summer_course_2024/venv/lib/python3.7/site-packages/pickleshare.py

353 lines
9.7 KiB
Python

#!/usr/bin/env python
""" PickleShare - a small 'shelve' like datastore with concurrency support
Like shelve, a PickleShareDB object acts like a normal dictionary. Unlike
shelve, many processes can access the database simultaneously. Changing a
value in database is immediately visible to other processes accessing the
same database.
Concurrency is possible because the values are stored in separate files. Hence
the "database" is a directory where *all* files are governed by PickleShare.
Example usage::
from pickleshare import *
db = PickleShareDB('~/testpickleshare')
db.clear()
print "Should be empty:",db.items()
db['hello'] = 15
db['aku ankka'] = [1,2,313]
db['paths/are/ok/key'] = [1,(5,46)]
print db.keys()
del db['aku ankka']
This module is certainly not ZODB, but can be used for low-load
(non-mission-critical) situations where tiny code size trumps the
advanced features of a "real" object database.
Installation guide: pip install pickleshare
Author: Ville Vainio <vivainio@gmail.com>
License: MIT open source license.
"""
from __future__ import print_function
__version__ = "0.7.5"
try:
from pathlib import Path
except ImportError:
# Python 2 backport
from pathlib2 import Path
import os,stat,time
try:
import collections.abc as collections_abc
except ImportError:
import collections as collections_abc
try:
import cPickle as pickle
except ImportError:
import pickle
import errno
import sys
if sys.version_info[0] >= 3:
string_types = (str,)
else:
string_types = (str, unicode)
def gethashfile(key):
return ("%02x" % abs(hash(key) % 256))[-2:]
_sentinel = object()
class PickleShareDB(collections_abc.MutableMapping):
""" The main 'connection' object for PickleShare database """
def __init__(self,root):
""" Return a db object that will manage the specied directory"""
if not isinstance(root, string_types):
root = str(root)
root = os.path.abspath(os.path.expanduser(root))
self.root = Path(root)
if not self.root.is_dir():
# catching the exception is necessary if multiple processes are concurrently trying to create a folder
# exists_ok keyword argument of mkdir does the same but only from Python 3.5
try:
self.root.mkdir(parents=True)
except OSError as e:
if e.errno != errno.EEXIST:
raise
# cache has { 'key' : (obj, orig_mod_time) }
self.cache = {}
def __getitem__(self,key):
""" db['key'] reading """
fil = self.root / key
try:
mtime = (fil.stat()[stat.ST_MTIME])
except OSError:
raise KeyError(key)
if fil in self.cache and mtime == self.cache[fil][1]:
return self.cache[fil][0]
try:
# The cached item has expired, need to read
with fil.open("rb") as f:
obj = pickle.loads(f.read())
except:
raise KeyError(key)
self.cache[fil] = (obj,mtime)
return obj
def __setitem__(self,key,value):
""" db['key'] = 5 """
fil = self.root / key
parent = fil.parent
if parent and not parent.is_dir():
parent.mkdir(parents=True)
# We specify protocol 2, so that we can mostly go between Python 2
# and Python 3. We can upgrade to protocol 3 when Python 2 is obsolete.
with fil.open('wb') as f:
pickle.dump(value, f, protocol=2)
try:
self.cache[fil] = (value, fil.stat().st_mtime)
except OSError as e:
if e.errno != errno.ENOENT:
raise
def hset(self, hashroot, key, value):
""" hashed set """
hroot = self.root / hashroot
if not hroot.is_dir():
hroot.mkdir()
hfile = hroot / gethashfile(key)
d = self.get(hfile, {})
d.update( {key : value})
self[hfile] = d
def hget(self, hashroot, key, default = _sentinel, fast_only = True):
""" hashed get """
hroot = self.root / hashroot
hfile = hroot / gethashfile(key)
d = self.get(hfile, _sentinel )
#print "got dict",d,"from",hfile
if d is _sentinel:
if fast_only:
if default is _sentinel:
raise KeyError(key)
return default
# slow mode ok, works even after hcompress()
d = self.hdict(hashroot)
return d.get(key, default)
def hdict(self, hashroot):
""" Get all data contained in hashed category 'hashroot' as dict """
hfiles = self.keys(hashroot + "/*")
hfiles.sort()
last = len(hfiles) and hfiles[-1] or ''
if last.endswith('xx'):
# print "using xx"
hfiles = [last] + hfiles[:-1]
all = {}
for f in hfiles:
# print "using",f
try:
all.update(self[f])
except KeyError:
print("Corrupt",f,"deleted - hset is not threadsafe!")
del self[f]
self.uncache(f)
return all
def hcompress(self, hashroot):
""" Compress category 'hashroot', so hset is fast again
hget will fail if fast_only is True for compressed items (that were
hset before hcompress).
"""
hfiles = self.keys(hashroot + "/*")
all = {}
for f in hfiles:
# print "using",f
all.update(self[f])
self.uncache(f)
self[hashroot + '/xx'] = all
for f in hfiles:
p = self.root / f
if p.name == 'xx':
continue
p.unlink()
def __delitem__(self,key):
""" del db["key"] """
fil = self.root / key
self.cache.pop(fil,None)
try:
fil.unlink()
except OSError:
# notfound and permission denied are ok - we
# lost, the other process wins the conflict
pass
def _normalized(self, p):
""" Make a key suitable for user's eyes """
return str(p.relative_to(self.root)).replace('\\','/')
def keys(self, globpat = None):
""" All keys in DB, or all keys matching a glob"""
if globpat is None:
files = self.root.rglob('*')
else:
files = self.root.glob(globpat)
return [self._normalized(p) for p in files if p.is_file()]
def __iter__(self):
return iter(self.keys())
def __len__(self):
return len(self.keys())
def uncache(self,*items):
""" Removes all, or specified items from cache
Use this after reading a large amount of large objects
to free up memory, when you won't be needing the objects
for a while.
"""
if not items:
self.cache = {}
for it in items:
self.cache.pop(it,None)
def waitget(self,key, maxwaittime = 60 ):
""" Wait (poll) for a key to get a value
Will wait for `maxwaittime` seconds before raising a KeyError.
The call exits normally if the `key` field in db gets a value
within the timeout period.
Use this for synchronizing different processes or for ensuring
that an unfortunately timed "db['key'] = newvalue" operation
in another process (which causes all 'get' operation to cause a
KeyError for the duration of pickling) won't screw up your program
logic.
"""
wtimes = [0.2] * 3 + [0.5] * 2 + [1]
tries = 0
waited = 0
while 1:
try:
val = self[key]
return val
except KeyError:
pass
if waited > maxwaittime:
raise KeyError(key)
time.sleep(wtimes[tries])
waited+=wtimes[tries]
if tries < len(wtimes) -1:
tries+=1
def getlink(self,folder):
""" Get a convenient link for accessing items """
return PickleShareLink(self, folder)
def __repr__(self):
return "PickleShareDB('%s')" % self.root
class PickleShareLink:
""" A shortdand for accessing nested PickleShare data conveniently.
Created through PickleShareDB.getlink(), example::
lnk = db.getlink('myobjects/test')
lnk.foo = 2
lnk.bar = lnk.foo + 5
"""
def __init__(self, db, keydir ):
self.__dict__.update(locals())
def __getattr__(self,key):
return self.__dict__['db'][self.__dict__['keydir']+'/' + key]
def __setattr__(self,key,val):
self.db[self.keydir+'/' + key] = val
def __repr__(self):
db = self.__dict__['db']
keys = db.keys( self.__dict__['keydir'] +"/*")
return "<PickleShareLink '%s': %s>" % (
self.__dict__['keydir'],
";".join([Path(k).basename() for k in keys]))
def main():
import textwrap
usage = textwrap.dedent("""\
pickleshare - manage PickleShare databases
Usage:
pickleshare dump /path/to/db > dump.txt
pickleshare load /path/to/db < dump.txt
pickleshare test /path/to/db
""")
DB = PickleShareDB
import sys
if len(sys.argv) < 2:
print(usage)
return
cmd = sys.argv[1]
args = sys.argv[2:]
if cmd == 'dump':
if not args: args= ['.']
db = DB(args[0])
import pprint
pprint.pprint(db.items())
elif cmd == 'load':
cont = sys.stdin.read()
db = DB(args[0])
data = eval(cont)
db.clear()
for k,v in db.items():
db[k] = v
elif cmd == 'testwait':
db = DB(args[0])
db.clear()
print(db.waitget('250'))
elif cmd == 'test':
test()
stress()
if __name__== "__main__":
main()