Idf parser and standardization is done
This commit is contained in:
parent
676567f1b6
commit
1d0dd11409
65
imports/schedules/DOE_IDF.py
Normal file
65
imports/schedules/DOE_IDF.py
Normal file
|
@ -0,0 +1,65 @@
|
|||
|
||||
import pandas as pd
|
||||
from imports.schedules.helpers.schedules_helper import SchedulesHelper
|
||||
import parseidf
|
||||
|
||||
|
||||
class IdfParser:
|
||||
_OCCUPANCY_SCHEDULE= ("BLDG_OCC_SCH_wo_SB","Occupancy")
|
||||
_Activity_Schedule= "ACTIVITY_SCH"
|
||||
_Electrical_Equipent_Schedule= "BLDG_EQUIP_SCH"
|
||||
_Lighting_Schedule="BLDG_LIGHT_SCH"
|
||||
_Infiltration_Ventilation_Schedule="INFIL_QUARTER_ON_SCH"
|
||||
|
||||
def __init__(self, city, base_path, type):
|
||||
self._city = city
|
||||
self._idf_schedules_path = base_path / 'ASHRAE901_OfficeSmall_STD2019_Buffalo.idf'
|
||||
with open(self._idf_schedules_path, 'r') as f:
|
||||
idf = parseidf.parse(f.read())
|
||||
|
||||
for building in city.buildings:
|
||||
schedules = dict()
|
||||
for usage_zone in building.usage_zones:
|
||||
usage_schedules = pd.Datafram(idf['SCHEDULE:COMPACT'])
|
||||
|
||||
Small_Office_Occupancy = []
|
||||
Small_Office_OccupancyActivity = []
|
||||
Small_Office_ElectricalEquipment = []
|
||||
Small_Office_Lighting = []
|
||||
Small_Office_Infiltration = []
|
||||
|
||||
for i in usage_schedules:
|
||||
if i[1] == self._Occupancy_Schedule:
|
||||
return Small_Office_Occupancy.append(i)
|
||||
elif i[1] == 'ACTIVITY_SCH':
|
||||
Small_Office_OccupancyActivity.append(i)
|
||||
elif i[1] == 'BLDG_EQUIP_SCH':
|
||||
Small_Office_ElectricalEquipment.append(i)
|
||||
elif i[1] == 'BLDG_LIGHT_SCH':
|
||||
Small_Office_Lighting.append(i)
|
||||
elif i[1] == 'INFIL_QUARTER_ON_SCH':
|
||||
Small_Office_Infiltration.append(i)
|
||||
else:
|
||||
print("The schedule name is not standard")
|
||||
|
||||
|
||||
'''
|
||||
# todo: should we save the data type? How?
|
||||
number_of_schedule_types = 13
|
||||
schedules_per_schedule_type = 3
|
||||
day_types = dict({'week_day': 0, 'saturday': 1, 'sunday': 2})
|
||||
for schedule_types in range(0, number_of_schedule_types):
|
||||
data = pd.DataFrame()
|
||||
columns_names = []
|
||||
name = ''
|
||||
for schedule_day in range(0, schedules_per_schedule_type):
|
||||
row_cells = usage_schedules.iloc[schedules_per_schedule_type*schedule_types + schedule_day]
|
||||
if schedule_day == day_types['week_day']:
|
||||
name = row_cells[0]
|
||||
columns_names.append(row_cells[2])
|
||||
data1 = row_cells[schedules_per_schedule_type:]
|
||||
data = pd.concat([data, data1], axis=1)
|
||||
data.columns = columns_names
|
||||
schedules[name] = data
|
||||
usage_zone.schedules = schedules
|
||||
'''
|
Loading…
Reference in New Issue
Block a user