348 lines
19 KiB
Python
348 lines
19 KiB
Python
import json
|
|
from pathlib import Path
|
|
import pandas as pd
|
|
import geopandas as gpd
|
|
|
|
#%%-----------------------------------------------
|
|
# """This code takes different results from energy plus with different building uses and obtains a unique geojson that combines all of them"""
|
|
#%% # -----------------------------------------------
|
|
#define output path
|
|
output_path = (Path(__file__).parent / 'out_files').resolve()
|
|
output_path.mkdir(parents=True, exist_ok=True)
|
|
# Define output folders
|
|
output_folders = ['building_type', 'building_type_2', 'building_type_3']
|
|
#output paths containing energy+ results are read
|
|
path1=output_path / '1990_and_2019'/'building_type' / 'updated_buildings.geojson'
|
|
path2=output_path / '1990_and_2019'/ 'building_type_2' / 'updated_buildings.geojson'
|
|
path3=output_path / '1990_and_2019'/'building_type_3' / 'updated_buildings.geojson'
|
|
with open(path1, 'r') as f:
|
|
building_type_data = json.load(f)
|
|
with open(path2, 'r') as f:
|
|
building_type_data2 = json.load(f)
|
|
with open(path3, 'r') as f:
|
|
building_type_data3 = json.load(f)
|
|
percentage_data = {
|
|
1646: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 2672.550473, "total_floor_area": 26725.50473},
|
|
1647: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 2653.626087, "total_floor_area": 26536.26087},
|
|
1648: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1056.787496, "total_floor_area": 10567.87496},
|
|
1649: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1906.620746, "total_floor_area": 19066.20746},
|
|
1650: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 659.1119416, "total_floor_area": 5272.895533},
|
|
1651: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1167.208109, "total_floor_area": 9337.664871},
|
|
1652: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1193.251653, "total_floor_area": 9546.013222},
|
|
1653: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1491.722543, "total_floor_area": 11933.78035},
|
|
1654: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1168.005028, "total_floor_area": 9344.040224},
|
|
1655: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1264.906961, "total_floor_area": 10119.25569},
|
|
1656: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1281.768818, "total_floor_area": 10254.15054},
|
|
1657: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 290.3886018, "total_floor_area": 2323.108814},
|
|
1658: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 847.5095193, "total_floor_area": 6780.076155},
|
|
1659: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1115.319153, "total_floor_area": 8922.553224},
|
|
1660: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 469.2918062, "total_floor_area": 3754.33445},
|
|
1661: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1292.298346, "total_floor_area": 10338.38677},
|
|
1662: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 625.7828863, "total_floor_area": 5006.263091},
|
|
1663: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1876.02897, "total_floor_area": 15008.23176},
|
|
1664: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1118.224781, "total_floor_area": 22364.49562},
|
|
1665: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1502.787808, "total_floor_area": 30055.75617},
|
|
1666: {"type1_%": 0.891045711, "type2_%": 0.108954289, "type3_%": 0, "roof_area": 3038.486076, "total_floor_area": 30384.86076},
|
|
1667: {"type1_%": 0.8, "type2_%": 0.2, "type3_%": 0, "roof_area": 1343.832818, "total_floor_area": 13438.32818},
|
|
1668: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 961.0996956, "total_floor_area": 4805.498478},
|
|
1669: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 489.1282111, "total_floor_area": 1956.512845},
|
|
1673: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 1693.141465, "total_floor_area": 5079.424396},
|
|
1674: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 3248.827576, "total_floor_area": 9746.482729},
|
|
1675: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 4086.842191, "total_floor_area": 12260.52657},
|
|
1676: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 2786.114146, "total_floor_area": 11144.45658},
|
|
1677: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 5142.784184, "total_floor_area": 15428.35255},
|
|
1678: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 6068.664574, "total_floor_area": 18205.99372},
|
|
1679: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 5646.751407, "total_floor_area": 16940.25422},
|
|
1680: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 1601.765953, "total_floor_area": 4805.297859},
|
|
1681: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 9728.221797, "total_floor_area": 29184.66539},
|
|
1687: {"type1_%": 0.606611029, "type2_%": 0.28211422, "type3_%": 0.11127475, "roof_area": 4268.608743, "total_floor_area": 59760.52241},
|
|
1688: {"type1_%": 0.92, "type2_%": 0.08, "type3_%": 0, "roof_area": 2146.654828, "total_floor_area": 38639.7869},
|
|
1689: {"type1_%": 0.96, "type2_%": 0.04, "type3_%": 0, "roof_area": 2860.270711, "total_floor_area": 57205.41421},
|
|
1690: {"type1_%": 0.94, "type2_%": 0.06, "type3_%": 0, "roof_area": 2189.732519, "total_floor_area": 28466.52275},
|
|
1691: {"type1_%": 0.75, "type2_%": 0.25, "type3_%": 0, "roof_area": 3159.077523, "total_floor_area": 31590.77523},
|
|
}
|
|
|
|
|
|
# Define a function to calculate new demands based on percentages
|
|
def calculate_demands(building_id, percentages, building_type_data, building_type_data2, building_type_data3):
|
|
new_demands = {}
|
|
|
|
for idx, feature in enumerate(building_type_data['features']):
|
|
if feature['properties']['id'] == str(building_id):
|
|
for demand_type in [
|
|
'heating_demand_kWh', 'cooling_demand_kWh',
|
|
'domestic_hot_water_heat_demand_kWh',
|
|
'appliances_electrical_demand_kWh',
|
|
'lighting_electrical_demand_kWh']:
|
|
|
|
demand_list_1 = building_type_data['features'][idx]['properties'].get(demand_type, [0])
|
|
|
|
# Initialize demand lists for type 2 and type 3 with zeros
|
|
demand_list_2 = [0] * len(demand_list_1)
|
|
demand_list_3 = [0] * len(demand_list_1)
|
|
|
|
# Update demand_list_2 if percentages['type2_%'] is not zero
|
|
if percentages['type2_%'] != 0:
|
|
for feature2 in building_type_data2['features']:
|
|
if feature2['properties']['id'] == str(building_id):
|
|
demand_list_2 = feature2['properties'].get(demand_type, [0])
|
|
break
|
|
|
|
# Update demand_list_3 if percentages['type3_%'] is not zero
|
|
if percentages['type3_%'] != 0:
|
|
for feature3 in building_type_data3['features']:
|
|
if feature3['properties']['id'] == str(building_id):
|
|
demand_list_3 = feature3['properties'].get(demand_type, [0])
|
|
break
|
|
|
|
# Ensure the demand lists are the same length by padding with zeros if necessary
|
|
max_len = max(len(demand_list_1), len(demand_list_2), len(demand_list_3))
|
|
demand_list_1 += [0] * (max_len - len(demand_list_1))
|
|
demand_list_2 += [0] * (max_len - len(demand_list_2))
|
|
demand_list_3 += [0] * (max_len - len(demand_list_3))
|
|
|
|
new_demand_list = [
|
|
demand_list_1[i] * percentages['type1_%'] +
|
|
demand_list_2[i] * percentages['type2_%'] +
|
|
demand_list_3[i] * percentages['type3_%']
|
|
for i in range(max_len)
|
|
]
|
|
new_demands[demand_type] = new_demand_list
|
|
|
|
return new_demands
|
|
|
|
|
|
# Calculate demand per square meter for each building
|
|
def calculate_demand_per_m2(building_type_data, building_type_data2, building_type_data3, percentage_data):
|
|
results = {}
|
|
|
|
for building_id, percentages in percentage_data.items():
|
|
print(percentages ["total_floor_area"])
|
|
new_demands = calculate_demands(building_id, percentages, building_type_data, building_type_data2,
|
|
building_type_data3)
|
|
|
|
for idx, feature in enumerate(building_type_data['features']):
|
|
if feature['properties']['id'] == str(building_id):
|
|
total_floor_area = percentages ["total_floor_area"]
|
|
|
|
results[building_id] = {
|
|
'roof_area':percentages["roof_area"],
|
|
'total_floor_area': percentages["total_floor_area"],
|
|
'heating_demand_kWh':new_demands.get('heating_demand_kWh', []),
|
|
'cooling_demand_kWh':new_demands.get('cooling_demand_kWh', []),
|
|
'domestic_hot_water_heat_demand_kWh': new_demands.get('domestic_hot_water_heat_demand_kWh', []),
|
|
'appliances_electrical_demand_kWh': new_demands.get('appliances_electrical_demand_kWh', []),
|
|
'lighting_electrical_demand_kWh': new_demands.get('lighting_electrical_demand_kWh', []),
|
|
'heating_demand_kWh_per_m2': sum(new_demands.get('heating_demand_kWh', [])) / total_floor_area,
|
|
'cooling_demand_kWh_per_m2': sum(new_demands.get('cooling_demand_kWh', [])) / total_floor_area,
|
|
'domestic_hot_water_heat_demand_kWh_per_m2': sum(
|
|
new_demands.get('domestic_hot_water_heat_demand_kWh', [])) / total_floor_area,
|
|
'appliances_electrical_demand_kWh_per_m2': sum(
|
|
new_demands.get('appliances_electrical_demand_kWh', [])) / total_floor_area,
|
|
'lighting_electrical_demand_kWh_per_m2': sum(
|
|
new_demands.get('lighting_electrical_demand_kWh', [])) / total_floor_area,
|
|
'appliances_peak_load_kW': max(
|
|
new_demands.get('appliances_electrical_demand_kWh', [])),
|
|
'domestic_hot_water_peak_load_kW': max(
|
|
new_demands.get('domestic_hot_water_heat_demand_kWh', [])) ,
|
|
'heating_peak_load_kW': max(new_demands.get('heating_demand_kWh', [])),
|
|
'cooling_peak_load_kW': max(new_demands.get('cooling_demand_kWh', [])),
|
|
'lighting_peak_load_kW': max(
|
|
new_demands.get('lighting_electrical_demand_kWh', [])),
|
|
}
|
|
|
|
return results
|
|
|
|
# Example usage
|
|
new_demands = calculate_demand_per_m2(building_type_data, building_type_data2, building_type_data3, percentage_data)
|
|
# for building_id, demand_data in results.items():
|
|
# print(f"Building ID: {building_id}")
|
|
# for demand_type, value in demand_data.items():
|
|
# print(f" {demand_type}: {value}")
|
|
# new_demands = {}
|
|
# for building_id, percentages in percentage_data.items():
|
|
# print(building_id)
|
|
# new_demands[building_id] = calculate_demands(building_id, percentages, building_type_data, building_type_data2, building_type_data3)
|
|
|
|
# #
|
|
import pandas as pd
|
|
|
|
# Export the DataFrame to an Excel file
|
|
output_path = r'C:\Users\a_gabald\PycharmProjects\summer_course_2024\out_files\new_demands.xlsx'
|
|
|
|
# Create an Excel writer object
|
|
with pd.ExcelWriter(output_path, engine='xlsxwriter') as writer:
|
|
for building_id, demands in new_demands.items():
|
|
# Convert demands to a DataFrame
|
|
df_demands = pd.DataFrame(demands)
|
|
# Convert building_id to string and check its length
|
|
sheet_name = str(building_id)
|
|
if len(sheet_name) > 31:
|
|
sheet_name = sheet_name[:31] # Truncate to 31 characters if necessary
|
|
# Write the DataFrame to a specific sheet named after the building_id
|
|
df_demands.to_excel(writer, sheet_name=sheet_name, index=False)
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
# Assume calculate_demand_per_m2 and results have been computed as before
|
|
|
|
def extract_demands(data, building_id, demand_type):
|
|
for feature in data['features']:
|
|
if feature['properties']['id'] == str(building_id):
|
|
return feature['properties'].get(demand_type, [0])
|
|
return 0
|
|
|
|
# Create a list of building IDs
|
|
building_ids = list(percentage_data.keys())
|
|
|
|
# Define the demand types to be plotted
|
|
demand_types = [
|
|
'heating_demand_kWh_per_m2',
|
|
'cooling_demand_kWh_per_m2',
|
|
'domestic_hot_water_heat_demand_kWh_per_m2',
|
|
'appliances_electrical_demand_kWh_per_m2',
|
|
'lighting_electrical_demand_kWh_per_m2'
|
|
]
|
|
|
|
# Initialize lists to store values for plotting
|
|
new_demands_values = {demand_type: [] for demand_type in demand_types}
|
|
building_type_data_values = {demand_type: [] for demand_type in demand_types}
|
|
building_type_data2_values = {demand_type: [] for demand_type in demand_types}
|
|
building_type_data3_values = {demand_type: [] for demand_type in demand_types}
|
|
|
|
# Populate the lists with the corresponding values
|
|
for building_id in building_ids:
|
|
for demand_type in demand_types:
|
|
new_demands_values[demand_type].append(new_demands[building_id][demand_type])
|
|
building_type_data_values[demand_type].append(extract_demands(building_type_data, building_id, demand_type))
|
|
building_type_data2_values[demand_type].append(extract_demands(building_type_data2, building_id, demand_type))
|
|
building_type_data3_values[demand_type].append(extract_demands(building_type_data3, building_id, demand_type))
|
|
|
|
# Plot the values for each demand type
|
|
for demand_type in demand_types:
|
|
x = np.arange(len(building_ids)) # the label locations
|
|
width = 0.2 # the width of the bars
|
|
|
|
fig, ax = plt.subplots(figsize=(15, 7))
|
|
|
|
ax.bar(x - 1.5 * width, new_demands_values[demand_type], width, label='New Demands')
|
|
ax.bar(x - 0.5 * width, building_type_data_values[demand_type], width, label='Old Demands - Type 1')
|
|
ax.bar(x + 0.5 * width, building_type_data2_values[demand_type], width, label='Old Demands - Type 2')
|
|
ax.bar(x + 1.5 * width, building_type_data3_values[demand_type], width, label='Old Demands - Type 3')
|
|
|
|
# Add some text for labels, title, and custom x-axis tick labels, etc.
|
|
ax.set_xlabel('Building ID')
|
|
ax.set_ylabel(f'{demand_type} (kWh/m²)')
|
|
ax.set_title(f'Comparison of {demand_type} by Building ID')
|
|
ax.set_xticks(x)
|
|
ax.set_xticklabels(building_ids, rotation=90)
|
|
ax.legend()
|
|
|
|
fig.tight_layout()
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
# Load the existing GeoJSON file
|
|
geojson_file_path =r'C:\Users\a_gabald\PycharmProjects\summer_course_2024\out_files\building_type\updated_buildings.geojson' # Replace with the actual path
|
|
with open(geojson_file_path, 'r') as f:
|
|
geojson_data = json.load(f)
|
|
|
|
# Define output path
|
|
output_path = (Path(__file__).parent / 'out_files').resolve()
|
|
output_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
# Load additional data from the CSV files
|
|
solar_radiation_tilted_path = r'C:\Users\a_gabald\PycharmProjects\summer_course_2024\out_files\solar_radiation_tilted_selected_buildings.csv'
|
|
solar_radiation_horizontal_path = r'C:\Users\a_gabald\PycharmProjects\summer_course_2024\out_files\solar_radiation_horizontal_selected_buildings.csv'
|
|
|
|
|
|
import csv
|
|
|
|
def load_solar_data(file_path, key_name):
|
|
solar_data = {}
|
|
with open(file_path, 'r') as f:
|
|
reader = csv.reader(f)
|
|
headers = next(reader)[1:] # Skip the first header and get building IDs
|
|
|
|
for row in reader:
|
|
for building_id, solar_value in zip(headers, row[1:]): # Skip the first column in each row
|
|
building_id = int(building_id)
|
|
solar_value = float(solar_value)
|
|
if building_id not in solar_data:
|
|
solar_data[building_id] = {}
|
|
if key_name not in solar_data[building_id]:
|
|
solar_data[building_id][key_name] = []
|
|
solar_data[building_id][key_name].append(solar_value)
|
|
return solar_data
|
|
|
|
|
|
solar_radiation_tilted = load_solar_data(solar_radiation_tilted_path, 'solar_radiation_tilted')
|
|
solar_radiation_horizontal = load_solar_data(solar_radiation_horizontal_path, 'solar_radiation_horizontal')
|
|
|
|
# Merge the solar data into a single dictionary
|
|
solar_data = {}
|
|
for building_id in set(solar_radiation_tilted.keys()).union(solar_radiation_horizontal.keys()):
|
|
solar_data[building_id] = {}
|
|
if building_id in solar_radiation_tilted:
|
|
solar_data[building_id]['solar_radiation_tilted'] = solar_radiation_tilted[building_id][
|
|
'solar_radiation_tilted']
|
|
if building_id in solar_radiation_horizontal:
|
|
solar_data[building_id]['solar_radiation_horizontal'] = solar_radiation_horizontal[building_id][
|
|
'solar_radiation_horizontal']
|
|
|
|
# Example data for results (use actual results data in practice)
|
|
results = {
|
|
1646: {
|
|
"appliances_peak_load_kW": 269.020198862769,
|
|
"domestic_hot_water_peak_load_kW": 1477.6420222203596,
|
|
"heating_peak_load_kW": 1650.4097261870008,
|
|
"cooling_peak_load_kW": 1441.1027982978985,
|
|
"lighting_peak_load_kW": 295.92221874904584,
|
|
"heating_demand_kWh_per_m2": 40.4922413088911,
|
|
"cooling_demand_kWh_per_m2": 20.33948801154316,
|
|
"domestic_hot_water_heat_demand_kWh_per_m2": 60.25215210051923,
|
|
"appliances_electrical_demand_kWh_per_m2": 19.352038723954898,
|
|
"lighting_electrical_demand_kWh_per_m2": 11.246090428260413,
|
|
}
|
|
# Add similar dictionaries for other building IDs
|
|
}
|
|
|
|
# Update GeoJSON with percentage data, results, and solar data
|
|
for feature in geojson_data['features']:
|
|
building_id = int(feature['properties']['id'])
|
|
|
|
# Update with percentage data
|
|
if building_id in percentage_data:
|
|
for key, value in percentage_data[building_id].items():
|
|
feature['properties'][key] = value
|
|
|
|
# Update with results data
|
|
if building_id in new_demands:
|
|
for key, value in new_demands[building_id].items():
|
|
feature['properties'][key] = value
|
|
|
|
# Update with solar data
|
|
if building_id in solar_data:
|
|
for key, value in solar_data[building_id].items():
|
|
feature['properties'][key] = value
|
|
# Calculate and add the sums
|
|
feature['properties']['sum_solar_radiation_tilted_kWh_per_m2'] = sum(solar_data[building_id]['solar_radiation_tilted']) / 3.6e6
|
|
feature['properties']['sum_solar_radiation_horizontal_kWh_per_m2'] = sum(solar_data[building_id]['solar_radiation_horizontal']) / 3.6e6
|
|
# Add 8760 arrays divided by 3.6e6
|
|
feature['properties']['solar_radiation_tilted_kWh_per_m2'] = [value / 3.6e6 for value in solar_data[building_id]['solar_radiation_tilted']]
|
|
feature['properties']['solar_radiation_horizontal_kWh_per_m2'] = [value / 3.6e6 for value in solar_data[building_id]['solar_radiation_horizontal']]
|
|
|
|
# Save the updated GeoJSON data to a new file
|
|
updated_geojson_file_path = output_path / 'updated_buildings_with_all_data.geojson'
|
|
with open(updated_geojson_file_path, 'w') as f:
|
|
json.dump(geojson_data, f)
|
|
|
|
print(f"Updated GeoJSON data saved to {updated_geojson_file_path}")
|
|
|
|
|