import pandas as pd from imports.schedules.helpers.schedules_helper import SchedulesHelper import parseidf class IDFParser: _OCCUPANCY_SCHEDULE = ("BLDG_OCC_SCH_wo_SB", "Occupancy") _Activity_Schedule = "ACTIVITY_SCH" _Electrical_Equipent_Schedule = "BLDG_EQUIP_SCH" _Lighting_Schedule = "BLDG_LIGHT_SCH" _Infiltration_Ventilation_Schedule = "INFIL_QUARTER_ON_SCH" def __init__(self, city, base_path): self._city = city self._idf_schedules_path = base_path / 'ASHRAE901_OfficeSmall_STD2019_Buffalo.idf' with open(self._idf_schedules_path, 'r') as f: idf = parseidf.parse(f.read()) print(idf.keys()) # lists the object types in the idf file print(idf['SCHEDULE:COMPACT']) # lists all the Output:Variable objects in the idf file Holiday = [] Winterdesignday = [] Summerdesignday = [] Customday1 = [] Customday2 = [] Weekday = [] Weekend = [] dayType = [] compactKeywords = ['Weekdays', 'Weekends', 'Alldays', 'AllOtherDays', 'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Holiday', 'Winterdesignday', 'Summerdesignday', 'Customday1', 'Customday2'] for val in idf['SCHEDULE:COMPACT']: if val[1] == 'BLDG_LIGHT_SCH': count = 0 for words in val: dayType.append(words.title().split('For: ')[-1]) index = [] for count, word_dayType in enumerate(dayType): if word_dayType in compactKeywords: index.append(count) index.append(len(dayType)) for i in range(len(index) - 1): numberOfDaySch = list(dayType[index[i] + 1:index[i + 1]]) hourlyValues = list(range(24)) startHour = 0 for num in range(int(len(numberOfDaySch) / 2)): untilTime = list(map(int, (numberOfDaySch[2 * num].split('Until: ')[-1]).split(":")[0:])) endHour = int(untilTime[0] + untilTime[1] / 60) value = float(numberOfDaySch[2 * num + 1]) for hour in range(startHour, endHour): hourlyValues[hour] = value print(hour, value) startHour = endHour if dayType[index[i]] == 'Weekdays': Weekday.append(hourlyValues) elif dayType[index[i]] == 'Weekends': Weekend.append(hourlyValues) elif dayType[index[i]] == 'Holiday': Holiday.append(hourlyValues) elif dayType[index[i]] == 'Winterdesignday': Winterdesignday.append(hourlyValues) elif dayType[index[i]] == 'Summerdesignday': Summerdesignday.append(hourlyValues) elif dayType[index[i]] == 'Customday1': Customday1.append(hourlyValues) elif dayType[index[i]] == 'Customday2': Customday2.append(hourlyValues) else: print('its none of them') idf_schedules = pd.DataFrame( {'week_day': Weekday, 'Weekends': Weekend, 'Holiday': Holiday, 'Winterdesignday': Winterdesignday, 'Summerdesignday': Summerdesignday, 'Customday1': Customday1, 'Customday2': Customday2, }) print(idf_schedules) for building in city.buildings: schedules = dict() for usage_zone in building.usage_zones: usage_schedules = idf_schedules # todo: should we save the data type? How? number_of_schedule_types = 5 schedules_per_schedule_type = 6 idf_day_types = dict({'week_day': 0, 'Weekends': 1, 'Holiday': 2, 'Winterdesignday': 3, 'Summerdesignday': 4, 'Customday1': 5, 'Customday2': 6}) for schedule_types in range(0, number_of_schedule_types): data = pd.DataFrame() columns_names = [] name = '' for schedule_day in range(0, len(idf_schedules)): row_cells = usage_schedules.iloc[schedules_per_schedule_type*schedule_types + schedule_day] if schedule_day == idf_day_types['week_day']: name = row_cells[0] columns_names.append(row_cells[2]) data1 = row_cells[schedules_per_schedule_type:] data = pd.concat([data, data1], axis=1) data.columns = columns_names schedules[name] = data usage_zone.schedules = schedules