""" Building module SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2022 Concordia CERC group Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca """ import logging from typing import List, Union, TypeVar import numpy as np import pandas as pd import hub.helpers.constants as cte from hub.city_model_structure.attributes.polyhedron import Polyhedron from hub.city_model_structure.building_demand.household import Household from hub.city_model_structure.building_demand.internal_zone import InternalZone from hub.city_model_structure.building_demand.surface import Surface from hub.city_model_structure.city_object import CityObject from hub.city_model_structure.energy_systems.energy_system import EnergySystem from hub.helpers.peak_loads import PeakLoads City = TypeVar('City') class Building(CityObject): """ Building(CityObject) class """ def __init__(self, name, surfaces, year_of_construction, function, terrains=None, city=None): super().__init__(name, surfaces) self._city = city self._households = None self._basement_heated = None self._attic_heated = None self._terrains = terrains self._year_of_construction = year_of_construction self._function = function self._average_storey_height = None self._storeys_above_ground = None self._floor_area = None self._roof_type = None self._internal_zones = None self._shell = None self._aliases = None self._type = 'building' self._cold_water_temperature = {} self._heating = {} self._cooling = {} self._lighting_electrical_demand = {} self._appliances_electrical_demand = {} self._domestic_hot_water_heat_demand = {} self._heating_consumption = {} self._cooling_consumption = {} self._domestic_hot_water_consumption = {} self._distribution_systems_electrical_consumption = {} self._onsite_electrical_production = {} self._eave_height = None self._energy_systems = None self._systems_archetype_name = None self._grounds = [] self._roofs = [] self._walls = [] self._internal_walls = [] self._ground_walls = [] self._attic_floors = [] self._interior_slabs = [] for surface_id, surface in enumerate(self.surfaces): self._min_x = min(self._min_x, surface.lower_corner[0]) self._min_y = min(self._min_y, surface.lower_corner[1]) self._min_z = min(self._min_z, surface.lower_corner[2]) surface.id = surface_id if surface.type == cte.GROUND: self._grounds.append(surface) elif surface.type == cte.WALL: self._walls.append(surface) elif surface.type == cte.ROOF: self._roofs.append(surface) elif surface.type == cte.INTERIOR_WALL: self._internal_walls.append(surface) elif surface.type == cte.GROUND_WALL: self._ground_walls.append(surface) elif surface.type == cte.ATTIC_FLOOR: self._attic_floors.append(surface) elif surface.type == cte.INTERIOR_SLAB: self._interior_slabs.append(surface) else: error = f'Building {self.name} [{self.aliases}] has an unexpected surface type {surface.type}.\n' logging.error(error) @property def shell(self) -> Polyhedron: """ Get building's external polyhedron :return: [Polyhedron] """ polygons = [] for surface in self.surfaces: if surface.type is not cte.INTERIOR_WALL: polygons.append(surface.solid_polygon) if surface.holes_polygons is not None: for hole in surface.holes_polygons: polygons.append(hole) if self._shell is None: self._shell = Polyhedron(polygons) return self._shell @property def internal_zones(self) -> List[InternalZone]: """ Get building internal zones For Lod up to 3, there is only one internal zone which corresponds to the building shell. In LoD 4 there can be more than one. In this case the definition of surfaces and floor area must be redefined. :return: [InternalZone] """ if self._internal_zones is None: self._internal_zones = [InternalZone(self.surfaces, self.floor_area)] return self._internal_zones @property def grounds(self) -> List[Surface]: """ Get building ground surfaces :return: [Surface] """ return self._grounds @property def roofs(self) -> List[Surface]: """ Get building roof surfaces :return: [Surface] """ return self._roofs @property def walls(self) -> List[Surface]: """ Get building wall surfaces :return: [Surface] """ return self._walls @property def internal_walls(self) -> List[Surface]: """ Get building internal wall surfaces :return: [Surface] """ return self._internal_walls @property def terrains(self) -> Union[None, List[Surface]]: """ Get city object terrain surfaces :return: [Surface] """ return self._terrains @property def attic_heated(self) -> Union[None, int]: """ Get if the city object attic is heated 0: no attic in the building 1: attic exists but is not heated 2: attic exists and is heated :return: None or int """ return self._attic_heated @attic_heated.setter def attic_heated(self, value): """ Set if the city object attic is heated 0: no attic in the building 1: attic exists but is not heated 2: attic exists and is heated :param value: int """ if value is not None: self._attic_heated = int(value) @property def basement_heated(self) -> Union[None, int]: """ Get if the city object basement is heated 0: no basement in the building 1: basement exists but is not heated 2: basement exists and is heated :return: None or int """ return self._basement_heated @basement_heated.setter def basement_heated(self, value): """ Set if the city object basement is heated 0: no basement in the building 1: basement exists but is not heated 2: basement exists and is heated :param value: int """ if value is not None: self._basement_heated = int(value) @property def year_of_construction(self): """ Get building year of construction :return: int """ return self._year_of_construction @year_of_construction.setter def year_of_construction(self, value): """ Set building year of construction :param value: int """ if value is not None: self._year_of_construction = int(value) @property def function(self) -> Union[None, str]: """ Get building function :return: None or str """ return self._function @function.setter def function(self, value): """ Set building function :param value: str """ if value is not None: self._function = str(value) @property def average_storey_height(self) -> Union[None, float]: """ Get building average storey height in meters :return: None or float """ return self._average_storey_height @average_storey_height.setter def average_storey_height(self, value): """ Set building average storey height in meters :param value: float """ if value is not None: self._average_storey_height = float(value) @property def storeys_above_ground(self) -> Union[None, int]: """ Get building storeys number above ground :return: None or int """ if self._storeys_above_ground is None: if self.eave_height is not None and self.average_storey_height is not None: self._storeys_above_ground = int(self.eave_height / self.average_storey_height) return self._storeys_above_ground @storeys_above_ground.setter def storeys_above_ground(self, value): """ Set building storeys number above ground :param value: int """ if value is not None: self._storeys_above_ground = int(value) @property def cold_water_temperature(self) -> {float}: """ Get cold water temperature in degrees Celsius :return: dict{DataFrame(float)} """ return self._cold_water_temperature @cold_water_temperature.setter def cold_water_temperature(self, value): """ Set cold water temperature in degrees Celsius :param value: dict{DataFrame(float)} """ self._cold_water_temperature = value @property def heating(self) -> dict: """ Get heating demand in Wh :return: dict{DataFrame(float)} """ return self._heating @heating.setter def heating(self, value): """ Set heating demand in Wh :param value: dict{DataFrame(float)} """ self._heating = value @property def cooling(self) -> dict: """ Get cooling demand in Wh :return: dict{DataFrame(float)} """ return self._cooling @cooling.setter def cooling(self, value): """ Set cooling demand in Wh :param value: dict{DataFrame(float)} """ self._cooling = value @property def lighting_electrical_demand(self) -> dict: """ Get lighting electrical demand in Wh :return: dict{DataFrame(float)} """ return self._lighting_electrical_demand @lighting_electrical_demand.setter def lighting_electrical_demand(self, value): """ Set lighting electrical demand in Wh :param value: dict{DataFrame(float)} """ self._lighting_electrical_demand = value @property def appliances_electrical_demand(self) -> dict: """ Get appliances electrical demand in Wh :return: dict{DataFrame(float)} """ return self._appliances_electrical_demand @appliances_electrical_demand.setter def appliances_electrical_demand(self, value): """ Set appliances electrical demand in Wh :param value: dict{DataFrame(float)} """ self._appliances_electrical_demand = value @property def domestic_hot_water_heat_demand(self) -> dict: """ Get domestic hot water heat demand in Wh :return: dict{DataFrame(float)} """ return self._domestic_hot_water_heat_demand @domestic_hot_water_heat_demand.setter def domestic_hot_water_heat_demand(self, value): """ Set domestic hot water heat demand in Wh :param value: dict{DataFrame(float)} """ self._domestic_hot_water_heat_demand = value @property def heating_peak_load(self) -> Union[None, dict]: """ Get heating peak load in W :return: dict{DataFrame(float)} """ results = {} if cte.HOUR in self.heating: monthly_values = PeakLoads().\ peak_loads_from_hourly(self.heating[cte.HOUR][next(iter(self.heating[cte.HOUR]))]) else: monthly_values = PeakLoads(self).heating_peak_loads_from_methodology if monthly_values is None: return None results[cte.MONTH] = pd.DataFrame(monthly_values, columns=[cte.HEATING_PEAK_LOAD]) results[cte.YEAR] = pd.DataFrame([max(monthly_values)], columns=[cte.HEATING_PEAK_LOAD]) return results @property def cooling_peak_load(self) -> Union[None, dict]: """ Get cooling peak load in W :return: dict{DataFrame(float)} """ results = {} if cte.HOUR in self.cooling: monthly_values = PeakLoads().peak_loads_from_hourly(self.cooling[cte.HOUR][next(iter(self.cooling[cte.HOUR]))]) else: monthly_values = PeakLoads(self).cooling_peak_loads_from_methodology if monthly_values is None: return None results[cte.MONTH] = pd.DataFrame(monthly_values, columns=[cte.COOLING_PEAK_LOAD]) results[cte.YEAR] = pd.DataFrame([max(monthly_values)], columns=[cte.COOLING_PEAK_LOAD]) return results @property def eave_height(self): """ Get building eave height in meters :return: float """ if self._eave_height is None: self._eave_height = 0 for wall in self.walls: self._eave_height = max(self._eave_height, wall.upper_corner[2]) return self._eave_height @property def roof_type(self): """ Get roof type for the building flat or pitch :return: str """ if self._roof_type is None: self._roof_type = 'flat' for roof in self.roofs: grads = np.rad2deg(roof.inclination) if 355 > grads > 5: self._roof_type = 'pitch' break return self._roof_type @roof_type.setter def roof_type(self, value): """ Set roof type for the building flat or pitch :return: str """ self._roof_type = value @property def floor_area(self): """ Get building floor area in square meters :return: float """ if self._floor_area is None: self._floor_area = 0 for surface in self.surfaces: if surface.type == 'Ground': self._floor_area += surface.perimeter_polygon.area return self._floor_area @property def households(self) -> List[Household]: """ Get the list of households inside the building :return: List[Household] """ return self._households @property def is_conditioned(self): """ Get building heated flag :return: Boolean """ if self.internal_zones is None: return False for internal_zone in self.internal_zones: if internal_zone.usages is not None: for usage in internal_zone.usages: if usage.thermal_control is not None: return True return False @property def aliases(self): """ Get the alias name for the building :return: str """ return self._aliases def add_alias(self, value): """ Add a new alias for the building """ if self._aliases is None: self._aliases = [value] else: self._aliases.append(value) if self.city is not None: self.city.add_building_alias(self, value) @property def city(self) -> City: """ Get the city containing the building :return: City """ return self._city @city.setter def city(self, value): """ Set the city containing the building """ self._city = value @property def usages_percentage(self): """ Get the usages and percentages for the building """ _usage = '' for internal_zone in self.internal_zones: if internal_zone.usages is None: continue for usage in internal_zone.usages: _usage = f'{_usage}{usage.name}_{usage.percentage} ' return _usage.rstrip() @property def energy_systems(self) -> Union[None, List[EnergySystem]]: """ Get list of energy systems installed to cover the building demands :return: [EnergySystem] """ return self._energy_systems @energy_systems.setter def energy_systems(self, value): """ Set list of energy systems installed to cover the building demands :param value: [EnergySystem] """ self._energy_systems = value @property def energy_systems_archetype_name(self): """ Get energy systems archetype name :return: str """ return self._systems_archetype_name @energy_systems_archetype_name.setter def energy_systems_archetype_name(self, value): """ Set energy systems archetype name :param value: str """ self._systems_archetype_name = value @property def heating_consumption(self): """ Get energy consumption for heating according to the heating system installed in Wh return: dict """ if len(self._heating_consumption) == 0: for heating_demand_key in self.heating: demand = self.heating[heating_demand_key][cte.INSEL_MEB] consumption_type = cte.HEATING final_energy_consumed = self._calculate_consumption(consumption_type, demand) self._heating_consumption[heating_demand_key] = final_energy_consumed return self._heating_consumption @property def cooling_consumption(self): """ Get energy consumption for cooling according to the cooling system installed in Wh return: dict """ if len(self._cooling_consumption) == 0: for cooling_demand_key in self.cooling: demand = self.cooling[cooling_demand_key][cte.INSEL_MEB] consumption_type = cte.COOLING final_energy_consumed = self._calculate_consumption(consumption_type, demand) self._cooling_consumption[cooling_demand_key] = final_energy_consumed return self._cooling_consumption @property def domestic_hot_water_consumption(self): """ Get energy consumption for domestic according to the domestic hot water system installed in Wh return: dict """ if len(self._domestic_hot_water_consumption) == 0: for domestic_hot_water_demand_key in self.domestic_hot_water_heat_demand: demand = self.domestic_hot_water_heat_demand[domestic_hot_water_demand_key][cte.INSEL_MEB] consumption_type = cte.DOMESTIC_HOT_WATER final_energy_consumed = self._calculate_consumption(consumption_type, demand) self._domestic_hot_water_consumption[domestic_hot_water_demand_key] = final_energy_consumed return self._domestic_hot_water_consumption def _calculate_working_hours(self): _working_hours = {} for internal_zone in self.internal_zones: for thermal_zone in internal_zone.thermal_zones: _working_hours_per_thermal_zone = {} for schedule in thermal_zone.thermal_control.hvac_availability_schedules: _working_hours_per_schedule = [0] * len(schedule.values) for i, value in enumerate(schedule.values): if value > 0: _working_hours_per_schedule[i] = 1 for day_type in schedule.day_types: _working_hours_per_thermal_zone[day_type] = _working_hours_per_schedule if len(_working_hours) == 0: _working_hours = _working_hours_per_thermal_zone else: for key, item in _working_hours.items(): saved_values = _working_hours_per_thermal_zone[key] for i, value in enumerate(item): if saved_values[i] == 1: value = 1 _total_hours = 0 for key in _working_hours: _total_hours += _working_hours[key] * cte.DAYS_A_YEAR[key] return _total_hours @property def distribution_systems_electrical_consumption(self): """ Get total electricity consumption for distribution and emission systems in Wh return: dict """ if len(self._distribution_systems_electrical_consumption) != 0: return self._distribution_systems_electrical_consumption _peak_load = self.heating_peak_load[cte.YEAR]['heating peak loads'][0] _peak_load_type = cte.HEATING if _peak_load < self.cooling_peak_load[cte.YEAR]['cooling peak loads'][0]: _peak_load = self.cooling_peak_load[cte.YEAR]['cooling peak loads'][0] _peak_load_type = cte.COOLING _consumption_fix_flow = 0 for energy_system in self.energy_systems: emission_system = energy_system.emission_system.generic_emission_system parasitic_energy_consumption = emission_system.parasitic_energy_consumption distribution_system = energy_system.distribution_system.generic_distribution_system consumption_variable_flow = distribution_system.distribution_consumption_variable_flow for demand_type in energy_system.demand_types: if demand_type.lower() == cte.HEATING: if _peak_load_type == cte.HEATING: _consumption_fix_flow = distribution_system.distribution_consumption_fix_flow for heating_demand_key in self.heating: _consumption = [0]*len(self.heating) _demand = self.heating[heating_demand_key][cte.INSEL_MEB] for i in enumerate(_consumption): _consumption[i] += (parasitic_energy_consumption + consumption_variable_flow) * _demand[i] self._distribution_systems_electrical_consumption[heating_demand_key] = _consumption if demand_type.lower() == cte.COOLING: if _peak_load_type == cte.COOLING: _consumption_fix_flow = distribution_system.distribution_consumption_fix_flow for demand_key in self.cooling: _consumption = self._distribution_systems_electrical_consumption[demand_key] _demand = self.cooling[demand_key][cte.INSEL_MEB] for i in enumerate(_consumption): _consumption[i] += (parasitic_energy_consumption + consumption_variable_flow) * _demand[i] self._distribution_systems_electrical_consumption[demand_key] = _consumption for key, item in self._distribution_systems_electrical_consumption.items(): for i in range(0, len(item)): self._distribution_systems_electrical_consumption[key][i] += _peak_load * _consumption_fix_flow \ * self._calculate_working_hours() return self._distribution_systems_electrical_consumption def _calculate_consumption(self, consumption_type, demand): # todo: modify when COP depends on the hour coefficient_of_performance = 0 for energy_system in self.energy_systems: for demand_type in energy_system.demand_types: if demand_type.lower() == consumption_type.lower(): if consumption_type in (cte.HEATING, cte.DOMESTIC_HOT_WATER): coefficient_of_performance = energy_system.generation_system.generic_generation_system.heat_efficiency elif consumption_type == cte.COOLING: coefficient_of_performance = energy_system.generation_system.generic_generation_system.cooling_efficiency elif consumption_type == cte.ELECTRICITY: coefficient_of_performance = \ energy_system.generation_system.generic_generation_system.electricity_efficiency if coefficient_of_performance == 0: values = [0]*len(demand) final_energy_consumed = values else: final_energy_consumed = [] for demand_value in demand: final_energy_consumed.append(demand_value / coefficient_of_performance) return final_energy_consumed @property def onsite_electrical_production(self): """ Get total electricity produced onsite in Wh return: dict """ # Add other systems whenever new ones appear orientation_losses_factor = {cte.MONTH: {'north': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'east': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'south': [2.137931, 1.645503, 1.320946, 1.107817, 0.993213, 0.945175, 0.967949, 1.065534, 1.24183, 1.486486, 1.918033, 2.210526], 'west': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}, cte.YEAR: {'north': [0], 'east': [0], 'south': [1.212544], 'west': [0]} } for energy_system in self.energy_systems: if energy_system.generation_system.generic_generation_system.type == cte.PHOTOVOLTAIC: _efficiency = energy_system.generation_system.generic_generation_system.electricity_efficiency self._onsite_electrical_production = {} for _key in self.roofs[0].global_irradiance.keys(): _results = [0 for _ in range(0, len(self.roofs[0].global_irradiance[_key][cte.SRA]))] for surface in self.roofs: _results = [x + y * _efficiency * surface.perimeter_area * surface.solar_collectors_area_reduction_factor * z for x, y, z in zip(_results, surface.global_irradiance[_key][cte.SRA], orientation_losses_factor[cte.MONTH]['south'])] self._onsite_electrical_production[_key] = _results return self._onsite_electrical_production