summer_course_2024/hub/unittests/test_city_layers.py

79 lines
3.0 KiB
Python
Raw Normal View History

"""
CityLayersTest
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder: Milad Aghamohamadnia --- milad.aghamohamadnia@concordia.ca
"""
from unittest import TestCase
import json
import os
import time
import uuid
from pathlib import Path
2023-01-24 10:51:50 -05:00
from hub.imports.geometry_factory import GeometryFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.construction_factory import ConstructionFactory
from hub.exports.energy_building_exports_factory import EnergyBuildingsExportsFactory
import pandas as pd
from geopandas import GeoDataFrame
from shapely.geometry import Polygon
class CityLayerTest(TestCase):
@staticmethod
def _prepare_buildings(bldgs_group):
target_json = bldgs_group['target']
adjacent_json = bldgs_group['adjacent']
target_buildings = [f"building_{target_json['index']}"]
adjacent_buildings = [f"building_{el}" for el in adjacent_json['Ids']]
target_dict = [dict(
name=f"building_{target_json['index']}",
height=target_json['height_max'],
idx=target_json['index'],
uid=target_json['uid'],
year_built=2005,
# year_built= 2005 if target_json['year_built']==9999 else target_json['year_built'],
coords=target_json['coords'],
function="residential",
# function= "residential" if target_json['year_built']>2000 else "industry",
)]
adjacent_dict = [dict(
name=f"building_{el['index']}",
height=el['height_max'],
idx=el['index'],
uid=el['uid'],
year_built=2005,
# year_built=2005 if el['year_built']==9999 else el['year_built'],
coords=el['geom']['coordinates'],
function="residential",
# function= "residential" if el['year_built']>2000 else "industry",
) for el in adjacent_json['data']]
df = pd.DataFrame(target_dict + adjacent_dict)
geometries = [Polygon(row['coords'][0]) for ix, row in df.iterrows()]
gdf = GeoDataFrame(df, crs="EPSG:4326", geometry=geometries)
gdf = gdf.set_crs('EPSG:4326')
gdf = gdf.to_crs('EPSG:26911')
return gdf, target_buildings, adjacent_buildings
def _genidf(self, bldgs_group):
buildings_df, target_buildings, adjacent_buildings = self._prepare_buildings(bldgs_group)
2023-03-23 13:24:41 -04:00
#output_path = (Path(__file__).parent / 'tests_outputs').resolve()
city = GeometryFactory('gpandas', data_frame=buildings_df).city
ConstructionFactory('nrel', city).enrich()
UsageFactory('comnet', city).enrich()
2023-01-16 10:02:35 -05:00
EnergyBuildingsExportsFactory('idf', city, output_path, target_buildings=target_buildings,
adjacent_buildings=adjacent_buildings).export_debug()
filepath = os.path.join(output_path, city.name + ".idf")
newfilepath = filepath[:-4] + "_" + uuid.uuid4().hex[:10] + ".idf"
os.rename(filepath, newfilepath)
return newfilepath
def test_city_layers(self):
json_path = str((Path(__file__).parent / 'tests_data' / 'city_layers.json').resolve())
with open(json_path) as json_file:
data = json.loads(json_file.read())
self._genidf(data)