""" weather helper SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2022 Concordia CERC group Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca """ import math import hub.helpers.constants as cte import pandas as pd import calendar as cal import numpy as np class Weather: """ Weather class """ @staticmethod def sky_temperature(ambient_temperature): """ Get sky temperature from ambient temperature in Celsius :return: List[float] """ # Swinbank - Source sky model approximation(1963) based on cloudiness statistics(32 %) in the United States # ambient temperatures( in °C) # sky temperatures( in °C) values = [] for temperature in ambient_temperature: value = 0.037536 * math.pow((temperature + cte.KELVIN), 1.5) \ + 0.32 * (temperature + cte.KELVIN) - cte.KELVIN values.append(value) return values @staticmethod def cold_water_temperature(ambient_temperature): """ Get cold water temperature from ambient temperature in Celsius :return: dict """ # Equation from "TOWARDS DEVELOPMENT OF AN ALGORITHM FOR MAINS WATER TEMPERATURE", 2004, Jay Burch # and Craig Christensen, National Renewable Energy Laboratory # ambient temperatures( in °C) # cold water temperatures( in °C) ambient_temperature_fahrenheit = [] average_temperature = 0 maximum_temperature = -1000 minimum_temperature = 1000 for temperature in ambient_temperature: value = temperature * 9 / 5 + 32 ambient_temperature_fahrenheit.append(value) average_temperature += value / 8760 if value > maximum_temperature: maximum_temperature = value if value < minimum_temperature: minimum_temperature = value delta_temperature = maximum_temperature - minimum_temperature ratio = 0.4 + 0.01 * (average_temperature - 44) lag = 35 - 1 * (average_temperature - 44) cold_temperature = [] for temperature in ambient_temperature_fahrenheit: radians = (0.986 * (temperature-15-lag) - 90) * math.pi / 180 cold_temperature.append((average_temperature + 6 + ratio * (delta_temperature/2) * math.sin(radians) - 32) * 5/9) return pd.DataFrame(cold_temperature, columns=['epw']) def get_monthly_mean_values(self, values): out = None if values is not None: if 'month' not in values.columns: values = pd.concat([self.month_hour, pd.DataFrame(values)], axis=1) out = values.groupby('month', as_index=False).mean() del out['month'] return out @staticmethod def get_yearly_mean_values(values): return values.mean() def get_total_month(self, values): out = None if values is not None: if 'month' not in values.columns: values = pd.concat([self.month_hour, pd.DataFrame(values)], axis=1) out = pd.DataFrame(values).groupby('month', as_index=False).sum() del out['month'] return out @property def month_hour(self): """ returns a DataFrame that has x values of the month number (January = 1, February = 2...), being x the number of hours of the corresponding month :return: DataFrame(int) """ array = [] for i in range(0, 12): days_of_month = cal.monthrange(2015, i+1)[1] total_hours = days_of_month * 24 array = np.concatenate((array, np.full(total_hours, i + 1))) return pd.DataFrame(array, columns=['month'])