Idf parser and standardization is done (correct version)_need to be updated
This commit is contained in:
parent
1d0dd11409
commit
665adae908
File diff suppressed because it is too large
Load Diff
|
@ -1,65 +1,105 @@
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from imports.schedules.helpers.schedules_helper import SchedulesHelper
|
from imports.schedules.helpers.schedules_helper import SchedulesHelper
|
||||||
import parseidf
|
import parseidf
|
||||||
|
|
||||||
|
|
||||||
class IdfParser:
|
|
||||||
_OCCUPANCY_SCHEDULE= ("BLDG_OCC_SCH_wo_SB","Occupancy")
|
|
||||||
_Activity_Schedule= "ACTIVITY_SCH"
|
|
||||||
_Electrical_Equipent_Schedule= "BLDG_EQUIP_SCH"
|
|
||||||
_Lighting_Schedule="BLDG_LIGHT_SCH"
|
|
||||||
_Infiltration_Ventilation_Schedule="INFIL_QUARTER_ON_SCH"
|
|
||||||
|
|
||||||
def __init__(self, city, base_path, type):
|
class IDFParser:
|
||||||
self._city = city
|
_OCCUPANCY_SCHEDULE = ("BLDG_OCC_SCH_wo_SB", "Occupancy")
|
||||||
self._idf_schedules_path = base_path / 'ASHRAE901_OfficeSmall_STD2019_Buffalo.idf'
|
_Activity_Schedule = "ACTIVITY_SCH"
|
||||||
with open(self._idf_schedules_path, 'r') as f:
|
_Electrical_Equipent_Schedule = "BLDG_EQUIP_SCH"
|
||||||
idf = parseidf.parse(f.read())
|
_Lighting_Schedule = "BLDG_LIGHT_SCH"
|
||||||
|
_Infiltration_Ventilation_Schedule = "INFIL_QUARTER_ON_SCH"
|
||||||
|
|
||||||
for building in city.buildings:
|
def __init__(self, city, base_path):
|
||||||
schedules = dict()
|
self._city = city
|
||||||
for usage_zone in building.usage_zones:
|
self._idf_schedules_path = base_path / 'ASHRAE901_OfficeSmall_STD2019_Buffalo.idf'
|
||||||
usage_schedules = pd.Datafram(idf['SCHEDULE:COMPACT'])
|
with open(self._idf_schedules_path, 'r') as f:
|
||||||
|
idf = parseidf.parse(f.read())
|
||||||
|
print(idf.keys()) # lists the object types in the idf file
|
||||||
|
print(idf['SCHEDULE:COMPACT']) # lists all the Output:Variable objects in the idf file
|
||||||
|
Holiday = []
|
||||||
|
Winterdesignday = []
|
||||||
|
Summerdesignday = []
|
||||||
|
Customday1 = []
|
||||||
|
Customday2 = []
|
||||||
|
Weekday = []
|
||||||
|
Weekend = []
|
||||||
|
dayType = []
|
||||||
|
compactKeywords = ['Weekdays', 'Weekends', 'Alldays', 'AllOtherDays', 'Sunday', 'Monday', 'Tuesday', 'Wednesday',
|
||||||
|
'Thursday', 'Friday', 'Saturday', 'Holiday', 'Winterdesignday', 'Summerdesignday', 'Customday1',
|
||||||
|
'Customday2']
|
||||||
|
for val in idf['SCHEDULE:COMPACT']:
|
||||||
|
if val[1] == 'BLDG_LIGHT_SCH':
|
||||||
|
count = 0
|
||||||
|
for words in val:
|
||||||
|
dayType.append(words.title().split('For: ')[-1])
|
||||||
|
index = []
|
||||||
|
for count, word_dayType in enumerate(dayType):
|
||||||
|
if word_dayType in compactKeywords:
|
||||||
|
index.append(count)
|
||||||
|
index.append(len(dayType))
|
||||||
|
for i in range(len(index) - 1):
|
||||||
|
numberOfDaySch = list(dayType[index[i] + 1:index[i + 1]])
|
||||||
|
hourlyValues = list(range(24))
|
||||||
|
startHour = 0
|
||||||
|
for num in range(int(len(numberOfDaySch) / 2)):
|
||||||
|
untilTime = list(map(int, (numberOfDaySch[2 * num].split('Until: ')[-1]).split(":")[0:]))
|
||||||
|
endHour = int(untilTime[0] + untilTime[1] / 60)
|
||||||
|
value = float(numberOfDaySch[2 * num + 1])
|
||||||
|
for hour in range(startHour, endHour):
|
||||||
|
hourlyValues[hour] = value
|
||||||
|
print(hour, value)
|
||||||
|
startHour = endHour
|
||||||
|
if dayType[index[i]] == 'Weekdays':
|
||||||
|
Weekday.append(hourlyValues)
|
||||||
|
elif dayType[index[i]] == 'Weekends':
|
||||||
|
Weekend.append(hourlyValues)
|
||||||
|
elif dayType[index[i]] == 'Holiday':
|
||||||
|
Holiday.append(hourlyValues)
|
||||||
|
elif dayType[index[i]] == 'Winterdesignday':
|
||||||
|
Winterdesignday.append(hourlyValues)
|
||||||
|
elif dayType[index[i]] == 'Summerdesignday':
|
||||||
|
Summerdesignday.append(hourlyValues)
|
||||||
|
elif dayType[index[i]] == 'Customday1':
|
||||||
|
Customday1.append(hourlyValues)
|
||||||
|
elif dayType[index[i]] == 'Customday2':
|
||||||
|
Customday2.append(hourlyValues)
|
||||||
|
else:
|
||||||
|
print('its none of them')
|
||||||
|
idf_schedules = pd.DataFrame(
|
||||||
|
{'week_day': Weekday,
|
||||||
|
'Weekends': Weekend,
|
||||||
|
'Holiday': Holiday,
|
||||||
|
'Winterdesignday': Winterdesignday,
|
||||||
|
'Summerdesignday': Summerdesignday,
|
||||||
|
'Customday1': Customday1,
|
||||||
|
'Customday2': Customday2,
|
||||||
|
})
|
||||||
|
print(idf_schedules)
|
||||||
|
|
||||||
Small_Office_Occupancy = []
|
for building in city.buildings:
|
||||||
Small_Office_OccupancyActivity = []
|
schedules = dict()
|
||||||
Small_Office_ElectricalEquipment = []
|
for usage_zone in building.usage_zones:
|
||||||
Small_Office_Lighting = []
|
usage_schedules = idf_schedules
|
||||||
Small_Office_Infiltration = []
|
|
||||||
|
|
||||||
for i in usage_schedules:
|
# todo: should we save the data type? How?
|
||||||
if i[1] == self._Occupancy_Schedule:
|
number_of_schedule_types = 5
|
||||||
return Small_Office_Occupancy.append(i)
|
schedules_per_schedule_type = 6
|
||||||
elif i[1] == 'ACTIVITY_SCH':
|
idf_day_types = dict({'week_day': 0, 'Weekends': 1, 'Holiday': 2, 'Winterdesignday': 3, 'Summerdesignday': 4, 'Customday1': 5, 'Customday2': 6})
|
||||||
Small_Office_OccupancyActivity.append(i)
|
for schedule_types in range(0, number_of_schedule_types):
|
||||||
elif i[1] == 'BLDG_EQUIP_SCH':
|
data = pd.DataFrame()
|
||||||
Small_Office_ElectricalEquipment.append(i)
|
columns_names = []
|
||||||
elif i[1] == 'BLDG_LIGHT_SCH':
|
name = ''
|
||||||
Small_Office_Lighting.append(i)
|
for schedule_day in range(0, len(idf_schedules)):
|
||||||
elif i[1] == 'INFIL_QUARTER_ON_SCH':
|
row_cells = usage_schedules.iloc[schedules_per_schedule_type*schedule_types + schedule_day]
|
||||||
Small_Office_Infiltration.append(i)
|
if schedule_day == idf_day_types['week_day']:
|
||||||
else:
|
name = row_cells[0]
|
||||||
print("The schedule name is not standard")
|
columns_names.append(row_cells[2])
|
||||||
|
data1 = row_cells[schedules_per_schedule_type:]
|
||||||
|
data = pd.concat([data, data1], axis=1)
|
||||||
|
data.columns = columns_names
|
||||||
|
schedules[name] = data
|
||||||
|
usage_zone.schedules = schedules
|
||||||
|
|
||||||
|
|
||||||
'''
|
|
||||||
# todo: should we save the data type? How?
|
|
||||||
number_of_schedule_types = 13
|
|
||||||
schedules_per_schedule_type = 3
|
|
||||||
day_types = dict({'week_day': 0, 'saturday': 1, 'sunday': 2})
|
|
||||||
for schedule_types in range(0, number_of_schedule_types):
|
|
||||||
data = pd.DataFrame()
|
|
||||||
columns_names = []
|
|
||||||
name = ''
|
|
||||||
for schedule_day in range(0, schedules_per_schedule_type):
|
|
||||||
row_cells = usage_schedules.iloc[schedules_per_schedule_type*schedule_types + schedule_day]
|
|
||||||
if schedule_day == day_types['week_day']:
|
|
||||||
name = row_cells[0]
|
|
||||||
columns_names.append(row_cells[2])
|
|
||||||
data1 = row_cells[schedules_per_schedule_type:]
|
|
||||||
data = pd.concat([data, data1], axis=1)
|
|
||||||
data.columns = columns_names
|
|
||||||
schedules[name] = data
|
|
||||||
usage_zone.schedules = schedules
|
|
||||||
'''
|
|
Loading…
Reference in New Issue
Block a user