""" Building module SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2020 Project Author Guille Gutierrez guillermo.gutierrezmorote@concordia.ca contributors: Pilar Monsalvete pilar_monsalvete@yahoo.es """ from typing import List import numpy as np from city_model_structure.attributes.surface import Surface from city_model_structure.attributes.thermal_boundary import ThermalBoundary from city_model_structure.attributes.thermal_zone import ThermalZone from city_model_structure.attributes.usage_zone import UsageZone from city_model_structure.city_object import CityObject from helpers.geometry_helper import GeometryHelper as gh from helpers.configuration_helper import ConfigurationHelper import math from pathlib import Path class Building(CityObject): """ Building(CityObject) class """ def __init__(self, name, lod, surfaces, terrains, year_of_construction, function, city_lower_corner): super().__init__(lod, surfaces, name) self._basement_heated = None self._attic_heated = None self._terrains = terrains self._year_of_construction = year_of_construction self._function = function self._city_lower_corner = city_lower_corner self._building_lower_corner = None self._heated = None self._cooled = None self._average_storey_height = None self._storeys_above_ground = None self._floor_area = None self._roof_type = None self._usage_zones = [] self._type = 'building' self._heating = dict() self._cooling = dict() self._external_temperature = dict() self._global_horizontal = dict() self._diffuse = dict() self._beam = dict() self._min_x = ConfigurationHelper().max_coordinate self._min_y = ConfigurationHelper().max_coordinate self._min_z = ConfigurationHelper().max_coordinate self._centroid = None self._grounds = [] self._roofs = [] self._walls = [] # ToDo: Check this for LOD4 self._thermal_zones = [] if self.lod < 4: # for lod under 4 is just one thermal zone self._thermal_zones.append(ThermalZone(self.surfaces, self._heated, self._cooled)) for t_zones in self._thermal_zones: t_zones.bounded = [ThermalBoundary(s, [t_zones]) for s in t_zones.surfaces] for surface in self.surfaces: self._min_x = min(self._min_x, surface.min_x) self._min_y = min(self._min_y, surface.min_y) self._min_z = min(self._min_z, surface.min_z) if surface.type == 'Ground': self._grounds.append(surface) elif surface.type == 'Wall': self._walls.append(surface) else: self._roofs.append(surface) @property def grounds(self) -> [Surface]: """ Building ground surfaces """ return self._grounds @property def roofs(self) -> [Surface]: """ Building roof surfaces """ return self._roofs @property def walls(self) -> [Surface]: """ Building wall surfaces """ return self._walls @property def usage_zones(self) -> List[UsageZone]: """ Get city object usage zones :return: [UsageZone] """ return self._usage_zones @usage_zones.setter def usage_zones(self, values): """ Set city objects usage zones :param values: [UsageZones] :return: None """ # ToDo: this is only valid for one usage zone need to be revised for multiple usage zones. self._usage_zones = values for thermal_zone in self.thermal_zones: thermal_zone.usage_zones = [(100, usage_zone) for usage_zone in values] @property def terrains(self) -> List[Surface]: """ Get city object terrain surfaces :return: [Surface] """ return self._terrains @property def attic_heated(self): """ Get if the city object attic is heated :return: Boolean """ return self._attic_heated @attic_heated.setter def attic_heated(self, value): """ Set if the city object attic is heated :param value: Boolean :return: None """ self._attic_heated = value @property def basement_heated(self): """ Get if the city object basement is heated :return: Boolean """ return self._basement_heated @basement_heated.setter def basement_heated(self, value): """ Set if the city object basement is heated :param value: Boolean :return: None """ self._basement_heated = value @property def name(self): """ City object name :return: str """ return self._name @property def thermal_zones(self) -> List[ThermalZone]: """ City object thermal zones :return: [ThermalZone] """ return self._thermal_zones @property def heated_volume(self): """ City object heated volume in cubic meters :return: float """ # ToDo: this need to be calculated based on the basement and attic heated values raise NotImplementedError @property def year_of_construction(self): """ City object year of construction :return: int """ return self._year_of_construction @property def function(self): """ City object function :return: str """ return self._function @property def average_storey_height(self): """ Get city object average storey height in meters :return: float """ return self._average_storey_height @average_storey_height.setter def average_storey_height(self, value): """ Set city object average storey height in meters :param value: float :return: None """ self._average_storey_height = value @property def storeys_above_ground(self): """ Get city object storeys number above ground :return: int """ return self._storeys_above_ground @storeys_above_ground.setter def storeys_above_ground(self, value): """ Set city object storeys number above ground :param value: int :return: """ self._storeys_above_ground = value @staticmethod def _tuple_to_point(xy_tuple): return [xy_tuple[0], xy_tuple[1], 0.0] @property def type(self): """ building type :return: str """ return self._type @property def heating(self) -> dict: """ heating demand in Wh :return: dict{DataFrame(float)} """ return self._heating @heating.setter def heating(self, value): """ heating demand in Wh :param value: dict{DataFrame(float)} """ self._heating = value @property def cooling(self) -> dict: """ cooling demand in Wh :return: dict{DataFrame(float)} """ return self._cooling @cooling.setter def cooling(self, value): """ cooling demand in Wh :param value: dict{DataFrame(float)} """ self._cooling = value @property def external_temperature(self) -> dict: """ external temperature surrounding the building in grads Celsius :return: dict{DataFrame(float)} """ return self._external_temperature @external_temperature.setter def external_temperature(self, value): """ external temperature surrounding the building in grads Celsius :param value: dict{DataFrame(float)} """ self._external_temperature = value @property def global_horizontal(self) -> dict: """ global horizontal radiation surrounding the building in W/m2 :return: dict{DataFrame(float)} """ return self._global_horizontal @global_horizontal.setter def global_horizontal(self, value): """ global horizontal radiation surrounding the building in W/m2 :param value: dict{DataFrame(float)} """ self._global_horizontal = value @property def diffuse(self) -> dict: """ diffuse radiation surrounding the building in W/m2 :return: dict{DataFrame(float)} """ return self._diffuse @diffuse.setter def diffuse(self, value): """ diffuse radiation surrounding the building in W/m2 :param value: dict{DataFrame(float)} """ self._diffuse = value @property def beam(self) -> dict: """ beam radiation surrounding the building in W/m2 :return: dict{DataFrame(float)} """ return self._beam @beam.setter def beam(self, value): """ beam radiation surrounding the building in W/m2 :param value: dict{DataFrame(float)} """ self._beam = value @property def building_lower_corner(self): if self._building_lower_corner is None: self._building_lower_corner = [self._min_x, self._min_y, self._min_z] return self._building_lower_corner @property def storeys(self): storeys = [] height = self.average_storey_height if self.storeys_above_ground is not None: number_of_storeys = self.storeys_above_ground else: number_of_storeys = math.floor(float(self.max_height) / height) + 1 print('number_of_storeys', number_of_storeys) last_storey_height = float(self.max_height) - height*(number_of_storeys-1) print('last_storey_height', last_storey_height) if last_storey_height < height/2: number_of_storeys -= 1 print('number storeys', number_of_storeys) trimesh = self.simplified_polyhedron.trimesh normal_plane = [0, 0, -1] rest_trimesh = trimesh for n in range(0, number_of_storeys - 1): print(n) point_plane = [self.building_lower_corner[0], self.building_lower_corner[1], self.building_lower_corner[2] + height*(n+1)] print('point plane', point_plane) print('rest trimesh', rest_trimesh.volume) trimeshes = gh.divide_mesh_by_plane(rest_trimesh, normal_plane, point_plane) print('number meshes', len(trimeshes)) storey = trimeshes[0] file_name = 'storey_' + str(n) + '.obj' path_name = (Path(__file__).parent.parent / 'tests' / 'tests_outputs' / file_name).resolve() with open(path_name, 'w') as file: file.write(storey.export(file_type='obj')) rest_trimesh = trimeshes[1] file_name = 'rest_trimesh_' + str(n) + '.obj' path_name = (Path(__file__).parent.parent / 'tests' / 'tests_outputs' / file_name).resolve() with open(path_name, 'w') as file: file.write(rest_trimesh.export(file_type='obj')) storeys.append(storey) storeys.append(rest_trimesh) return storeys @property def roof_type(self): """ Roof type for the building flat or pitch """ if self._roof_type is None: self._roof_type = 'flat' for roof in self.roofs: grads = np.rad2deg(roof.inclination) if 355 > grads > 5: self._roof_type = 'pitch' break print (self._roof_type) return self._roof_type @property def floor_area(self): """ Floor area of the building m2 :return: float """ if self._floor_area is None: self._floor_area = 0 for surface in self.surfaces: if surface.type == 'Ground': self._floor_area += surface.perimeter_polygon.area return self._floor_area @property def centroid(self): if self._centroid is None: self._centroid = self.simplified_polyhedron.centroid return self._centroid