 0.3
|
||
|
available_roof = (maintenance_factor + orientation_factor + mechanical_equipment_factor) * roof_area
|
||
|
return available_roof
|
||
|
|
||
|
def inter_row_spacing(self):
|
||
|
winter_solstice = self.df[(self.df['AST'].dt.month == 12) &
|
||
|
(self.df['AST'].dt.day == 21) &
|
||
|
(self.df['AST'].dt.hour == 12)]
|
||
|
solar_altitude = winter_solstice['solar altitude'].values[0]
|
||
|
solar_azimuth = winter_solstice['solar azimuth'].values[0]
|
||
|
distance = ((self.module_height * abs(math.cos(math.radians(solar_azimuth)))) /
|
||
|
math.tan(math.radians(solar_altitude)))
|
||
|
distance = float(format(distance, '.1f'))
|
||
|
return distance
|
||
|
|
||
|
def number_of_panels(self, available_roof, inter_row_distance):
|
||
|
space_dimension = math.sqrt(available_roof)
|
||
|
space_dimension = float(format(space_dimension, '.2f'))
|
||
|
panels_per_row = math.ceil(space_dimension / self.module_width)
|
||
|
number_of_rows = math.ceil(space_dimension / inter_row_distance)
|
||
|
self.total_number_of_panels = panels_per_row * number_of_rows
|
||
|
return panels_per_row, number_of_rows
|
||
|
|
||
|
def pv_output(self):
|
||
|
radiation = self.total_radiation_tilted
|
||
|
pv_module_area = self.module_width * self.module_height
|
||
|
available_roof = self.available_space()
|
||
|
inter_row_spacing = self.inter_row_spacing()
|
||
|
self.number_of_panels(available_roof, inter_row_spacing)
|
||
|
self.building.roofs[0].installed_solar_collector_area = pv_module_area * self.total_number_of_panels
|
||
|
system_efficiency = 0.2
|
||
|
pv_hourly_production = [x * system_efficiency * self.total_number_of_panels * pv_module_area *
|
||
|
cte.WATTS_HOUR_TO_JULES for x in radiation]
|
||
|
self.building.onsite_electrical_production[cte.HOUR] = pv_hourly_production
|
||
|
self.building.onsite_electrical_production[cte.MONTH] = (
|
||
|
MonthlyValues.get_total_month(self.building.onsite_electrical_production[cte.HOUR]))
|
||
|
self.building.onsite_electrical_production[cte.YEAR] = [sum(self.building.onsite_electrical_production[cte.MONTH])]
|