small changes to fit weather_factory idea

This commit is contained in:
pilar 2020-10-30 13:47:59 -04:00
parent 584640ab6e
commit 816ad2c7f5
2 changed files with 7 additions and 7 deletions

View File

@ -4,6 +4,7 @@ SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2020 Project Author Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
contributors: Pilar Monsalvete pilar_monsalvete@yahoo.es
"""
from typing import List
import matplotlib.patches as patches
@ -322,7 +323,7 @@ class Building(CityObject):
def external_temperature(self, value):
"""
external temperature surrounding the building in grads Celsius
:param value: dict{DataFrame(external temperature)}
:param value: dict{DataFrame(float)}
"""
self._external_temperature = value
@ -338,7 +339,7 @@ class Building(CityObject):
def global_horizontal(self, value):
"""
global horizontal radiation surrounding the building in W/m2
:param value: dict{DataFrame(global horizontal radiation)}
:param value: dict{DataFrame(float)}
"""
self._global_horizontal = value
@ -354,7 +355,7 @@ class Building(CityObject):
def diffuse(self, value):
"""
diffuse radiation surrounding the building in W/m2
:param value: dict{DataFrame(diffuse radiation)}
:param value: dict{DataFrame(float)}
"""
self._diffuse = value
@ -370,6 +371,6 @@ class Building(CityObject):
def beam(self, value):
"""
beam radiation surrounding the building in W/m2
:param value: dict{DataFrame(beam radiation)}
:param value: dict{DataFrame(float)}
"""
self._beam = value

View File

@ -10,10 +10,9 @@ class Weather(object):
# Swinbank - Fuentes sky model approximation(1963) based on cloudiness statistics(32 %) in United States
# ambient temperatures( in °C)
# sky temperatures( in °C)
_ambient_temperature = ambient_temperature[['temperature']].to_numpy()
values = []
for temperature in _ambient_temperature:
for temperature in ambient_temperature:
value = 0.037536 * math.pow((temperature + cte.celsius_to_kelvin), 1.5) \
+ 0.32 * (temperature + cte.celsius_to_kelvin) - cte.celsius_to_kelvin
values.append(value)
return pd.DataFrame(values, columns=['sky temperature'])
return values