""" Polygon module SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2020 Project Author Pilar Monsalvete Álvarez de Uribarri pilar.monsalvete@concordia.ca """ import sys import numpy as np import math class Polygon: """ Polygon class """ def __init__(self, points): self._area = None self._points = points self._points_list = None self._normal = None @property def points(self) -> np.ndarray: return self._points @property def points_list(self) -> np.ndarray: """ Solid surface point coordinates list [x, y, z, x, y, z,...] :return: np.ndarray """ if self._points_list is None: s = self.points self._points_list = np.reshape(s, len(s) * 3) return self._points_list @property def area(self): """ Surface area in square meters :return: float """ # New method to calculate area if self._area is None: if len(self.points) < 3: sys.stderr.write('Warning: the area of a line or point cannot be calculated 1. Area = 0\n') return 0 alpha = 0 vec_1 = self.points[1] - self.points[0] for i in range(2, len(self.points)): vec_2 = self.points[i] - self.points[0] alpha += self._angle_between_vectors(vec_1, vec_2) if alpha == 0: sys.stderr.write('Warning: the area of a line or point cannot be calculated 2. Area = 0\n') return 0 horizontal_points = self.rotate_surface_to_horizontal area = 0 for i in range(0, len(horizontal_points)-1): point = horizontal_points[i] next_point = horizontal_points[i+1] area += (next_point[1] + point[1]) / 2 * (next_point[0] - point[0]) next_point = horizontal_points[0] point = horizontal_points[len(horizontal_points)-1] area += (next_point[1] + point[1]) / 2 * (next_point[0] - point[0]) self._area = abs(area) return self._area @property def rotate_surface_to_horizontal(self): z_vector = [0, 0, 1] normal_vector = self.normal horizontal_points = [] x = normal_vector[0] y = normal_vector[1] if x == 0 and y == 0: # Already horizontal for point in self.points: horizontal_points.append([point[0], point[1], 0]) else: alpha = self._angle_between_vectors(normal_vector, z_vector) rotation_line = np.cross(normal_vector, z_vector) third_axis = np.cross(normal_vector, rotation_line) w_1 = rotation_line / np.linalg.norm(rotation_line) w_2 = normal_vector w_3 = third_axis / np.linalg.norm(third_axis) rotation_matrix = np.array([[1, 0, 0], [0, np.cos(alpha), -np.sin(alpha)], [0, np.sin(alpha), np.cos(alpha)]]) base_matrix = np.array([w_1, w_2, w_3]) rotation_base_matrix = np.matmul(base_matrix.transpose(), rotation_matrix.transpose()) rotation_base_matrix = np.matmul(rotation_base_matrix, base_matrix) if rotation_base_matrix is None: sys.stderr.write('Warning: rotation base matrix returned None\n') else: for point in self.points: new_point = np.matmul(rotation_base_matrix, point) horizontal_points.append(new_point) return horizontal_points @property def normal(self) -> np.ndarray: """ Surface normal vector :return: np.ndarray """ if self._normal is None: points = self.points # todo: IF THE FIRST ONE IS 0, START WITH THE NEXT point_origin = points[len(points)-2] vector_1 = points[len(points)-1] - point_origin vector_2 = points[0] - point_origin vector_3 = points[1] - point_origin cross_product = np.cross(vector_1, vector_2) if np.linalg.norm(cross_product) != 0: cross_product = cross_product / np.linalg.norm(cross_product) alpha = self._angle_between_vectors(vector_1, vector_2) else: # todo modify here cross_product = [0, 0, 0] alpha = 0 if len(points) == 3: return cross_product alpha += self._angle(vector_2, vector_3, cross_product) for i in range(0, len(points)-4): vector_1 = points[i+1] - point_origin vector_2 = points[i+2] - point_origin alpha += self._angle(vector_1, vector_2, cross_product) vector_1 = points[len(points) - 1] - point_origin vector_2 = points[0] - point_origin if alpha < 0: cross_product = np.cross(vector_2, vector_1) else: cross_product = np.cross(vector_1, vector_2) self._normal = cross_product / np.linalg.norm(cross_product) return self._normal @staticmethod def _angle(vector_1, vector_2, cross_product): accepted_normal_difference = 0.01 cross_product_next = np.cross(vector_1, vector_2) if np.linalg.norm(cross_product_next) != 0: cross_product_next = cross_product_next / np.linalg.norm(cross_product_next) alpha = Polygon._angle_between_vectors(vector_1, vector_2) else: cross_product_next = [0, 0, 0] alpha = 0 delta_normals = 0 for j in range(0, 3): delta_normals += cross_product[j] - cross_product_next[j] if np.abs(delta_normals) < accepted_normal_difference: return alpha else: return -alpha def triangulate(self): """ triangulates a polygon following the ear clipping methodology :return: list[triangles] """ # todo: review triangulate_polygon in # https://github.com/mikedh/trimesh/blob/dad11126742e140ef46ba12f8cb8643c83356467/trimesh/creation.py#L415, # it had a problem with a class called 'triangle', but, if solved, # it could be a very good substitute of this method points_list = self.points_list normal = self.normal # are points concave or convex? total_points_list, concave_points, convex_points = self._starting_lists(points_list, normal) # list of ears ears = [] while len(concave_points) > 3 or len(convex_points) != 0: for i in range(0, len(concave_points)): ear = self._triangle(points_list, total_points_list, concave_points[i]) rest_points = [] for p in total_points_list: rest_points.append(list(self.points[p])) if self._is_ear(ear, rest_points): ears.append(ear) point_to_remove = concave_points[i] previous_point_in_list, next_point_in_list = self._enveloping_points(point_to_remove, total_points_list) total_points_list.remove(point_to_remove) concave_points.remove(point_to_remove) # Was any of the adjacent points convex? -> check if changed status to concave for convex_point in convex_points: if convex_point == previous_point_in_list: concave_points, convex_points, end_loop = self._if_concave_change_status(normal, points_list, convex_point, total_points_list, concave_points, convex_points, previous_point_in_list) if end_loop: break continue if convex_point == next_point_in_list: concave_points, convex_points, end_loop = self._if_concave_change_status(normal, points_list, convex_point, total_points_list, concave_points, convex_points, next_point_in_list) if end_loop: break continue break if len(total_points_list) <= 3 and len(convex_points) > 0: sys.stderr.write(f'Not able to triangulate polygon\n') return [self] last_ear = self._triangle(points_list, total_points_list, concave_points[1]) ears.append(last_ear) return ears @staticmethod def _starting_lists(points_list, normal): """ creates the list of vertices (points) that define the polygon (total_points_list), together with other two lists separating points between convex and concave :param points_list: points_list :param normal: normal :return: list[point], list[point], list[point] """ concave_points = [] convex_points = [] # lists of concave and convex points # case 1: first point point = points_list[0:3] previous_point = points_list[len(points_list) - 3:] next_point = points_list[3:6] index = 0 total_points_list = [index] if Polygon._point_is_concave(normal, point, previous_point, next_point): concave_points.append(index) else: convex_points.append(index) # case 2: all points except first and last for i in range(0, int((len(points_list)-6)/3)): point = points_list[(i+1)*3:(i+2)*3] previous_point = points_list[i*3:(i+1)*3] next_point = points_list[(i+2)*3:(i+3)*3] index = i+1 total_points_list.append(index) if Polygon._point_is_concave(normal, point, previous_point, next_point): concave_points.append(index) else: convex_points.append(index) # case 3: last point point = points_list[len(points_list) - 3:] previous_point = points_list[len(points_list) - 6:len(points_list) - 3] next_point = points_list[0:3] index = int(len(points_list)/3) - 1 total_points_list.append(index) if Polygon._point_is_concave(normal, point, previous_point, next_point): concave_points.append(index) else: convex_points.append(index) return total_points_list, concave_points, convex_points @staticmethod def _triangle(points_list, total_points_list, point_position): """ creates a triangular polygon out of three points :param points_list: points_list :param total_points_list: [point] :param point_position: int :return: polygon """ index = point_position * 3 previous_point_index, next_point_index = Polygon._enveloping_points_indices(point_position, total_points_list) points = points_list[previous_point_index:previous_point_index + 3] points = np.append(points, points_list[index:index + 3]) points = np.append(points, points_list[next_point_index:next_point_index + 3]) rows = points.size // 3 points = points.reshape(rows, 3) triangle = Polygon(points) return triangle @staticmethod def _enveloping_points_indices(point_position, total_points_list): """ due to the fact that the lists are not circular, a method to find the previous and next points of an specific one is needed :param point_position: int :param total_points_list: [point] :return: int, int """ previous_point_index = None next_point_index = None if point_position == total_points_list[0]: previous_point_index = total_points_list[len(total_points_list) - 1] * 3 next_point_index = total_points_list[1] * 3 if point_position == total_points_list[len(total_points_list) - 1]: previous_point_index = total_points_list[len(total_points_list) - 2] * 3 next_point_index = total_points_list[0] * 3 for i in range(1, len(total_points_list)-1): if point_position == total_points_list[i]: previous_point_index = total_points_list[i - 1] * 3 next_point_index = total_points_list[i + 1] * 3 return previous_point_index, next_point_index @staticmethod def _enveloping_points(point_to_remove, total_points_list): """ due to the fact that the lists are not circular, a method to find the previous and next points of an specific one is needed :param point_to_remove: point :param total_points_list: [point] :return: point, point """ index = total_points_list.index(point_to_remove) if index == 0: previous_point_in_list = total_points_list[len(total_points_list) - 1] next_point_in_list = total_points_list[1] elif index == len(total_points_list) - 1: previous_point_in_list = total_points_list[len(total_points_list) - 2] next_point_in_list = total_points_list[0] else: previous_point_in_list = total_points_list[index - 1] next_point_in_list = total_points_list[index + 1] return previous_point_in_list, next_point_in_list @staticmethod def _is_ear(ear, points) -> bool: """ finds whether a triangle is an ear of the polygon :param ear: polygon :param points: [point] :return: boolean """ area_ear = ear.area for point in points: area_points = 0 point_is_not_vertex = True for i in range(0, 3): if abs(np.linalg.norm(point) - np.linalg.norm(ear.points[i])) < 0.0001: point_is_not_vertex = False break if point_is_not_vertex: for i in range(0, 3): if i != 2: new_points = ear.points[i][:] new_points = np.append(new_points, ear.points[i + 1][:]) new_points = np.append(new_points, point[:]) else: new_points = ear.points[i][:] new_points = np.append(new_points, point[:]) new_points = np.append(new_points, ear.points[0][:]) rows = new_points.size // 3 new_points = new_points.reshape(rows, 3) new_triangle = Polygon(new_points) area_points += new_triangle.area if abs(area_points - area_ear) < 1e-6: # point_inside_ear = True return False return True @staticmethod def _if_concave_change_status(normal, points_list, convex_point, total_points_list, concave_points, convex_points, point_in_list): """ checks whether an convex specific point change its status to concave after removing one ear in the polygon returning the new convex and concave points lists together with a flag advising that the list of total points already 3 and, therefore, the triangulation must be finished. :param normal: normal :param points_list: points_list :param convex_point: int :param total_points_list: [point] :param concave_points: [point] :param convex_points: [point] :param point_in_list: int :return: list[points], list[points], boolean """ end_loop = False point = points_list[point_in_list * 3:(point_in_list + 1) * 3] pointer = total_points_list.index(point_in_list) - 1 if pointer < 0: pointer = len(total_points_list) - 1 previous_point = points_list[total_points_list[pointer] * 3:total_points_list[pointer] * 3 + 3] pointer = total_points_list.index(point_in_list) + 1 if pointer >= len(total_points_list): pointer = 0 next_point = points_list[total_points_list[pointer] * 3:total_points_list[pointer] * 3 + 3] if Polygon._point_is_concave(normal, point, previous_point, next_point): if concave_points[0] > convex_point: concave_points.insert(0, convex_point) elif concave_points[len(concave_points) - 1] < convex_point: concave_points.append(convex_point) else: for p in range(0, len(concave_points) - 1): if concave_points[p] < convex_point < concave_points[p + 1]: concave_points.insert(p + 1, convex_point) convex_points.remove(convex_point) end_loop = True return concave_points, convex_points, end_loop @staticmethod def _point_is_concave(normal, point, previous_point, next_point) -> bool: """ returns whether a point is concave :param normal: normal :param point: point :param previous_point: point :param next_point: point :return: boolean """ is_concave = False accepted_error = 0.1 points = np.append(previous_point, point) points = np.append(points, next_point) rows = points.size // 3 points = points.reshape(rows, 3) triangle = Polygon(points) error_sum = 0 for i in range(0, len(normal)): error_sum += triangle.normal[i] - normal[i] if np.abs(error_sum) < accepted_error: is_concave = True return is_concave @staticmethod def _angle_between_vectors(vec_1, vec_2): """ angle between vectors in radians :param vec_1: vector :param vec_2: vector :return: float """ if np.linalg.norm(vec_1) == 0 or np.linalg.norm(vec_2) == 0: sys.stderr.write("Warning: impossible to calculate angle between planes' normal. Return 0\n") return 0 cosine = np.dot(vec_1, vec_2) / np.linalg.norm(vec_1) / np.linalg.norm(vec_2) if cosine > 1 and cosine-1 < 1e-5: cosine = 1 elif cosine < -1 and cosine+1 > -1e-5: cosine = -1 alpha = math.acos(cosine) return alpha