""" Polygon module SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2022 Concordia CERC group Project Coder Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca """ from __future__ import annotations import math import sys from typing import List import numpy as np from trimesh import Trimesh import trimesh.intersections from hub.city_model_structure.attributes.plane import Plane from hub.city_model_structure.attributes.point import Point import hub.helpers.constants as cte class Polygon: """ Polygon class """ def __init__(self, coordinates): self._area = None self._points = None self._points_list = None self._normal = None self._inverse = None self._edges = None self._coordinates = coordinates self._triangles = None self._vertices = None self._faces = None self._plane = None @property def points(self) -> List[Point]: """ Get the points belonging to the polygon [[x, y, z],...] :return: [Point] """ if self._points is None: self._points = [] for coordinate in self.coordinates: self._points.append(Point(coordinate)) return self._points @property def plane(self) -> Plane: """ Get the polygon plane :return: Plane """ if self._plane is None: self._plane = Plane(normal=self.normal, origin=self.points[0]) return self._plane @property def coordinates(self) -> List[np.ndarray]: """ Get the points in the shape of its coordinates belonging to the polygon [[x, y, z],...] :return: [np.ndarray] """ return self._coordinates @staticmethod def _module(vector): x2 = vector[0] ** 2 y2 = vector[1] ** 2 z2 = vector[2] ** 2 return math.sqrt(x2+y2+z2) @staticmethod def _scalar_product(vector_0, vector_1): x = vector_0[0] * vector_1[0] y = vector_0[1] * vector_1[1] z = vector_0[2] * vector_1[2] return x+y+z def contains_point(self, point): """ Determines if the given point is contained by the current polygon :return: boolean """ # fixme: This method doesn't seems to work. n = len(self.vertices) angle_sum = 0 for i in range(0, n): vector_0 = self.vertices[i] vector_1 = self.vertices[(i+1) % n] # set to origin vector_0[0] = vector_0[0] - point.coordinates[0] vector_0[1] = vector_0[1] - point.coordinates[1] vector_0[2] = vector_0[2] - point.coordinates[2] vector_1[0] = vector_1[0] - point.coordinates[0] vector_1[1] = vector_1[1] - point.coordinates[1] vector_1[2] = vector_1[2] - point.coordinates[2] module = Polygon._module(vector_0) * Polygon._module(vector_1) scalar_product = Polygon._scalar_product(vector_0, vector_1) angle = np.pi/2 if module != 0: angle = abs(np.arcsin(scalar_product / module)) angle_sum += angle return abs(angle_sum - math.pi*2) < cte.EPSILON def contains_polygon(self, polygon): """ Determines if the given polygon is contained by the current polygon :return: boolean """ for point in polygon.points: if not self.contains_point(point): return False return True @property def points_list(self) -> np.ndarray: """ Get the solid surface point coordinates list [x, y, z, x, y, z,...] :return: np.ndarray """ if self._points_list is None: s = self.coordinates self._points_list = np.reshape(s, len(s) * 3) return self._points_list @property def edges(self) -> List[List[Point]]: """ Get polygon edges list :return: [[Point]] """ if self._edges is None: self._edges = [] for i in range(0, len(self.points) - 1): point_1 = self.points[i] point_2 = self.points[i + 1] self._edges.append([point_1, point_2]) self._edges.append([self.points[len(self.points) - 1], self.points[0]]) return self._edges @property def area(self): """ Get surface area in square meters :return: float """ # New method to calculate area if self._area is None: if len(self.points) < 3: sys.stderr.write('Warning: the area of a line or point cannot be calculated 1. Area = 0\n') return 0 alpha = 0 vec_1 = self.points[1].coordinates - self.points[0].coordinates for i in range(2, len(self.points)): vec_2 = self.points[i].coordinates - self.points[0].coordinates alpha += self._angle_between_vectors(vec_1, vec_2) if alpha == 0: sys.stderr.write('Warning: the area of a line or point cannot be calculated 2. Area = 0\n') return 0 horizontal_points = self._points_rotated_to_horizontal area = 0 for i in range(0, len(horizontal_points) - 1): point = horizontal_points[i] next_point = horizontal_points[i + 1] area += (next_point[1] + point[1]) / 2 * (next_point[0] - point[0]) next_point = horizontal_points[0] point = horizontal_points[len(horizontal_points) - 1] area += (next_point[1] + point[1]) / 2 * (next_point[0] - point[0]) self._area = abs(area) return self._area @property def _points_rotated_to_horizontal(self): """ polygon points rotated to horizontal :return: [float] """ z_vector = [0, 0, 1] normal_vector = self.normal horizontal_points = [] x = normal_vector[0] y = normal_vector[1] if x == 0 and y == 0: # Already horizontal for point in self.points: horizontal_points.append([point.coordinates[0], point.coordinates[1], 0]) else: alpha = self._angle_between_vectors(normal_vector, z_vector) rotation_line = np.cross(normal_vector, z_vector) third_axis = np.cross(normal_vector, rotation_line) w_1 = rotation_line / np.linalg.norm(rotation_line) w_2 = normal_vector w_3 = third_axis / np.linalg.norm(third_axis) rotation_matrix = np.array([[1, 0, 0], [0, np.cos(alpha), -np.sin(alpha)], [0, np.sin(alpha), np.cos(alpha)]]) base_matrix = np.array([w_1, w_2, w_3]) rotation_base_matrix = np.matmul(base_matrix.transpose(), rotation_matrix.transpose()) rotation_base_matrix = np.matmul(rotation_base_matrix, base_matrix) if rotation_base_matrix is None: sys.stderr.write('Warning: rotation base matrix returned None\n') else: for point in self.points: new_point = np.matmul(rotation_base_matrix, point.coordinates) horizontal_points.append(new_point) return horizontal_points @property def normal(self) -> np.ndarray: """ Get surface normal vector :return: np.ndarray """ if self._normal is None: points = self.coordinates # todo: IF THE FIRST ONE IS 0, START WITH THE NEXT point_origin = points[len(points) - 2] vector_1 = points[len(points) - 1] - point_origin vector_2 = points[0] - point_origin vector_3 = points[1] - point_origin cross_product = np.cross(vector_1, vector_2) if np.linalg.norm(cross_product) != 0: cross_product = cross_product / np.linalg.norm(cross_product) alpha = self._angle_between_vectors(vector_1, vector_2) else: cross_product = [0, 0, 0] alpha = 0 if len(points) == 3: return cross_product if np.linalg.norm(cross_product) == 0: return cross_product alpha += self._angle(vector_2, vector_3, cross_product) for i in range(0, len(points) - 4): vector_1 = points[i + 1] - point_origin vector_2 = points[i + 2] - point_origin alpha += self._angle(vector_1, vector_2, cross_product) vector_1 = points[len(points) - 1] - point_origin vector_2 = points[0] - point_origin if alpha < 0: cross_product = np.cross(vector_2, vector_1) else: cross_product = np.cross(vector_1, vector_2) self._normal = cross_product / np.linalg.norm(cross_product) return self._normal @staticmethod def _angle(vector_1, vector_2, cross_product): """ alpha angle in radians :param vector_1: [float] :param vector_2: [float] :param cross_product: [float] :return: float """ accepted_normal_difference = 0.01 cross_product_next = np.cross(vector_1, vector_2) if np.linalg.norm(cross_product_next) != 0: cross_product_next = cross_product_next / np.linalg.norm(cross_product_next) alpha = Polygon._angle_between_vectors(vector_1, vector_2) else: cross_product_next = [0, 0, 0] alpha = 0 delta_normals = 0 for j in range(0, 3): delta_normals += cross_product[j] - cross_product_next[j] if np.abs(delta_normals) < accepted_normal_difference: return alpha return -alpha def triangulate(self) -> List[Polygon]: """ Triangulates a polygon following the ear clipping methodology :return: list[triangles] """ # todo: review triangulate_polygon in # https://github.com/mikedh/trimesh/blob/dad11126742e140ef46ba12f8cb8643c83356467/trimesh/creation.py#L415, # it had a problem with a class called 'triangle', but, if solved, # it could be a very good substitute of this method # this method is very dirty and has an infinite loop solved with a counter!! if self._triangles is None: points_list = self.points_list normal = self.normal if np.linalg.norm(normal) == 0: sys.stderr.write('Not able to triangulate polygon\n') return [self] # are points concave or convex? total_points_list, concave_points, convex_points = self._starting_lists(points_list, normal) # list of ears ears = [] j = 0 while (len(concave_points) > 3 or len(convex_points) != 0) and j < 100: j += 1 for i in range(0, len(concave_points)): ear = self._triangle(points_list, total_points_list, concave_points[i]) rest_points = [] for points in total_points_list: rest_points.append(list(self.coordinates[points])) if self._is_ear(ear, rest_points): ears.append(ear) point_to_remove = concave_points[i] previous_point_in_list, next_point_in_list = self._enveloping_points(point_to_remove, total_points_list) total_points_list.remove(point_to_remove) concave_points.remove(point_to_remove) # Was any of the adjacent points convex? -> check if changed status to concave for convex_point in convex_points: if convex_point == previous_point_in_list: concave_points, convex_points, end_loop = self._if_concave_change_status(normal, points_list, convex_point, total_points_list, concave_points, convex_points, previous_point_in_list) if end_loop: break continue if convex_point == next_point_in_list: concave_points, convex_points, end_loop = self._if_concave_change_status(normal, points_list, convex_point, total_points_list, concave_points, convex_points, next_point_in_list) if end_loop: break continue break if len(total_points_list) <= 3 and len(convex_points) > 0: sys.stderr.write('Not able to triangulate polygon\n') return [self] if j >= 100: sys.stderr.write('Not able to triangulate polygon\n') return [self] last_ear = self._triangle(points_list, total_points_list, concave_points[1]) ears.append(last_ear) self._triangles = ears return self._triangles @staticmethod def _starting_lists(points_list, normal) -> [List[float], List[float], List[float]]: """ creates the list of vertices (points) that define the polygon (total_points_list), together with other two lists separating points between convex and concave :param points_list: points_list :param normal: normal :return: list[point], list[point], list[point] """ concave_points = [] convex_points = [] # lists of concave and convex points # case 1: first point point = points_list[0:3] previous_point = points_list[len(points_list) - 3:] next_point = points_list[3:6] index = 0 total_points_list = [index] if Polygon._point_is_concave(normal, point, previous_point, next_point): concave_points.append(index) else: convex_points.append(index) # case 2: all points except first and last for i in range(0, int((len(points_list) - 6) / 3)): point = points_list[(i + 1) * 3:(i + 2) * 3] previous_point = points_list[i * 3:(i + 1) * 3] next_point = points_list[(i + 2) * 3:(i + 3) * 3] index = i + 1 total_points_list.append(index) if Polygon._point_is_concave(normal, point, previous_point, next_point): concave_points.append(index) else: convex_points.append(index) # case 3: last point point = points_list[len(points_list) - 3:] previous_point = points_list[len(points_list) - 6:len(points_list) - 3] next_point = points_list[0:3] index = int(len(points_list) / 3) - 1 total_points_list.append(index) if Polygon._point_is_concave(normal, point, previous_point, next_point): concave_points.append(index) else: convex_points.append(index) return total_points_list, concave_points, convex_points @staticmethod def _triangle(points_list, total_points_list, point_position) -> Polygon: """ creates a triangular polygon out of three points :param points_list: points_list :param total_points_list: [point] :param point_position: int :return: polygon """ index = point_position * 3 previous_point_index, next_point_index = Polygon._enveloping_points_indices(point_position, total_points_list) points = points_list[previous_point_index:previous_point_index + 3] points = np.append(points, points_list[index:index + 3]) points = np.append(points, points_list[next_point_index:next_point_index + 3]) rows = points.size // 3 points = points.reshape(rows, 3) triangle = Polygon(points) return triangle @staticmethod def _enveloping_points_indices(point_position, total_points_list): """ due to the fact that the lists are not circular, a method to find the previous and next points of an specific one is needed :param point_position: int :param total_points_list: [point] :return: int, int """ previous_point_index = None next_point_index = None if point_position == total_points_list[0]: previous_point_index = total_points_list[len(total_points_list) - 1] * 3 next_point_index = total_points_list[1] * 3 if point_position == total_points_list[len(total_points_list) - 1]: previous_point_index = total_points_list[len(total_points_list) - 2] * 3 next_point_index = total_points_list[0] * 3 for i in range(1, len(total_points_list) - 1): if point_position == total_points_list[i]: previous_point_index = total_points_list[i - 1] * 3 next_point_index = total_points_list[i + 1] * 3 return previous_point_index, next_point_index @staticmethod def _enveloping_points(point_to_remove, total_points_list): """ due to the fact that the lists are not circular, a method to find the previous and next points of an specific one is needed :param point_to_remove: point :param total_points_list: [point] :return: point, point """ index = total_points_list.index(point_to_remove) if index == 0: previous_point_in_list = total_points_list[len(total_points_list) - 1] next_point_in_list = total_points_list[1] elif index == len(total_points_list) - 1: previous_point_in_list = total_points_list[len(total_points_list) - 2] next_point_in_list = total_points_list[0] else: previous_point_in_list = total_points_list[index - 1] next_point_in_list = total_points_list[index + 1] return previous_point_in_list, next_point_in_list @staticmethod def _is_ear(ear, points) -> bool: """ finds whether a triangle is an ear of the polygon :param ear: polygon :param points: [point] :return: boolean """ area_ear = ear.area for point in points: area_points = 0 point_is_not_vertex = True for i in range(0, 3): if abs(np.linalg.norm(point) - np.linalg.norm(ear.coordinates[i])) < 0.0001: point_is_not_vertex = False break if point_is_not_vertex: for i in range(0, 3): if i != 2: new_points = ear.coordinates[i][:] new_points = np.append(new_points, ear.coordinates[i + 1][:]) new_points = np.append(new_points, point[:]) else: new_points = ear.coordinates[i][:] new_points = np.append(new_points, point[:]) new_points = np.append(new_points, ear.coordinates[0][:]) rows = new_points.size // 3 new_points = new_points.reshape(rows, 3) new_triangle = Polygon(new_points) area_points += new_triangle.area if abs(area_points - area_ear) < 1e-6: # point_inside_ear = True return False return True @staticmethod def _if_concave_change_status(normal, points_list, convex_point, total_points_list, concave_points, convex_points, point_in_list) -> [List[float], List[float], bool]: """ checks whether an convex specific point change its status to concave after removing one ear in the polygon returning the new convex and concave points lists together with a flag advising that the list of total points already 3 and, therefore, the triangulation must be finished. :param normal: normal :param points_list: points_list :param convex_point: int :param total_points_list: [point] :param concave_points: [point] :param convex_points: [point] :param point_in_list: int :return: list[points], list[points], boolean """ end_loop = False point = points_list[point_in_list * 3:(point_in_list + 1) * 3] pointer = total_points_list.index(point_in_list) - 1 if pointer < 0: pointer = len(total_points_list) - 1 previous_point = points_list[total_points_list[pointer] * 3:total_points_list[pointer] * 3 + 3] pointer = total_points_list.index(point_in_list) + 1 if pointer >= len(total_points_list): pointer = 0 next_point = points_list[total_points_list[pointer] * 3:total_points_list[pointer] * 3 + 3] if Polygon._point_is_concave(normal, point, previous_point, next_point): if concave_points[0] > convex_point: concave_points.insert(0, convex_point) elif concave_points[len(concave_points) - 1] < convex_point: concave_points.append(convex_point) else: for point_index in range(0, len(concave_points) - 1): if concave_points[point_index] < convex_point < concave_points[point_index + 1]: concave_points.insert(point_index + 1, convex_point) convex_points.remove(convex_point) end_loop = True return concave_points, convex_points, end_loop @staticmethod def _point_is_concave(normal, point, previous_point, next_point) -> bool: """ returns whether a point is concave :param normal: normal :param point: point :param previous_point: point :param next_point: point :return: boolean """ is_concave = False accepted_error = 0.1 points = np.append(previous_point, point) points = np.append(points, next_point) rows = points.size // 3 points = points.reshape(rows, 3) triangle = Polygon(points) error_sum = 0 for i in range(0, len(normal)): error_sum += triangle.normal[i] - normal[i] if np.abs(error_sum) < accepted_error: is_concave = True return is_concave @staticmethod def _angle_between_vectors(vec_1, vec_2): """ angle between vectors in radians :param vec_1: vector :param vec_2: vector :return: float """ if np.linalg.norm(vec_1) == 0 or np.linalg.norm(vec_2) == 0: sys.stderr.write("Warning: impossible to calculate angle between planes' normal. Return 0\n") return 0 cosine = np.dot(vec_1, vec_2) / np.linalg.norm(vec_1) / np.linalg.norm(vec_2) if cosine > 1 and cosine - 1 < 1e-5: cosine = 1 elif cosine < -1 and cosine + 1 > -1e-5: cosine = -1 alpha = math.acos(cosine) return alpha @property def inverse(self): """ Get the polygon coordinates in reversed order :return: [np.ndarray] """ if self._inverse is None: self._inverse = self.coordinates[::-1] return self._inverse def divide(self, plane): """ Divides the polygon in two by a plane :param plane: plane that intersects with self to divide it in two parts (Plane) :return: Polygon, Polygon, [Point] """ tri_polygons = Trimesh(vertices=self.vertices, faces=self.faces) intersection = trimesh.intersections.mesh_plane(tri_polygons, plane.normal, plane.origin.coordinates) polys_1 = trimesh.intersections.slice_mesh_plane(tri_polygons, plane.opposite_normal, plane.origin.coordinates) polys_2 = trimesh.intersections.slice_mesh_plane(tri_polygons, plane.normal, plane.origin.coordinates) triangles_1 = [] for triangle in polys_1.triangles: triangles_1.append(Polygon(triangle)) polygon_1 = self._reshape(triangles_1) triangles_2 = [] for triangle in polys_2.triangles: triangles_2.append(Polygon(triangle)) polygon_2 = self._reshape(triangles_2) return polygon_1, polygon_2, intersection def _reshape(self, triangles) -> Polygon: edges_list = [] for i in range(0, len(triangles)): for edge in triangles[i].edges: if not self._edge_in_edges_list(edge, edges_list): edges_list.append(edge) else: edges_list = self._remove_from_list(edge, edges_list) points = self._order_points(edges_list) return Polygon(points) @staticmethod def _edge_in_edges_list(edge, edges_list): for edge_element in edges_list: if (edge_element[0].distance_to_point(edge[0]) == 0 and edge_element[1].distance_to_point(edge[1]) == 0) or \ (edge_element[1].distance_to_point(edge[0]) == 0 and edge_element[0].distance_to_point( edge[1]) == 0): return True return False @staticmethod def _order_points(edges_list): # todo: not sure that this method works for any case -> RECHECK points = edges_list[0] for _ in range(0, len(points)): for i in range(1, len(edges_list)): point_1 = edges_list[i][0] point_2 = points[len(points) - 1] if point_1.distance_to_point(point_2) == 0: points.append(edges_list[i][1]) points.remove(points[len(points) - 1]) array_points = [] for point in points: array_points.append(point.coordinates) return np.array(array_points) @staticmethod def _remove_from_list(edge, edges_list): new_list = [] for edge_element in edges_list: if not ((edge_element[0].distance_to_point(edge[0]) == 0 and edge_element[1].distance_to_point( edge[1]) == 0) or (edge_element[1].distance_to_point(edge[0]) == 0 and edge_element[0].distance_to_point( edge[1]) == 0)): new_list.append(edge_element) return new_list @property def vertices(self) -> np.ndarray: """ Get polyhedron vertices :return: np.ndarray(int) """ if self._vertices is None: vertices, self._vertices = [], [] _ = [vertices.extend(s.coordinates) for s in self.triangulate()] for vertex_1 in vertices: found = False for vertex_2 in self._vertices: found = False power = 0 for dimension in range(0, 3): power += math.pow(vertex_2[dimension] - vertex_1[dimension], 2) distance = math.sqrt(power) if distance == 0: found = True break if not found: self._vertices.append(vertex_1) self._vertices = np.asarray(self._vertices) return self._vertices @property def faces(self) -> List[List[int]]: """ Get polyhedron triangular faces :return: [face] """ if self._faces is None: self._faces = [] for polygon in self.triangulate(): face = [] points = polygon.coordinates if len(points) != 3: sub_polygons = polygon.triangulate() # todo: I modified this! To be checked @Guille if len(sub_polygons) >= 1: for sub_polygon in sub_polygons: face = [] points = sub_polygon.coordinates for point in points: face.append(self._position_of(point, face)) self._faces.append(face) else: for point in points: face.append(self._position_of(point, face)) self._faces.append(face) return self._faces def _position_of(self, point, face): """ position of a specific point in the list of points that define a face :return: int """ vertices = self.vertices for i in range(len(vertices)): # ensure not duplicated vertex power = 0 vertex2 = vertices[i] for dimension in range(0, 3): power += math.pow(vertex2[dimension] - point[dimension], 2) distance = math.sqrt(power) if i not in face and distance == 0: return i return -1