""" Polyhedron module SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2020 Project Author Guille Gutierrez guillermo.gutierrezmorote@concordia.ca """ import numpy as np from trimesh import Trimesh from helpers.geometry_helper import GeometryHelper from helpers.configuration_helper import ConfigurationHelper from city_model_structure.attributes.surface import Surface class Polyhedron: """ Polyhedron class """ def __init__(self, surfaces): self._surfaces = list(surfaces) self._polygons = [s.polygon for s in surfaces] self._polyhedron = None self._volume = None self._faces = None self._vertices = None self._mesh = None self._centroid = None self._max_z = None self._max_y = None self._max_x = None self._min_z = None self._min_y = None self._min_x = None self._geometry = GeometryHelper(delta=5.0, area_delta=0.01) def _position_of(self, point, face): vertices = self.vertices for i in range(len(vertices)): # ensure not duplicated vertex if i not in face and self._geometry.almost_equal(vertices[i], point): return i return -1 @property def vertices(self) -> np.ndarray: """ Polyhedron vertices :return: np.ndarray(int) """ if self._vertices is None: vertices, self._vertices = [], [] _ = [vertices.extend(s.points) for s in self._surfaces] for vertex_1 in vertices: found = False for vertex_2 in self._vertices: found = False if self._geometry.almost_equal(vertex_1, vertex_2): found = True break if not found: self._vertices.append(vertex_1) self._vertices = np.asarray(self._vertices) return self._vertices @staticmethod def _point(coordinates): return coordinates[0], coordinates[1], coordinates[2] @staticmethod def _get_regions(point_index, points_list): if point_index == 0: # first point in the polygon so the triangle is the points n-1, n, 0 triangle_left = ' '.join(str(e) for e in [*points_list[len(points_list) - 6:], *points_list[0:3]]) # remove point n rest_points_left = ' '.join(str(e) for e in [*points_list[:len(points_list) - 3]]) elif point_index == 3: # second point in the polygon so the triangle is the points n, 0, 1 triangle_left = ' '.join(str(e) for e in [*points_list[len(points_list) - 3:], *points_list[0:6]]) # remove point 0 rest_points_left = ' '.join(str(e) for e in [*points_list[3:]]) else: # normal point index-2¸index-1, index triangle_left = ' '.join(str(e) for e in [*points_list[point_index - 6:point_index + 3]]) # remove middle point (index - 1) rest_points_left = ' '.join(str(e) for e in [*points_list[0:point_index - 3], *points_list[point_index:]]) if point_index < len(points_list) - 6: # normal point index, index+1, index+2 triangle_right = ' '.join(str(e) for e in [*points_list[point_index:point_index + 9]]) rest_points_right = ' '.join(str(e) for e in [*points_list[0:point_index + 3], *points_list[point_index + 6:]]) elif point_index == (len(points_list) - 6): # last two points in the polygon so the triangle is the points n-1, n, 0 triangle_right = ' '.join(str(e) for e in [*points_list[point_index:], *points_list[0:3]]) rest_points_right = ' '.join(str(e) for e in [*points_list[:len(points_list - 3)]]) else: # last point in the polygon so the triangle is n, 0, 1 triangle_right = ' '.join(str(e) for e in [*points_list[len(points_list) - 3:], *points_list[0:6]]) rest_points_right = ' '.join(str(e) for e in [*points_list[3:]]) return (Surface(triangle_left, remove_last=False), Surface(rest_points_left, remove_last=False)), \ (Surface(triangle_right, remove_last=False), Surface(rest_points_right, remove_last=False)) def _triangulate(self, surface): triangles = [] complementary_surface = surface triangles_count = len(surface.points) - 2 points_list = surface.points_list point_index = 0 area = surface.area while len(triangles) < triangles_count: # get triangles and regions in both direction to find ears left_direction, right_direction = Polyhedron._get_regions(point_index, points_list) # todo: use enum to describe triangle or rest instead 0 1 right_area = right_direction[0].area + right_direction[1].area left_area = left_direction[0].area + left_direction[1].area if self._geometry.almost_same_area(area, left_area) and self._geometry.almost_same_area(area, right_area): # Both seems to be an ear, choose the more precise if np.abs(left_area-area) < np.abs(right_area-area): area = left_direction[1].area point_index = 0 triangles.append(left_direction[0]) points_list = left_direction[1].points_list complementary_surface = left_direction[1] else: area = right_direction[1].area point_index = 0 triangles.append(right_direction[0]) points_list = right_direction[1].points_list complementary_surface = right_direction[1] elif self._geometry.almost_same_area(area, left_area): area = left_direction[1].area point_index = 0 triangles.append(left_direction[0]) points_list = left_direction[1].points_list complementary_surface = left_direction[1] elif self._geometry.almost_same_area(area, right_area): area = right_direction[1].area point_index = 0 triangles.append(right_direction[0]) points_list = right_direction[1].points_list complementary_surface = right_direction[1] else: point_index = point_index + 3 if point_index >= len(points_list): return triangles if len(points_list) == 9: # the rest point's are already a triangle triangles.append(complementary_surface) return triangles @property def faces(self) -> [[int]]: """ Polyhedron faces :return: [[int]] """ if self._faces is None: self._faces = [] for surface in self._surfaces: face = [] points = surface.points if len(points) != 3: sub_surfaces = self._triangulate(surface) for sub_surface in sub_surfaces: face = [] points = sub_surface.points for point in points: face.append(self._position_of(point, face)) self._faces.append(face) else: for point in points: face.append(self._position_of(point, face)) self._faces.append(face) return self._faces @property def _polyhedron_mesh(self): if self._mesh is None: self._mesh = Trimesh(vertices=self.vertices, faces=self.faces) return self._mesh @property def volume(self): """ Polyhedron volume in cubic meters :return: float """ if self._volume is None: if not self._polyhedron_mesh.is_volume: self._volume = np.inf else: self._volume = self._polyhedron_mesh.volume return self._volume @property def max_z(self): """ Polyhedron maximal z value :return: float """ if self._max_z is None: self._max_z = ConfigurationHelper().min_coordinate for surface in self._surfaces: for point in surface.points: if self._max_z < point[2]: self._max_z = point[2] return self._max_z @property def max_y(self): """ Polyhedron maximal y value :return: float """ if self._max_y is None: self._max_y = ConfigurationHelper().min_coordinate for surface in self._surfaces: for point in surface.points: if self._max_y < point[1]: self._max_y = point[1] return self._max_y @property def max_x(self): """ Polyhedron maximal x value :return: float """ if self._max_x is None: self._max_x = ConfigurationHelper().min_coordinate for surface in self._surfaces: for point in surface.points: self._max_x = max(self._max_x, point[0]) return self._max_x @property def min_z(self): """ Polyhedron minimal z value :return: float """ if self._min_z is None: self._min_z = self.max_z for surface in self._surfaces: for point in surface.points: if self._min_z > point[2]: self._min_z = point[2] return self._min_z @property def min_y(self): """ Polyhedron minimal y value :return: float """ if self._min_y is None: self._min_y = self.max_y for surface in self._surfaces: for point in surface.points: if self._min_y > point[1]: self._min_y = point[1] return self._min_y @property def min_x(self): """ Polyhedron minimal x value :return: float """ if self._min_x is None: self._min_x = self.max_x for surface in self._surfaces: for point in surface.points: if self._min_x > point[0]: self._min_x = point[0] return self._min_x @property def center(self): """ Polyhedron centroid :return: [x,y,z] """ x = (self.max_x + self.min_x) / 2 y = (self.max_y + self.min_y) / 2 z = (self.max_z + self.min_z) / 2 return [x, y, z] def stl_export(self, full_path): """ Export the polyhedron to stl given file :param full_path: str :return: None """ self._polyhedron_mesh.export(full_path, 'stl_ascii') def obj_export(self, full_path): """ Export the polyhedron to obj given file :param full_path: str :return: None """ self._polyhedron_mesh.export(full_path, 'obj') def show(self): self._polyhedron_mesh.show()