summer_course_2024/hub/helpers/geometry_helper.py
2023-01-24 10:51:50 -05:00

201 lines
6.7 KiB
Python

"""
Geometry helper
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
import math
import numpy as np
import requests
from trimesh import Trimesh
from trimesh import intersections
from hub.city_model_structure.attributes.polygon import Polygon
from hub.city_model_structure.attributes.polyhedron import Polyhedron
from hub.helpers.location import Location
from hub.helpers.configuration_helper import ConfigurationHelper
class GeometryHelper:
"""
Geometry helper class
"""
srs_transformations = {
'urn:adv:crs:ETRS89_UTM32*DE_DHHN92_NH': 'epsg:25832'
}
def __init__(self, delta=0, area_delta=0):
self._delta = delta
self._area_delta = area_delta
@staticmethod
def adjacent_locations(location1, location2):
"""
Determine when two attributes may be adjacent or not based in the dis
:param location1:
:param location2:
:return: Boolean
"""
max_distance = ConfigurationHelper().max_location_distance_for_shared_walls
return GeometryHelper.distance_between_points(location1, location2) < max_distance
def almost_same_area(self, area_1, area_2):
"""
Compare two areas and decides if they are almost equal (absolute error under delta)
:param area_1
:param area_2
:return: Boolean
"""
if area_1 == 0 or area_2 == 0:
return False
delta = math.fabs(area_1 - area_2)
return delta <= self._area_delta
def is_almost_same_surface(self, surface_1, surface_2):
"""
Compare two surfaces and decides if they are almost equal (quadratic error under delta)
:param surface_1: Surface
:param surface_2: Surface
:return: Boolean
"""
# delta is grads an need to be converted into radians
delta = np.rad2deg(self._delta)
difference = (surface_1.inclination - surface_2.inclination) % math.pi
if abs(difference) > delta:
return False
# s1 and s2 are at least almost parallel surfaces
# calculate distance point to plane using all the vertex
# select surface1 value for the point (X,Y,Z) where two of the values are 0
minimum_distance = self._delta + 1
parametric = surface_2.polygon.get_parametric()
normal_2 = surface_2.normal
for point in surface_1.points:
distance = abs(
(point[0] * parametric[0]) + (point[1] * parametric[1]) + (point[2] * parametric[2]) + parametric[3])
normal_module = math.sqrt(pow(normal_2[0], 2) + pow(normal_2[1], 2) + pow(normal_2[2], 2))
if normal_module == 0:
continue
distance = distance / normal_module
if distance < minimum_distance:
minimum_distance = distance
if minimum_distance <= self._delta:
break
if minimum_distance > self._delta or surface_1.intersect(surface_2) is None:
return False
return True
@staticmethod
def segment_list_to_trimesh(lines) -> Trimesh:
"""
Transform a list of segments into a Trimesh
"""
line_points = [lines[0][0], lines[0][1]]
lines.remove(lines[0])
while len(lines) > 1:
i = 0
for line in lines:
i += 1
if GeometryHelper.distance_between_points(line[0], line_points[len(line_points) - 1]) < 1e-8:
line_points.append(line[1])
lines.pop(i - 1)
break
if GeometryHelper.distance_between_points(line[1], line_points[len(line_points) - 1]) < 1e-8:
line_points.append(line[0])
lines.pop(i - 1)
break
polyhedron = Polyhedron(Polygon(line_points).triangulate())
trimesh = Trimesh(polyhedron.vertices, polyhedron.faces)
return trimesh
@staticmethod
def _merge_meshes(mesh1, mesh2):
v_1 = mesh1.vertices
f_1 = mesh1.faces
v_2 = mesh2.vertices
f_2 = mesh2.faces
length = len(v_1)
v_merge = np.concatenate((v_1, v_2))
f_merge = np.asarray(f_1)
for item in f_2:
point1 = item.item(0) + length
point2 = item.item(1) + length
point3 = item.item(2) + length
surface = np.asarray([point1, point2, point3])
f_merge = np.concatenate((f_merge, [surface]))
mesh_merge = Trimesh(vertices=v_merge, faces=f_merge)
mesh_merge.fix_normals()
return mesh_merge
@staticmethod
def divide_mesh_by_plane(trimesh, normal_plane, point_plane):
"""
Divide a mesh by a plane
:param trimesh: Trimesh
:param normal_plane: [x, y, z]
:param point_plane: [x, y, z]
:return: [Trimesh]
"""
# The first mesh returns the positive side of the plane and the second the negative side.
# If the plane does not divide the mesh (i.e. it does not touch it or it is coplanar with one or more faces),
# then it returns only the original mesh.
# todo: review split method in https://github.com/mikedh/trimesh/issues/235,
# once triangulate_polygon in Polygon class is solved
normal_plane_opp = [None] * len(normal_plane)
for i in range(0, len(normal_plane)):
normal_plane_opp[i] = - normal_plane[i]
section_1 = intersections.slice_mesh_plane(trimesh, normal_plane, point_plane)
if section_1 is None:
return [trimesh]
lines = list(intersections.mesh_plane(trimesh, normal_plane, point_plane))
cap = GeometryHelper.segment_list_to_trimesh(lines)
trimesh_1 = GeometryHelper._merge_meshes(section_1, cap)
section_2 = intersections.slice_mesh_plane(trimesh, normal_plane_opp, point_plane)
if section_2 is None:
return [trimesh_1]
trimesh_2 = GeometryHelper._merge_meshes(section_2, cap)
return [trimesh_1, trimesh_2]
@staticmethod
def get_location(latitude, longitude) -> Location:
"""
Get Location from latitude and longitude
"""
url = 'https://nominatim.openstreetmap.org/reverse?lat={latitude}&lon={longitude}&format=json'
response = requests.get(url.format(latitude=latitude, longitude=longitude))
if response.status_code != 200:
# This means something went wrong.
raise Exception('GET /tasks/ {}'.format(response.status_code))
response = response.json()
city = 'Unknown'
country = 'ca'
if 'city' in response['address']:
city = response['address']['city']
if 'country_code' in response['address']:
country = response['address']['country_code']
return Location(country, city)
@staticmethod
def distance_between_points(vertex1, vertex2):
"""
distance between points in an n-D Euclidean space
:param vertex1: point or vertex
:param vertex2: point or vertex
:return: float
"""
power = 0
for dimension in range(0, len(vertex1)):
power += math.pow(vertex2[dimension]-vertex1[dimension], 2)
distance = math.sqrt(power)
return distance